Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Exp Biol ; 227(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38725404

RESUMO

Behavioural regulation in insect societies remains a fundamental question in sociobiology. In hymenopteran societies, the queen plays a crucial role in regulating group behaviour by affecting individual behaviour and physiology through modulation of worker gene expression. Honey bee (Apis mellifera) queens signal their presence via queen mandibular pheromone (QMP). While QMP has been shown to influence behaviour and gene expression of young workers, we know little about how these changes translate in older workers. The effects of the queen pheromone could have prolonged molecular impacts on workers that depend on an early sensitive period. We demonstrate that removal of QMP impacts long-term gene expression in the brain and antennae in foragers that were treated early in life (1 day post emergence), but not when treated later in life. Genes important for division of labour, learning, chemosensory perception and ageing were among those differentially expressed in the antennae and brain tissues, suggesting that QMP influences diverse physiological and behavioural processes in workers. Surprisingly, removal of QMP did not have an impact on foraging behaviour. Overall, our study suggests a sensitive period early in the life of workers, where the presence or absence of a queen has potentially life-long effects on transcriptional activity.


Assuntos
Encéfalo , Feromônios , Animais , Abelhas/fisiologia , Abelhas/genética , Abelhas/efeitos dos fármacos , Feromônios/metabolismo , Feromônios/farmacologia , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Feminino , Antenas de Artrópodes/metabolismo , Antenas de Artrópodes/fisiologia , Antenas de Artrópodes/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos
2.
Environ Res ; 250: 118509, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38408628

RESUMO

Glyphosate (GLY) is among the most widely used pesticides in the world. However, there are a lot of unknowns about chronic exposure to GLY's effects on Honeybee (HB) behavior and physiology. To address this, we carried out five experiments to study the impact of chronic exposure to 5 mg/kg GLY on sugar consumption, survival, gene expression, gut microbiota, and metabolites of HB workers. Our results find a significant decrease in sugar consumption and survival probability of HB after chronic exposure to GLY. Further, genes associated with immune response, energy metabolism, and longevity were conspicuously altered. In addition, a total of seven metabolites were found to be differentially expressed in the metabolomic profiles, mainly related the sucrose metabolism. There was no significant difference in the gut microbiota. Results suggest that chronic exposure to field-level GLY altered the health of HB and the intricate toxic mechanisms. Our data provided insights into the chronic effects of GLY on HB behavior in food intake and health, which represents the field conditions where HB are exposed to pesticides over extended periods.


Assuntos
Microbioma Gastrointestinal , Glicina , Glifosato , Herbicidas , Abelhas/efeitos dos fármacos , Abelhas/microbiologia , Animais , Glicina/análogos & derivados , Glicina/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Herbicidas/toxicidade , Expressão Gênica/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Metabolômica
3.
Biol Res ; 57(1): 50, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39113128

RESUMO

BACKGROUND: In this study, a probiotic mixture (Honeybeeotic) consisting of seven bacterial strains isolated from a unique population of honeybees (Apis mellifera ligustica) was used. That honeybee population was located in the Roti Abbey locality of the Marche Region in Italy, an area isolated from human activities, and genetic contamination from other honeybee populations. The aim was to investigate the effects of this probiotic mixture on the innate immunity and intestinal microbiome of healthy common honeybees in two hives of the same apiary. Hive A received a diet of 50% glucose syrup, while hive B received the same syrup supplemented with the probiotics, both administered daily for 1 month. To determine whether the probiotic altered the immune response, phenoloxidase activity and hemolymph cellular subtype count were investigated. Additionally, metagenomic approaches were used to analyze the effects on gut microbiota composition and function, considering the critical role the gut microbiota plays in modulating host physiology. RESULTS: The results revealed differences in hemocyte populations between the two hives, as hive A exhibited higher counts of oenocytoids and granulocytes. These findings indicated that the dietary supplementation with the probiotic mixture was safe and well-tolerated. Furthermore, phenoloxidase activity significantly decreased in hive B (1.75 ± 0.19 U/mg) compared to hive A (3.62 ± 0.44 U/mg, p < 0.005), suggesting an improved state of well-being in the honeybees, as they did not require activation of immune defense mechanisms. Regarding the microbiome composition, the probiotic modulated the gut microbiota in hive B compared to the control, retaining core microbiota components while causing both positive and negative variations. Notably, several genes, particularly KEGG genes involved in amino acid metabolism, carbohydrate metabolism, and branched-chain amino acid (BCAA) transport, were more abundant in the probiotic-fed group, suggesting an effective nutritional supplement for the host. CONCLUSIONS: This study advocated that feeding with this probiotic mixture induces beneficial immunological effects and promoted a balanced gut microbiota with enhanced metabolic activities related to digestion. The use of highly selected probiotics was shown to contribute to the overall well-being of the honeybees, improving their immune response and gut health.


Assuntos
Microbioma Gastrointestinal , Hemolinfa , Monofenol Mono-Oxigenase , Probióticos , Animais , Abelhas/citologia , Abelhas/efeitos dos fármacos , Abelhas/enzimologia , Abelhas/microbiologia , Suplementos Nutricionais , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Hemócitos , Hemolinfa/citologia , Imunidade Inata , Itália , Monofenol Mono-Oxigenase/metabolismo , Probióticos/administração & dosagem
4.
Biofouling ; 40(3-4): 235-244, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584359

RESUMO

The association between dysbiotic microbiota biofilm and colon cancer has recently begun to attract attention. In the study, the apitherapeutic effects of bee products (honey, bee venom, royal jelly, pollen, perga and propolis) obtained from the endemic Yigilca ecotype of Apis mellifera anatoliaca were investigated. Antibiofilm activity were performed by microplate assay using crystal violet staining to measure adherent biofilm biomass of Escherichia coli capable of forming biofilms. Bee venom showed the highest inhibition effect (73.98%) at 50% concentration. Honey, perga and royal jelly reduced biofilm formation by >50% at all concentrations. The antiproliferation effect on the HCT116 colon cancer cell line was investigated with the water­soluble tetrazolium salt­1 assay. After 48 h of honey application at 50% concentration, cell proliferation decreased by 86.51%. The high cytotoxic effects of royal jelly and bee venom are also remarkable. Additionally, apoptotic pathway analysis was performed by ELISA using caspase 3, 8 and 9 enzyme-linked immunosorbent assay kits. All bee products induced a higher expression of caspase 9 compared with caspase 8. Natural products that upregulate caspase proteins are promising therapeutic targets for proliferative diseases.


Assuntos
Antineoplásicos , Venenos de Abelha , Biofilmes , Neoplasias do Colo , Escherichia coli , Ácidos Graxos , Própole , Biofilmes/efeitos dos fármacos , Humanos , Animais , Venenos de Abelha/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Neoplasias do Colo/tratamento farmacológico , Abelhas/efeitos dos fármacos , Células HCT116 , Própole/farmacologia , Própole/química , Ácidos Graxos/farmacologia , Antineoplásicos/farmacologia , Mel , Proliferação de Células/efeitos dos fármacos , Pólen/química , Antibacterianos/farmacologia , Apoptose/efeitos dos fármacos
5.
Parasitol Res ; 123(5): 204, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709330

RESUMO

In recent years, there has been growing concern on the potential weakening of honey bees and their increased susceptibility to pathogens due to chronic exposure to xenobiotics. The present work aimed to study the effects on bees undergoing an infection by Nosema ceranae and being exposed to a frequently used in-hive acaricide, amitraz. To achieve this, newly emerged bees were individually infected with N. ceranae spores and/or received a sublethal concentration of amitraz in their diets under laboratory conditions. Mortality, food intake, total volume excrement, body appearance, and parasite development were registered. Bees exposed to both stressors jointly had higher mortality rates compared to bees exposed separately, with no difference in the parasite development. An increase in sugar syrup consumption was observed for all treated bees while infected bees fed with amitraz also showed a diminishment in pollen intake. These results coupled with an increase in the total number of excretion events, alterations in behavior and body surface on individuals that received amitraz could evidence the detrimental action of this molecule. To corroborate these findings under semi-field conditions, worker bees were artificially infected, marked, and released into colonies. Then, they were exposed to a commercial amitraz-based product by contact. The recovered bees showed no differences in the parasite development due to amitraz exposure. This study provides evidence to which extent a honey bee infected with N. ceranae could potentially be weakened by chronic exposure to amitraz treatment.


Assuntos
Nosema , Toluidinas , Animais , Abelhas/efeitos dos fármacos , Abelhas/microbiologia , Abelhas/parasitologia , Nosema/efeitos dos fármacos , Nosema/fisiologia , Acaricidas
6.
Ecotoxicol Environ Saf ; 280: 116565, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38870738

RESUMO

Public concern about the effects of pesticides on non-target organisms has increased in the recent years. Nevertheless, there is a limited number of studies that address the actual toxic effects of herbicides on insects. This study investigated the side effects of herbicides on non-target organisms inhabiting agroecosystems and performing essential ecological and economic functions such as crop pollination. We analysed morphological alterations in the gut, Malpighian tubules and circulating haemocytes of Apis mellifera workers as markers of exposure effects. A commercial formulation of a pendimethalin-based herbicide (PND) was administered orally under laboratory conditions at a realistic concentration admitted in the field (330gL-1 of active ingredient., 4 L ha-1 for cereal and vegetable crops). The worker bees were exposed to a single application of PND for a period of one week, to simulate the exposure that can occur when foraging bees accidentally drink drops of contaminated water upon treatments. Histopathological analyses of the midgut, ileum and Malpighian tubules showed alterations over time (from 24 to 72 h after the beginning of exposure) such as loss of epithelial organisation, cellular vacuolisation and altered pyknotic nuclei as well as disruption of the peritrophic membrane over time. Semiquantitative analyses of the midgut showed a significant increase in the organ injury index 24 and 72 h after the initial exposure in PND-exposed bees compared to control bees. In addition, a change in positivity to Gram staining was observed in the midgut histological sections. A recovery of cytotoxic effects was observed one week after the initial exposure, which was favoured by the periodic renewal of the intestinal epithelium and the herbicide dissipation time. Cytochemical staining with Giemsa of haemocytes from PND-treated workers over 24 and 72 h showed significant nuclear alterations such as lobed or polymorphic nuclei and micronuclei compared to bees in the control group. These results show that the dose of PND used to protect crops from weeds can lead to significant cytotoxic and genotoxic effects in non-target organisms such as honey bees. In croplands, the sublethal effects on cell morphology can impair vital physiological processes such as nutrition, osmoregulation, and resistance to pathogens, contributing to the decline in biodiversity and abundance of species that play a prominent ecological role, such as pollinators.


Assuntos
Compostos de Anilina , Herbicidas , Animais , Abelhas/efeitos dos fármacos , Herbicidas/toxicidade , Compostos de Anilina/toxicidade , Túbulos de Malpighi/efeitos dos fármacos , Dano ao DNA
7.
Ecotoxicol Environ Saf ; 282: 116677, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38971098

RESUMO

Stingless bees (Hymenoptera: Meliponini) are pollinators of both cultivated and wild crop plants in the Neotropical region. However, they are susceptible to pesticide exposure during foraging activities. The fungicide fluazinam is commonly applied in bean and sunflower cultivation during the flowering period, posing a potential risk to the stingless bee Partamona helleri, which serves as a pollinator for these crops. In this study, we investigated the impact of acute oral exposure (24 h) fluazinam on the survival, morphology and cell death signaling pathways in the midgut, oxidative stress and behavior of P. helleri worker bees. Worker bees were exposed for 24 h to fluazinam (field concentrations 0.5, 1.5 and 2.5 mg a.i. mL-1), diluted in 50 % honey aqueous solution. After oral exposure, fluazinam did not harm the survival of worker bees. However, sublethal effects were revealed using the highest concentration of fluazinam (2.5 mg a.i. mL-1), particularly a reduction in food consumption, damage in the midgut epithelium, characterized by degeneration of the brush border, an increase in the number and size of cytoplasm vacuoles, condensation of nuclear chromatin, and an increase in the release of cell fragments into the gut lumen. Bees exposed to fluazinam exhibited an increase in cells undergoing autophagy and apoptosis, indicating cell death in the midgut epithelium. Furthermore, the fungicide induced oxidative stress as evidenced by an increase in total antioxidant and catalase enzyme activities, along with a decrease in glutathione S-transferase activity. And finally, fluazinam altered the walking behavior of bees, which could potentially impede their foraging activities. In conclusion, our findings indicate that fluazinam at field concentrations is not lethal for workers P. helleri. Nevertheless, it has side effects on midgut integrity, oxidative stress and worker bee behavior, pointing to potential risks for this pollinator.


Assuntos
Fungicidas Industriais , Estresse Oxidativo , Animais , Estresse Oxidativo/efeitos dos fármacos , Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Fungicidas Industriais/toxicidade , Morte Celular/efeitos dos fármacos , Aminopiridinas
8.
Ecotoxicol Environ Saf ; 282: 116723, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39024947

RESUMO

Honey bees (Apis mellifera) have to withstand various environmental stressors alone or in combination in agriculture settings. Plant protection products are applied to achieve high crop yield, but residues of their active substances are frequently detected in bee matrices and could affect honey bee colonies. In addition, intensified agriculture could lead to resource limitation for honey bees. This study aimed to compare the response of full-sized and nucleus colonies to the combined stressors of fungicide exposure and resource limitation. A large-scale field study was conducted simultaneously at five different locations across Germany, starting in spring 2022 and continuing through spring 2023. The fungicide formulation Pictor® Active (active ingredients boscalid and pyraclostrobin) was applied according to label instructions at the maximum recommended rate on oil seed rape crops. Resource limitation was ensured by pollen restriction using a pollen trap and stressor responses were evaluated by assessing colony development, brood development, and core gut microbiome alterations. Furthermore, effects on the plant nectar microbiome were assessed since nectar inhabiting yeast are beneficial for pollination. We showed, that honey bee colonies were able to compensate for the combined stressor effects within six weeks. Nucleus colonies exposed to the combined stressors showed a short-term response with a less favorable brood to bee ratio and reduced colony development in May. No further impacts were observed in either the nucleus colonies or the full-sized colonies from July until the following spring. In addition, no fungicide-dependent differences were found in core gut and nectar microbiomes, and these differences were not distinguishable from local or environmental effects. Therefore, the provision of sufficient resources is important to increase the resilience of honey bees to a combination of stressors.


Assuntos
Fungicidas Industriais , Pólen , Animais , Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Fungicidas Industriais/toxicidade , Estrobilurinas/toxicidade , Alemanha , Estresse Fisiológico , Néctar de Plantas , Carbamatos/toxicidade , Microbiota/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Compostos de Bifenilo , Niacinamida/análogos & derivados
9.
Ecotoxicol Environ Saf ; 282: 116706, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38996647

RESUMO

Antibiotics are frequently employed to control bacterial diseases in honeybees, but their broad-spectrum action can disrupt the delicate balance of the gut microbiome, leading to dysbiosis. This imbalance in the gut microbiota of honeybees adversely affects their physiological health and weakens their resistance to pathogens, including viruses that significantly threaten honeybee health. In this study, we investigated whether tetracycline-induced gut microbiome dysbiosis promotes the replication of Israeli acute paralysis virus (IAPV), a key virus associated with colony losses and whether IAPV infection exacerbates gut microbiome dysbiosis. Our results demonstrated that tetracycline-induced gut microbiome dysbiosis increases the susceptibility of honeybees to IAPV infection. The viral titer in worker bees with antibiotic-induced gut microbiome dysbiosis prior to IAPV inoculation was significantly higher than in those merely inoculated with IAPV. Furthermore, we observed a synergistic effect between tetracycline and IAPV on the disruption of the honeybee gut microbiome balance. The progression of IAPV replication could, in turn, exacerbate antibiotic-induced gut microbiome dysbiosis in honeybees. Our research provides novel insights into the role of the gut microbiota in host-virus interactions, emphasizing the complex interplay between antibiotic use, gut microbiome health, and viral susceptibility in honeybees. We highlight the crucial role of a balanced gut microbiota in honey bees for their immune response against pathogens and emphasize the importance of careful, safe antibiotic use in beekeeping to protect these beneficial microbes.


Assuntos
Antibacterianos , Dicistroviridae , Disbiose , Microbioma Gastrointestinal , Tetraciclina , Animais , Abelhas/virologia , Abelhas/microbiologia , Abelhas/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Disbiose/induzido quimicamente , Disbiose/virologia , Tetraciclina/farmacologia , Tetraciclina/toxicidade , Dicistroviridae/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/toxicidade
10.
Ecotoxicology ; 33(6): 546-559, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38649545

RESUMO

Wild bees are crucial pollinators of flowering plants and concerns are rising about their decline associated with pesticide use. Interspecific variation in wild bee response to pesticide exposure is expected to be related to variation in their morphology, physiology, and ecology, though there are still important knowledge gaps in its understanding. Pesticide risk assessments have largely focussed on the Western honey bee sensitivity considering it protective enough for wild bees. Recently, guidelines for Bombus terrestris and Osmia bicornis testing have been developed but are not yet implemented at a global scale in pesticide risk assessments. Here, we developed and tested a new simplified method of pesticide exposure on wild bee species collected from the field in Belgium. Enough specimens of nine species survived in a laboratory setting and were exposed to oral and topical acute doses of a sulfoximine insecticide. Our results confirm significant variability among wild bee species. We show that Osmia cornuta is more sensitive to sulfoxaflor than B. terrestris, whereas Bombus hypnorum is less sensitive. We propose hypotheses on the mechanisms explaining interspecific variations in sensitivity to pesticides. Future pesticide risk assessments of wild bees will require further refinement of protocols for their controlled housing and exposure.


Assuntos
Inseticidas , Piridinas , Compostos de Enxofre , Animais , Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Inseticidas/toxicidade , Piridinas/toxicidade , Compostos de Enxofre/toxicidade , Especificidade da Espécie , Bélgica , Medição de Risco
11.
Ecotoxicology ; 33(6): 608-621, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38780664

RESUMO

In eusocial insects, worker longevity is essential to ensure colony survival in brood-free periods. Trade-offs between longevity and other traits may render long-living workers in brood-free periods more susceptible to pesticides compared to short-lived ones. Further, colony environment (e.g., adequate nutrition) may enable workers to better cope with pesticides, yet data comparing long vs. short-living workers and the role of the colony environment for pesticide tolerance are scarce. Here, we show that long-living honey bee workers, Apis mellifera, are less susceptible to the neonicotinoid thiamethoxam than short-lived workers, and that susceptibility was further reduced when workers were acclimatized under colony compared to laboratory conditions. Following an OECD protocol, freshly-emerged workers were exposed to thiamethoxam in summer and winter and either acclimatized within their colony or in the laboratory. Mortality and sucrose consumption were measured daily and revealed that winter workers were significantly less susceptible than summer workers, despite being exposed to higher thiamethoxam dosages due to increased food consumption. Disparencies in fat body activity, which is key for detoxification, may explain why winter bees were less susceptible. Furthermore, colony acclimatization significantly reduced susceptibility towards thiamethoxam in winter workers likely due to enhanced protein nutrition. Brood absence and colony environment seem to govern workers' ability to cope with pesticides, which should be considered in risk assessments. Since honey bee colony losses occur mostly over winter, long-term studies assessing the effects of pesticide exposure on winter bees are required to better understand the underlying mechanisms.


Assuntos
Inseticidas , Neonicotinoides , Tiametoxam , Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Animais , Inseticidas/toxicidade , Tiametoxam/toxicidade , Neonicotinoides/toxicidade , Estações do Ano , Nitrocompostos/toxicidade , Aclimatação , Tiazóis/toxicidade
12.
Pestic Biochem Physiol ; 202: 105920, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879321

RESUMO

The queen is the sole reproductive individual and the maturing brood replenishes the shorter-lived worker bees. Production of many crops relies on both pesticides and bee pollination to improve crop quantity and quality. Despite the certain knowledge on chemical pesticides caused damage to worker bee physiology and behavior, our understanding of the relationship between honeybee queen development and chemical pesticides remains weak. Here, we comprehensive investigate the effects of the widely used insecticide chlorantraniliprole on the growth, hormone levels, and detoxifying enzyme activity of queen larvae. It has been determined that chlorantraniliprole present a chronic toxic effect on queen larvae and also reduced the fitness of queen, and that these effects are positively correlated with pesticide levels. It has been found that queen larvae began to show reduced capping and emergence rates when exposed to 2 ng/larva of chlorantraniliprole. At 20 ng/larva, queen capping and emergence rates were the lowest, and there were significant reductions in larval hormone level. Chlorantraniliprole have an effect on detoxification enzyme activity and hormone levels in queen larvae. In conclusion, chlorantraniliprole can adversely affect the growth and development of queen larvae. Our findings may guide the scientifically sound use of chemical pesticides to reduce potential risks to queen larvae.


Assuntos
Inseticidas , Larva , ortoaminobenzoatos , Animais , ortoaminobenzoatos/toxicidade , Larva/efeitos dos fármacos , Inseticidas/toxicidade , Abelhas/efeitos dos fármacos , Abelhas/crescimento & desenvolvimento , Feminino
13.
Pestic Biochem Physiol ; 202: 105974, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879315

RESUMO

In fact, less than 1% of applied pesticides reach their target pests, while the remainder pollute the neighboring environment and adversely impact human health as well as non-target organisms in agricultural ecosystem. Pesticides can contribute to the loss of agrobiodiversity, which are essential to maintaining the agro-ecosystem's structure and functioning in order to produce and secure enough food. This review article examines the negative effects of pesticides on non-target invertebrates including earthworms, honeybees, predators, and parasitoids. It also highlights areas where further research is needed to address unresolved issues related to pesticide exposure, aiming to improve conservation efforts for these crucial species. These organisms play crucial roles in ecosystem functioning, such as soil health, pollination, and pest control. Both lethal and sub-lethal effects of pesticides on the selected non-target invertebrates were discussed. Pesticides affect DNA integrity, enzyme activity, growth, behavior, and reproduction of earthworms even at low concentrations. Pesticides could also induce a reduction in individual survival, disruption in learning performance and memory, as well as a change in the foraging behavior of honeybees. Additionally, pesticides adversely affect population growth indices, reproduction, development, longevity, and consumption of predators and parasitoids. As a result, pesticides must pass adequate ecotoxicological risk assessment to be enlisted by regulatory authorities. Therefore, it is important to adopt integrated pest management (IPM) strategies that minimize pesticide use and promote the conservation of beneficial organisms in order to maintain agrobiodiversity and sustainable agricultural systems. Furthermore, adopting precision agriculture and organic farming lessen these negative effects as well.less than.


Assuntos
Agricultura , Ecossistema , Invertebrados , Praguicidas , Animais , Praguicidas/toxicidade , Invertebrados/efeitos dos fármacos , Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Oligoquetos/efeitos dos fármacos
14.
Pestic Biochem Physiol ; 202: 105940, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879331

RESUMO

The objective of this study is to assess the potential impact of tefluthrin and guadipyr on the gut microbial composition and metabolism in adult Apis mellifera ligustica, thereby elucidating the underlying mechanisms of insecticide action and its practical implications for bee protection. In this investigation, A. mellifera were subjected to one of three dietary conditions: (1) control sugar water, (2) tefluthrin-infused sugar water, or (3) guadipyr-infused sugar water. After a 10-day exposure period, genomic DNA from the gut bacteria was extracted. High-throughput sequencing was employed to evaluate the potential influence of tefluthrin and guadipyr treatments on the diversity and abundance of gut bacteria. Among the A. mellifera specimens, a total of twenty species of gut bacteria were identified, spanning across five phyla, six classes, eleven orders, eleven families, and fifteen genera. The dominant phyla within the gut bacterial community were Proteobacteria and Bacteroidetes. In comparison to the control group, both the tefluthrin-treated and deltamethrin-treated groups exhibited alterations in the composition of their gut bacterial flora. At the phylum level, there was a significant decrease in the relative abundance of Cyanobacteria (P < 0.05). On the genus level, the tefluthrin group displayed a significant increase in the relative abundance of Bartonella and Serratia (P < 0.05). In the guadipyr-treated group, the relative abundance of Gilliamella and Frischella increased significantly (P < 0.05), while the relative abundance of norank_o_Chloroplast and Enterobacter decreased significantly (P < 0.05). Further analysis of cluster of orthologous genes predicted functional changes in gut microbial metabolism following tefluthrin exposure but no significant changes after guadipyr exposure. Consequently, exposure to tefluthrin and guadipyr can induce shifts in both the composition and metabolic activity of the gut bacteria in A. mellifera. Notably, the impact of tefluthrin on the gut bacteria of A. mellifera appears to be more pronounced compared to that of guadipyr.


Assuntos
Bactérias , Microbioma Gastrointestinal , Inseticidas , Piretrinas , Animais , Abelhas/microbiologia , Abelhas/efeitos dos fármacos , Piretrinas/farmacologia , Inseticidas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/classificação
15.
Pestic Biochem Physiol ; 201: 105909, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685230

RESUMO

Flumethrin has been supplied as an acaricide for Varroa mite control in world-wide apiculture due to its low lethal effects on honey bees. However, little is known about the effects of short-term flumethrin exposure in the larval stage on adult life stage of bees involving survival status, foraging and memory-related behaviors. Here, we found that exposure to flumethrin at 1 mg/L during larval stage reduced survival and altered foraging activities including induced precocious foraging activity, decreased foraging trips and time, and altered rotating day-off status of adult worker bees using the radio frequency identification system. Furthermore, larval exposure at 1 mg/L flumethrin influenced the correct proboscis extension responses of 7-day-old worker bees and decreased homing rates of 20-day-old worker bees, suggesting that 1 mg/L flumethrin exposure at larval stage could affect memory-related behaviors of adult bees; meanwhile, three genes related to memory (GluRA, Nmdar1 and Tyr1) were certainly down-regulated varying different flumethrin concentrations (0.01, 0.1, and 1 mg/L). Combined with transcriptomic sequencing, differentially expressed genes involved in olfactory memory of adult bees were completely down-regulated under flumethrin exposure. Our findings highlight the unprecedented impact of short-term exposure of insecticides on honey bees in long-term health monitoring under field conditions.


Assuntos
Larva , Memória , Piretrinas , Animais , Piretrinas/toxicidade , Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Larva/efeitos dos fármacos , Memória/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Inseticidas/toxicidade , Acaricidas/toxicidade
16.
Pestic Biochem Physiol ; 201: 105865, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685241

RESUMO

Fluvalinate is widely used in the control of Varroa destructor, but its residues in colonies threaten honeybees. The effect of fluvalinate-induced dysbiosis on honeybee-related gene expression and the gut microenvironment of honeybees has not yet been fully elucidated. In this study, two-day-old larvae to seven-day-old adult worker bees were continuously fed different amounts of fluvalinate-sucrose solutions (0, 0.5, 5, and 50 mg/kg), after which the expression levels of two immune-related genes (Hymenoptaecin and Defensin1) and three detoxication-related genes (GSTS3, CAT, and CYP450) in worker bees (1, 7, and 20 days old) were measured. The effect of fluvalinate on the gut microbes of worker bees at seven days old also was explored using 16S rRNA Illumina deep sequencing. The results showed that exposure of honeybees to the insecticide fluvalinate affected their gene expression and gut microbial composition. As the age of honeybees increased, the effect of fluvalinate on the expression of Hymenoptaecin, CYP450, and CAT decreased, and the abundance of honeybee gut bacteria was affected by increasing the fluvalinate concentration. These findings provide insights into the synergistic defense of honeybee hosts against exogenous stresses in conjunction with honeybee gut microbes.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Microbioma Gastrointestinal , Inseticidas , Nitrilas , Piretrinas , Animais , Abelhas/efeitos dos fármacos , Abelhas/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Piretrinas/farmacologia , Piretrinas/toxicidade , Inseticidas/farmacologia , Inseticidas/toxicidade , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , RNA Ribossômico 16S/genética
17.
Pestic Biochem Physiol ; 201: 105793, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685207

RESUMO

Imidacloprid, chlorpyrifos, and glyphosate rank among the most extensively employed pesticides worldwide. The effects of these pesticides and their combined on the flight capability of Apis cerana, and the potential underlying mechanisms remain uncertain. To investigate these effects, we carried out flight mill, transcriptome, and metabolome experiments. Our findings reveal that individual acute oral treatments with pesticides, specifically 20 µL of 10 ng/g imidacloprid (0.2 ng per bee), 30 ng/g chlorpyrifos (0.6 ng per bee), and 60 ng/g glyphosate (1.2 ng per bee), did not impact the flight capability of the bees. However, when bees were exposed to a combination of two or three pesticides, a notable reduction in flight duration and distance was observed. In the transcriptomic and metabolomic analyses, we identified 307 transcripts and 17 metabolites that exhibited differential expression following exposure to combined pesticides, primarily associated with metabolic pathways involved in energy regulation. Our results illuminate the intricate effects and potential hazards posed by combined pesticide exposures on bee behavior. These findings offer valuable insights into the synergistic potential of pesticide combinations and their capacity to impair bee behavior. Understanding these complex interactions is essential for comprehending the broader consequences of pesticide formulations on honey bee populations.


Assuntos
Clorpirifos , Voo Animal , Glicina , Glifosato , Metabolômica , Neonicotinoides , Nitrocompostos , Praguicidas , Transcriptoma , Animais , Abelhas/efeitos dos fármacos , Abelhas/genética , Abelhas/metabolismo , Nitrocompostos/toxicidade , Clorpirifos/toxicidade , Neonicotinoides/toxicidade , Voo Animal/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Glicina/análogos & derivados , Glicina/toxicidade , Praguicidas/toxicidade , Inseticidas/toxicidade , Metaboloma/efeitos dos fármacos
18.
J Insect Sci ; 24(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805656

RESUMO

The negative effects of Varroa and pesticides on colony health and survival are among the most important concerns to beekeepers. To compare the relative contribution of Varroa, pesticides, and interactions between them on honey bee colony performance and survival, a 2-year longitudinal study was performed in corn and soybean growing areas of Iowa. Varroa infestation and pesticide content in stored pollen were measured from 3 apiaries across a gradient of corn and soybean production areas and compared to measurements of colony health and survival. Colonies were not treated for Varroa the first year, but were treated the second year, leading to reduced Varroa infestation that was associated with larger honey bee populations, increased honey production, and higher colony survival. Pesticide detections were highest in areas with high-intensity corn and soybean production treated with conventional methods. Pesticide detections were positively associated with honey bee population size in May 2015 in the intermediate conventional (IC) and intermediate organic (IO) apiaries. Varroa populations across all apiaries in October 2015 were negatively correlated with miticide and chlorpyrifos detections. Miticide detections across all apiaries and neonicotinoid detections in the IC apiary in May 2015 were higher in colonies that survived. In July 2015, colony survival was positively associated with total pesticide detections in all apiaries and chlorpyrifos exposure in the IC and high conventional (HC) apiaries. This research suggests that Varroa are a major cause of reduced colony performance and increased colony losses, and honey bees are resilient upon low to moderate pesticide detections.


Assuntos
Glycine max , Varroidae , Zea mays , Animais , Abelhas/parasitologia , Abelhas/efeitos dos fármacos , Iowa , Varroidae/fisiologia , Criação de Abelhas , Praguicidas/toxicidade , Estudos Longitudinais , Pólen
19.
J Insect Sci ; 24(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805655

RESUMO

Honey bees exhibit age polyethism and thus have a predictable sequence of behaviors they express through developmental time. Numerous laboratory studies show exposure to pesticides may impair critical honey bee behaviors (brood care, foraging, egg-laying, etc.) that adversely affect colony productivity and survival. There are fewer studies that examine the impacts of pesticides in natural field settings, especially given the challenges of implementing treatment groups and controlling variables. This study helps address the need for impact studies on pollinators under field conditions to assess the consequences of chemical overuse and dependency in agricultural and urban landscapes. To assess the impact of systemic pesticides in a natural field setting on worker bee behavioral development, observation hives were established to monitor changes in behaviors of similarly aged workers and sister queens within 2 experimental groups: (i) colonies located near point-source systemic pesticide pollution (pesticide contaminated treatment), and (ii) colonies embedded within a typical Midwestern US agricultural environment (control). In this study, worker bees in the contaminated environment exhibited important and biologically significant behavioral differences and accelerated onset of hive tasks (i.e., precocious behavioral development) compared to similarly aged bees at the control site. Queen locomotion was largely unaffected; however, the egg-laying rate was reduced in queens at the contaminated (treated) site. These results show that environmental pesticide exposure can disrupt colony function and adversely affect worker bee behavioral maturation, leading to reduced worker longevity and decreased colony efficiency.


Assuntos
Comportamento Animal , Praguicidas , Animais , Abelhas/efeitos dos fármacos , Abelhas/crescimento & desenvolvimento , Comportamento Animal/efeitos dos fármacos , Praguicidas/toxicidade , Feminino
20.
J Insect Sci ; 24(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805648

RESUMO

Agrochemical exposure is a major contributor to ecological declines worldwide, including the loss of crucial pollinator species. In addition to direct toxicity, field-relevant doses of pesticides can increase species' vulnerabilities to other stressors, including parasites. Experimental field demonstrations of potential interactive effects of pesticides and additional stressors are rare, as are tests of mechanisms via which pollinators tolerate pesticides. Here, we controlled honey bee colony exposure to field-relevant concentrations of 2 neonicotinoid insecticides (clothianidin and thiamethoxam) in pollen and simultaneously manipulated intracolony genetic heterogeneity. We showed that exposure increased rates of Varroa destructor (Anderson and Trueman) parasitism and that while increased genetic heterogeneity overall improved survivability, it did not reduce the negative effect size of neonicotinoid exposure. This study is, to our knowledge, the first experimental field demonstration of how neonicotinoid exposure can increase V. destructor populations in honey bees and also demonstrates that colony genetic diversity cannot mitigate the effects of neonicotinoid pesticides.


Assuntos
Variação Genética , Inseticidas , Neonicotinoides , Varroidae , Animais , Abelhas/parasitologia , Abelhas/efeitos dos fármacos , Varroidae/efeitos dos fármacos , Neonicotinoides/toxicidade , Inseticidas/toxicidade , Tiazóis/toxicidade , Tiametoxam , Guanidinas/toxicidade , Interações Hospedeiro-Parasita , Nitrocompostos/toxicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa