Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.675
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nat Rev Mol Cell Biol ; 20(4): 242-258, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30610207

RESUMO

Obesity is characterized by increased adipose tissue mass and has been associated with a strong predisposition towards metabolic diseases and cancer. Thus, it constitutes a public health issue of major proportion. The expansion of adipose depots can be driven either by the increase in adipocyte size (hypertrophy) or by the formation of new adipocytes from precursor differentiation in the process of adipogenesis (hyperplasia). Notably, adipocyte expansion through adipogenesis can offset the negative metabolic effects of obesity, and the mechanisms and regulators of this adaptive process are now emerging. Over the past several years, we have learned a considerable amount about how adipocyte fate is determined and how adipogenesis is regulated by signalling and systemic factors. We have also gained appreciation that the adipogenic niche can influence tissue adipogenic capability. Approaches aimed at increasing adipogenesis over adipocyte hypertrophy can now be explored as a means to treat metabolic diseases.


Assuntos
Adipogenia/fisiologia , Adipócitos/metabolismo , Adipócitos/fisiologia , Animais , Diferenciação Celular/fisiologia , Saúde , Humanos , Obesidade/metabolismo , Obesidade/fisiopatologia , Transdução de Sinais/fisiologia
2.
Physiol Rev ; 98(4): 1911-1941, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30067159

RESUMO

The subcutaneous adipose tissue (SAT) is the largest and best storage site for excess lipids. However, it has a limited ability to expand by recruiting and/or differentiating available precursor cells. When inadequate, this leads to a hypertrophic expansion of the cells with increased inflammation, insulin resistance, and a dysfunctional prolipolytic tissue. Epi-/genetic factors regulate SAT adipogenesis and genetic predisposition for type 2 diabetes is associated with markers of an impaired SAT adipogenesis and development of hypertrophic obesity also in nonobese individuals. We here review mechanisms for the adipose precursor cells to enter adipogenesis, emphasizing the role of bone morphogenetic protein-4 (BMP-4) and its endogenous antagonist gremlin-1, which is increased in hypertrophic SAT in humans. Gremlin-1 is a secreted and a likely important mechanism for the impaired SAT adipogenesis in hypertrophic obesity. Transiently increasing BMP-4 enhances adipogenic commitment of the precursor cells while maintained BMP-4 signaling during differentiation induces a beige/brown oxidative phenotype in both human and murine adipose cells. Adipose tissue growth and development also requires increased angiogenesis, and BMP-4, as a proangiogenic molecule, may also be an important feedback regulator of this. Hypertrophic obesity is also associated with increased lipolysis. Reduced lipid storage and increased release of FFA by hypertrophic SAT are important mechanisms for the accumulation of ectopic fat in the liver and other places promoting insulin resistance. Taken together, the limited expansion and storage capacity of SAT is a major driver of the obesity-associated metabolic complications.


Assuntos
Adipogenia/fisiologia , Tecido Adiposo/patologia , Obesidade/patologia , Adipócitos/patologia , Animais , Diferenciação Celular/fisiologia , Diabetes Mellitus Tipo 2/patologia , Humanos , Inflamação/patologia , Resistência à Insulina/fisiologia
3.
FASEB J ; 38(14): e23836, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39044640

RESUMO

Leptin can indirectly regulate fatty-acid metabolism and synthesis in muscle in vivo and directly in incubated muscle ex vivo. In addition, non-synonymous mutations in the bovine leptin gene (LEP) are associated with carcass intramuscular fat (IMF) content. However, the effects of LEP on lipid synthesis of adipocytes have not been clearly studied at the cellular level. Therefore, this study focused on bovine primary intramuscular preadipocytes to investigate the effects of LEP on the proliferation and differentiation of intramuscular preadipocytes, as well as its regulatory mechanism in lipid synthesis. The results showed that both the LEP and leptin receptor gene (LEPR) were highly expressed in IMF tissues, and their mRNA expression levels were positively correlated at different developmental stages of intramuscular preadipocytes. The overexpression of LEP inhibited the proliferation and differentiation of intramuscular preadipocytes, while interference with LEP had the opposite effect. Additionally, LEP significantly promoted the phosphorylation level of AMPKα by promoting the protein expression of CAMKK2. Meanwhile, rescue experiments showed that the increasing effect of AMPK inhibitors on the number of intramuscular preadipocytes was significantly weakened by the overexpression of LEP. Furthermore, the overexpression of LEP could weaken the promoting effect of AMPK inhibitor on triglyceride content and droplet accumulation, and prevent the upregulation of adipogenic protein expression (SREBF1, FABP4, FASN, and ACCα) caused by AMPK inhibitor. Taken together, LEP acted on the AMPK signaling pathway by regulating the protein expression of CAMKK2, thereby downregulating the expression of proliferation-related and adipogenic-related genes and proteins, ultimately reducing intramuscular adipogenesis.


Assuntos
Proteínas Quinases Ativadas por AMP , Adipócitos , Adipogenia , Leptina , Transdução de Sinais , Animais , Adipogenia/fisiologia , Bovinos , Adipócitos/metabolismo , Adipócitos/citologia , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Leptina/metabolismo , Leptina/genética , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Receptores para Leptina/metabolismo , Receptores para Leptina/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/citologia
4.
Proc Natl Acad Sci U S A ; 119(33): e2204470119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939672

RESUMO

Most mammalian cells have an intrinsic circadian clock that coordinates metabolic activity with the daily rest and wake cycle. The circadian clock is known to regulate cell differentiation, but how continuous daily oscillations of the internal clock can control a much longer, multiday differentiation process is not known. Here, we simultaneously monitor circadian clock and adipocyte-differentiation progression live in single cells. Strikingly, we find a bursting behavior in the cell population whereby individual preadipocytes commit to differentiate primarily during a 12-h window each day, corresponding to the time of rest. Daily gating occurs because cells irreversibly commit to differentiate within only a few hours, which is much faster than the rest phase and the overall multiday differentiation process. The daily bursts in differentiation commitment result from a differentiation-stimulus driven variable and slow increase in expression of PPARG, the master regulator of adipogenesis, overlaid with circadian boosts in PPARG expression driven by fast, clock-driven PPARG regulators such as CEBPA. Our finding of daily bursts in cell differentiation only during the circadian cycle phase corresponding to evening in humans is broadly relevant, given that most differentiating somatic cells are regulated by the circadian clock. Having a restricted time each day when differentiation occurs may open therapeutic strategies to use timed treatment relative to the clock to promote tissue regeneration.


Assuntos
Adipócitos , Adipogenia , Relógios Circadianos , Ritmo Circadiano , PPAR gama , Adipócitos/citologia , Adipócitos/fisiologia , Adipogenia/genética , Adipogenia/fisiologia , Animais , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Humanos , Camundongos , PPAR gama/genética , PPAR gama/metabolismo
5.
Annu Rev Physiol ; 83: 257-278, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33566675

RESUMO

Adipose tissue depots in distinct anatomical locations mediate key aspects of metabolism, including energy storage, nutrient release, and thermogenesis. Although adipocytes make up more than 90% of adipose tissue volume, they represent less than 50% of its cellular content. Here, I review recent advances in genetic lineage tracing and transcriptomics that reveal the identities of the heterogeneous cell populations constituting mouse and human adipose tissues. In addition to mature adipocytes and their progenitors, these include endothelial and various immune cell types that together orchestrate adipose tissue development and functions. One salient finding is the identification of progenitor subtypes that can modulate adipogenic capacity through paracrine mechanisms. Another is the description of fate trajectories of monocyte/macrophages, which can respond maladaptively to nutritional and thermogenic stimuli, leading to metabolic disease. These studies have generated an extraordinary source of publicly available data that can be leveraged to explore commonalities and differences among experimental models, providing new insights into adipose tissues and their role in metabolic disease.


Assuntos
Tecido Adiposo/fisiologia , Adipócitos/fisiologia , Adipogenia/fisiologia , Animais , Humanos , Termogênese/fisiologia
6.
Am J Physiol Cell Physiol ; 326(6): C1611-C1624, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38646789

RESUMO

The influence of SGLT-1 on perivascular preadipocytes (PVPACs) and vascular remodeling is not well understood. This study aimed to elucidate the role and mechanism of SGLT-1-mediated PVPACs bioactivity. PVPACs were cultured in vitro and applied ex vivo to the carotid arteries of mice using a lentivirus-based thermosensitive in situ gel (TISG). The groups were treated with Lv-SGLT1 (lentiviral vector, overexpression), Lv-siSGLT1 (RNA interference, knockdown), or specific signaling pathway inhibitors. Assays were conducted to assess changes in cell proliferation, apoptosis, glucose uptake, adipogenic differentiation, and vascular remodeling in the PVPACs. Protein expression was analyzed by Western blotting, immunocytochemistry, and/or immunohistochemistry. The methyl thiazolyl tetrazolium (MTT) assay and Hoechst 33342 staining indicated that SGLT-1 overexpression significantly promoted PVPACs proliferation and inhibited apoptosis in vitro. Conversely, SGLT-1 knockdown exerted the opposite effect. Oil Red O staining revealed that SGLT-1 overexpression facilitated adipogenic differentiation, while its inhibition mitigated these effects. 3H-labeled glucose uptake experiments demonstrated that SGLT-1 overexpression enhanced glucose uptake by PVPACs, whereas RNA interference-mediated SGLT-1 inhibition had no significant effect on glucose uptake. Moreover, RT-qPCR, Western blotting, and immunofluorescence analyses revealed that SGLT-1 overexpression upregulated FABP4 and VEGF-A levels and activated the Akt/mTOR/p70S6K signaling pathway, whereas SGLT-1 knockdown produced the opposite effects. In vivo studies corroborated these findings and indicated that SGLT-1 overexpression facilitated carotid artery remodeling. Our study demonstrates that SGLT-1 activation of the Akt/mTOR/p70S6K signaling pathway promotes PVPACs proliferation, adipogenesis, glucose uptake, glucolipid metabolism, and vascular remodeling.NEW & NOTEWORTHY SGLT-1 is expressed in PVPACs and can affect preadipocyte glucolipid metabolism and vascular remodeling. SGLT-1 promotes the biofunctions of PVPACs mediated by Akt/mTOR/p70S6K signaling pathway. Compared with caudal vein or intraperitoneal injection, the external application of lentivirus-based thermal gel around the carotid artery is an innovative attempt at vascular remodeling model, it may effectively avoid the transfection of lentiviral vector into the whole body of mice and the adverse effect on experimental results.


Assuntos
Adipócitos , Proliferação de Células , Proteínas Proto-Oncogênicas c-akt , Proteínas Quinases S6 Ribossômicas 70-kDa , Transdução de Sinais , Transportador 1 de Glucose-Sódio , Serina-Treonina Quinases TOR , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Camundongos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Adipócitos/metabolismo , Transportador 1 de Glucose-Sódio/metabolismo , Transportador 1 de Glucose-Sódio/genética , Masculino , Adipogenia/fisiologia , Camundongos Endogâmicos C57BL , Remodelação Vascular , Células Cultivadas , Apoptose , Diferenciação Celular , Glucose/metabolismo , Glucose/deficiência
7.
Am J Physiol Endocrinol Metab ; 326(5): E709-E722, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38416071

RESUMO

Obesity and its related metabolic complications represent a significant global health challenge. Central to this is the dysregulation of glucolipid metabolism, with a predominant focus on glucose metabolic dysfunction in the current research, whereas adipose metabolism impairment garners less attention. Exosomes (EXs), small extracellular vesicles (EVs) secreted by various cells, have emerged as important mediators of intercellular communication and have the potential to be biomarkers, targets, and therapeutic tools for diverse diseases. In particular, EXs have been found to play a role in adipose metabolism by transporting cargoes such as noncoding RNAs (ncRNA), proteins, and other factors. This review article summarizes the current understanding of the role of EXs in mediating adipose metabolism disorders in obesity. It highlights their roles in adipogenesis (encompassing adipogenic differentiation and lipid synthesis), lipid catabolism, lipid transport, and white adipose browning. The insights provided by this review offer new avenues for developing exosome-based therapies to treat obesity and its associated comorbidities.


Assuntos
Adipogenia , Tecido Adiposo , Exossomos , Metabolismo dos Lipídeos , Obesidade , Exossomos/metabolismo , Humanos , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Animais , Adipogenia/fisiologia , Metabolismo dos Lipídeos/fisiologia
8.
Am J Physiol Endocrinol Metab ; 327(1): E13-E26, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38717362

RESUMO

Adipose tissue metabolism is actively involved in the regulation of energy balance. Adipose-derived stem cells (ASCs) play a critical role in maintaining adipose tissue function through their differentiation into mature adipocytes (Ad). This study aimed to investigate the impact of an obesogenic environment on the epigenetic landscape of ASCs and its impact on adipocyte differentiation and its metabolic consequences. Our results showed that ASCs from rats on a high-fat sucrose (HFS) diet displayed reduced adipogenic capacity, increased fat accumulation, and formed larger adipocytes than the control (C) group. Mitochondrial analysis revealed heightened activity in undifferentiated ASC-HFS but decreased respiratory and glycolytic capacity in mature adipocytes. The HFS diet significantly altered the H3K4me3 profile in ASCs on genes related to adipogenesis, mitochondrial function, inflammation, and immunomodulation. After differentiation, adipocytes retained H3K4me3 alterations, confirming the upregulation of genes associated with inflammatory and immunomodulatory pathways. RNA-seq confirmed the upregulation of genes associated with inflammatory and immunomodulatory pathways in adipocytes. Overall, the HFS diet induced significant epigenetic and transcriptomic changes in ASCs, impairing differentiation and causing dysfunctional adipocyte formation.NEW & NOTEWORTHY Obesity is associated with the development of chronic diseases like metabolic syndrome and type 2 diabetes, and adipose tissue plays a crucial role. In a rat model, our study reveals how an obesogenic environment primes adipocyte precursor cells, leading to epigenetic changes that affect inflammation, adipogenesis, and mitochondrial activity after differentiation. We highlight the importance of histone modifications, especially the trimethylation of histone H3 to lysine 4 (H3K4me3), showing its influence on adipocyte expression profiles.


Assuntos
Adipócitos , Adipogenia , Tecido Adiposo , Dieta Hiperlipídica , Epigênese Genética , Histonas , Transcriptoma , Animais , Ratos , Adipócitos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Histonas/metabolismo , Masculino , Adipogenia/genética , Adipogenia/fisiologia , Tecido Adiposo/metabolismo , Diferenciação Celular/genética , Células-Tronco/metabolismo , Obesidade/metabolismo , Obesidade/genética , Reprogramação Celular/fisiologia , Células Cultivadas , Ratos Wistar , Ratos Sprague-Dawley
9.
Am J Physiol Endocrinol Metab ; 327(1): E69-E80, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38717361

RESUMO

Acylglycerophosphate acyltransferases (AGPATs) catalyze the de novo formation of phosphatidic acid to synthesize glycerophospholipids and triglycerides. AGPATs demonstrate unique physiological roles despite a similar biochemical function. AGPAT3 is highly expressed in the testis, kidney, and liver, with intermediate expression in adipose tissue. Loss of AGPAT3 is associated with reproductive abnormalities and visual dysfunction. However, the role of AGPAT3 in adipose tissue and whole body metabolism has not been investigated. We found that male Agpat3 knockout (KO) mice exhibited reduced body weights with decreased white and brown adipose tissue mass. Such changes were less pronounced in the female Agpat3-KO mice. Agpat3-KO mice have reduced plasma insulin growth factor 1 (IGF1) and insulin levels and diminished circulating lipid metabolites. They manifested intact glucose homeostasis and insulin sensitivity despite a lean phenotype. Agpat3-KO mice maintained an energy balance with normal food intake, energy expenditure, and physical activity, except for increased water intake. Their adaptive thermogenesis was also normal despite reduced brown adipose mass and triglyceride content. Mechanistically, Agpat3 was elevated during mouse and human adipogenesis and enriched in adipocytes. Agpat3-knockdown 3T3-L1 cells and Agpat3-deficient mouse embryonic fibroblasts (MEFs) have impaired adipogenesis in vitro. Interestingly, pioglitazone treatment rescued the adipogenic deficiency in Agpat3-deficient cells. We conclude that AGPAT3 regulates adipogenesis and adipose development. It is possible that adipogenic impairment in Agpat3-deficient cells potentially leads to reduced adipose mass. Findings from this work support the unique role of AGPAT3 in adipose tissue.NEW & NOTEWORTHY AGPAT3 deficiency results in male-specific growth retardation. It reduces adipose tissue mass but does not significantly impact glucose homeostasis or energy balance, except for influencing water intake in mice. Like AGPAT2, AGPAT3 is upregulated during adipogenesis, potentially by peroxisome proliferator-activated receptor gamma (PPARγ). Loss of AGPAT3 impairs adipocyte differentiation, which could be rescued by pioglitazone. Overall, AGPAT3 plays a significant role in regulating adipose tissue mass, partially involving its influence on adipocyte differentiation.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase , Adipócitos , Camundongos Knockout , Animais , Feminino , Masculino , Camundongos , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Adipócitos/metabolismo , Adipogenia/genética , Adipogenia/fisiologia , Tecido Adiposo Marrom/metabolismo , Diferenciação Celular , Metabolismo Energético/genética , Resistência à Insulina/genética , Camundongos Endogâmicos C57BL , Fenótipo , Termogênese/genética , Magreza/metabolismo , Magreza/genética
10.
Int J Obes (Lond) ; 48(4): 557-566, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38148333

RESUMO

BACKGROUND: In obesity, adipose tissue undergoes a remodeling process characterized by increased adipocyte size (hypertrophia) and number (hyperplasia). The ability to tip the balance toward the hyperplastic growth, with recruitment of new fat cells through adipogenesis, seems to be critical for a healthy adipose tissue expansion, as opposed to a hypertrophic growth that is accompanied by the development of inflammation and metabolic dysfunction. However, the molecular mechanisms underlying the fine-tuned regulation of adipose tissue expansion are far from being understood. METHODS: We analyzed by mass spectrometry-based proteomics visceral white adipose tissue (vWAT) samples collected from C57BL6 mice fed with a HFD for 8 weeks. A subset of these mice, called low inflammation (Low-INFL), showed reduced adipose tissue inflammation, as opposed to those developing the expected inflammatory response (Hi-INFL). We identified the discriminants between Low-INFL and Hi-INFL vWAT samples and explored their function in Adipose-Derived human Mesenchymal Stem Cells (AD-hMSCs) differentiated to adipocytes. RESULTS: vWAT proteomics allowed us to quantify 6051 proteins. Among the candidates that most differentiate Low-INFL from Hi-INFL vWAT, we found proteins involved in adipocyte function, including adiponectin and hormone sensitive lipase, suggesting that adipocyte differentiation is enhanced in Low-INFL, as compared to Hi-INFL. The chromatin modifier SET and MYND Domain Containing 3 (SMYD3), whose function in adipose tissue was so far unknown, was another top-scored hit. SMYD3 expression was significantly higher in Low-INFL vWAT, as confirmed by western blot analysis. Using AD-hMSCs in culture, we found that SMYD3 mRNA and protein levels decrease rapidly during the adipocyte differentiation. Moreover, SMYD3 knock-down before adipocyte differentiation resulted in reduced H3K4me3 and decreased cell proliferation, thus limiting the number of cells available for adipogenesis. CONCLUSIONS: Our study describes an important role of SMYD3 as a newly discovered regulator of adipocyte precursor proliferation during the early steps of adipogenesis.


Assuntos
Adipócitos , Adipogenia , Animais , Humanos , Camundongos , Adipócitos/metabolismo , Adipogenia/fisiologia , Tecido Adiposo Branco/metabolismo , Diferenciação Celular/genética , Proliferação de Células , Histona-Lisina N-Metiltransferase/metabolismo , Hipertrofia/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Obesidade
11.
FASEB J ; 37(12): e23266, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37889840

RESUMO

Adipogenesis is a tightly regulated process, and its dysfunction has been linked to metabolic disorders such as obesity. Forkhead box k1 (Foxk1) is known to play a role in the differentiation of myogenic precursor cells and tumorigenesis of different types of cancers; however, it is not clear whether and how it influences adipocyte differentiation. Here, we found that Foxk1 was induced in mouse primary bone marrow stromal cells (BMSCs) and established mesenchymal progenitor/stromal cell lines C3H/10T1/2 and ST2 after adipogenic treatment. In addition, obese db/db mice have higher Foxk1 expression in inguinal white adipose tissue than nonobese db/m mice. Foxk1 overexpression promoted adipogenic differentiation of C3H/10T1/2, ST2 cells and BMSCs, along with the enhanced expression of CCAAT/enhancer binding protein-α, peroxisome proliferator-activated receptor γ (Pparγ), and fatty acid binding protein 4. Moreover, Foxk1 overexpression enhanced the expression levels of lipogenic factors during adipogenic differentiation in both C3H/10T1/2 cells and BMSCs. Conversely, Foxk1 silencing impaired these cells from fully differentiating. Furthermore, adipogenic stimulation induced the nuclear translocation of Foxk1, which depended on the mTOR and PI3-kinase signaling pathways. Subsequently, Foxk1 is directly bound to the Pparγ2 promoter, stimulating its transcriptional activity and promoting adipocyte differentiation. Collectively, our study provides the first evidence that Foxk1 promotes adipocyte differentiation from progenitor cells by promoting nuclear translocation and upregulating the transcriptional activity of the Pparγ2 promoter during adipogenic differentiation.


Assuntos
Adipogenia , PPAR gama , Camundongos , Animais , Adipogenia/fisiologia , PPAR gama/genética , PPAR gama/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Adipócitos/metabolismo , Camundongos Endogâmicos C3H , Diferenciação Celular , Obesidade/metabolismo , Células 3T3-L1
12.
Biogerontology ; 25(1): 53-69, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37725294

RESUMO

With the increase of population aging, the prevalence of type 2 diabetes (T2D) is also rising. Aging affects the tissues and organs of the whole body, which is the result of various physiological and pathological processes. Adipose tissue has a high degree of plasticity and changes with aging. Aging changes the distribution of adipose tissue, affects adipogenesis, browning characteristics, inflammatory status and adipokine secretion, and increases lipotoxicity. These age-dependent changes in adipose tissue are an important cause of insulin resistance and T2D. Understanding adipose tissue changes can help promote healthy aging process. This review summarizes changes in adipose tissue ascribable to aging, with a focus on the role of aging adipose tissue in insulin resistance and T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Resistência à Insulina/fisiologia , Tecido Adiposo , Envelhecimento , Adipogenia/fisiologia
13.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33941688

RESUMO

Mesenchymal stromal/stem cells (MSCs) form a heterogeneous population of multipotent progenitors that contribute to tissue regeneration and homeostasis. MSCs assess extracellular elasticity by probing resistance to applied forces via adhesion, cytoskeletal, and nuclear mechanotransducers that direct differentiation toward soft or stiff tissue lineages. Even under controlled culture conditions, MSC differentiation exhibits substantial cell-to-cell variation that remains poorly characterized. By single-cell transcriptional profiling of nonconditioned, matrix-conditioned, and early differentiating cells, we identified distinct MSC subpopulations with distinct mechanosensitivities, differentiation capacities, and cell cycling. We show that soft matrices support adipogenesis of multipotent cells and early endochondral ossification of nonadipogenic cells, whereas intramembranous ossification and preosteoblast proliferation are directed by stiff matrices. Using diffusion pseudotime mapping, we outline hierarchical matrix-directed differentiation and perform whole-genome screening of mechanoresponsive genes. Specifically, top-ranked tropomyosin-1 is highly sensitive to stiffness cues both at RNA and protein levels, and changes in TPM1 expression determine the differentiation toward soft versus stiff tissue lineage. Consistent with actin stress fiber stabilization, tropomyosin-1 overexpression maintains YAP1 nuclear localization, activates YAP1 target genes, and directs osteogenic differentiation. Knockdown of tropomyosin-1 reversed YAP1 nuclear localization consistent with relaxation of cellular contractility, suppressed osteogenesis, activated early endochondral ossification genes after 3 d of culture in induction medium, and facilitated adipogenic differentiation after 1 wk. Our results delineate cell-to-cell variation of matrix-directed MSC differentiation and highlight tropomyosin-mediated matrix sensing.


Assuntos
Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Heterogeneidade Genética , Adipogenia/genética , Adipogenia/fisiologia , Ciclo Celular , Núcleo Celular/metabolismo , Citoesqueleto , Elasticidade , Células HEK293 , Homeostase , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Osteogênese/fisiologia , Análise de Célula Única , Tropomiosina/genética , Tropomiosina/metabolismo
14.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34593646

RESUMO

Iron is an essential biometal, but is toxic if it exists in excess. Therefore, iron content is tightly regulated at cellular and systemic levels to meet metabolic demands but to avoid toxicity. We have recently reported that adaptive thermogenesis, a critical metabolic pathway to maintain whole-body energy homeostasis, is an iron-demanding process for rapid biogenesis of mitochondria. However, little information is available on iron mobilization from storage sites to thermogenic fat. This study aimed to determine the iron-regulatory network that underlies beige adipogenesis. We hypothesized that thermogenic stimulus initiates the signaling interplay between adipocyte iron demands and systemic iron liberation, resulting in iron redistribution into beige fat. To test this hypothesis, we induced reversible activation of beige adipogenesis in C57BL/6 mice by administering a ß3-adrenoreceptor agonist CL 316,243 (CL). Our results revealed that CL stimulation induced the iron-regulatory protein-mediated iron import into adipocytes, suppressed hepcidin transcription, and mobilized iron from the spleen. Mechanistically, CL stimulation induced an acute activation of hypoxia-inducible factor 2-α (HIF2-α), erythropoietin production, and splenic erythroid maturation, leading to hepcidin suppression. Disruption of systemic iron homeostasis by pharmacological HIF2-α inhibitor PT2385 or exogenous administration of hepcidin-25 significantly impaired beige fat development. Our findings suggest that securing iron availability via coordinated interplay between renal hypoxia and hepcidin down-regulation is a fundamental mechanism to activate adaptive thermogenesis. It also provides an insight into the effects of adaptive thermogenesis on systemic iron mobilization and redistribution.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hepcidinas/metabolismo , Ferro/metabolismo , Termogênese/fisiologia , Adipócitos/metabolismo , Adipócitos Bege/metabolismo , Adipogenia/fisiologia , Tecido Adiposo Bege/metabolismo , Animais , Regulação para Baixo/fisiologia , Eritropoetina/metabolismo , Homeostase/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Transdução de Sinais/fisiologia
15.
Genes Dev ; 30(20): 2325-2338, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27807033

RESUMO

Growth and regeneration of one tissue within an organ compels accommodative changes in the surrounding tissues. However, the molecular nature and operating logic governing these concurrent changes remain poorly defined. The dermal adipose layer expands concomitantly with hair follicle downgrowth, providing a paradigm for studying coordinated changes of surrounding lineages with a regenerating tissue. Here, we discover that hair follicle transit-amplifying cells (HF-TACs) play an essential role in orchestrating dermal adipogenesis through secreting Sonic Hedgehog (SHH). Depletion of Shh from HF-TACs abrogates both dermal adipogenesis and hair follicle growth. Using cell type-specific deletion of Smo, a gene required in SHH-receiving cells, we found that SHH does not act on hair follicles, adipocytes, endothelial cells, and hematopoietic cells for adipogenesis. Instead, SHH acts directly on adipocyte precursors, promoting their proliferation and their expression of a key adipogenic gene, peroxisome proliferator-activated receptor γ (Pparg), to induce dermal adipogenesis. Our study therefore uncovers a critical role for TACs in orchestrating the generation of both their own progeny and a neighboring lineage to achieve concomitant tissue production across lineages.


Assuntos
Adipogenia/fisiologia , Folículo Piloso/citologia , Folículo Piloso/metabolismo , Proteínas Hedgehog/metabolismo , Pele/metabolismo , Adipogenia/genética , Animais , Proliferação de Células/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Folículo Piloso/embriologia , Folículo Piloso/crescimento & desenvolvimento , Masculino , Camundongos , Transdução de Sinais , Pele/embriologia , Pele/crescimento & desenvolvimento
16.
Aesthetic Plast Surg ; 48(13): 2536-2544, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38538770

RESUMO

Type IV collagen is a major component of the extracellular matrix in adipose tissue. It is secreted during the lipogenic differentiation of mesenchymal stem cells, but its direct impact and mechanism on the differentiation of adipose-derived stem cells (ASCs) into lipids are unclear. In this study, ASCs were obtained from human liposuction samples and cultured. Lipogenic induction of ASCs was achieved using lipogenic induction medium. Immunofluorescence analysis revealed differential expression of type IV collagen during the early and late stages of adipogenic induction, displaying a distinct morphological encapsulation of ASCs. Silencing of type IV collagen using siRNA resulted in a significant decrease in adipogenic capacity, as indicated by reduced lipid droplet formation and downregulation of adipogenic-related gene transcription. Conversely, supplementation of the culture medium with synthetic type IV collagen demonstrated enhanced adipogenic induction efficiency, accompanied by upregulation of YAP/TAZ protein expression and its downstream target gene transcription. Furthermore, inhibition of the YAP/TAZ pathway using the inhibitor Blebbistatin attenuated the functionality of type IV collagen, leading to decreased lipid droplet formation and downregulation of adipocyte maturation-related gene expression. These findings highlight the crucial role of type IV collagen in promoting adipogenic differentiation of ASCs and suggest its involvement in the YAP/TAZ-mediated Hippo pathway.No Level Assigned This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Assuntos
Adipogenia , Diferenciação Celular , Colágeno Tipo IV , Humanos , Adipogenia/fisiologia , Adipogenia/genética , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Células Cultivadas , Tecido Adiposo/citologia , Adipócitos , Feminino , Células-Tronco , Adulto
17.
Semin Cell Dev Biol ; 119: 23-31, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34332886

RESUMO

While Fibro-Adipogenic Progenitors (FAPs) have been originally identified as muscle-interstitial mesenchymal cells activated in response to muscle injury and endowed with inducible fibrogenic and adipogenic potential, subsequent studies have expanded their phenotypic and functional repertoire and revealed their contribution to skeletal muscle response to a vast range of perturbations. Here we review the emerging contribution of FAPs to skeletal muscle responses to motor neuron injuries and to systemic physiological (e.g., exercise) or pathological metabolic (e.g., diabetes) perturbations. We also provide an initial blueprint of discrete sub-clusters of FAPs that are activated by specific perturbations and discuss their role in muscle adaptation to these conditions.


Assuntos
Adipogenia/fisiologia , Músculo Esquelético/metabolismo , Junção Neuromuscular/patologia , Animais , Diferenciação Celular , Homeostase , Humanos , Camundongos , Ratos
18.
Biochem Biophys Res Commun ; 653: 126-132, 2023 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-36868076

RESUMO

Obesity is commonly associated with excessive adipogenesis, a process by which preadipocytes undergo differentiation into mature adipocytes; however, the mechanisms underlying adipogenesis are not completely understood. Potassium channel tetramerization domain-containing 17 (Kctd17) belongs to the Kctd superfamily and act as a substrate adaptor of the Cullin 3-RING E3 ubiquitin ligase, which is involved in a wide variety of cell functions. However, its function in the adipose tissue remains largely unknown. Here, we found that Kctd17 expression levels were increased in white adipose tissue, especially in adipocytes, in obese mice compared to lean control mice. Gain or loss of function of Kctd17 in preadipocytes inhibited or promoted adipogenesis, respectively. Furthermore, we found that Kctd17 bound to C/EBP homologous protein (Chop) to target it for ubiquitin-mediated degradation, and this process was likely associated with increased adipogenesis. In conclusion, these data suggest that Kctd17 plays an important role in adipogenesis and can be a novel therapeutic target for obesity.


Assuntos
Adipogenia , Tecido Adiposo , Animais , Camundongos , Células 3T3-L1 , Adipócitos/metabolismo , Adipogenia/fisiologia , Tecido Adiposo/metabolismo , Diferenciação Celular , Obesidade/genética , Obesidade/metabolismo
19.
Nat Rev Mol Cell Biol ; 12(11): 722-34, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21952300

RESUMO

Adipose tissue, which is primarily composed of adipocytes, is crucial for maintaining energy and metabolic homeostasis. Adipogenesis is thought to occur in two stages: commitment of mesenchymal stem cells to a preadipocyte fate and terminal differentiation. Cell shape and extracellular matrix remodelling have recently been found to regulate preadipocyte commitment and competency by modulating WNT and RHO-family GTPase signalling cascades. Adipogenic stimuli induce terminal differentiation in committed preadipocytes through the epigenomic activation of peroxisome proliferator-activated receptor-γ (PPARγ). The coordination of PPARγ with CCAAT/enhancer-binding protein (C/EBP) transcription factors maintains adipocyte gene expression. Improving our understanding of these mechanisms may allow us to identify therapeutic targets against metabolic diseases that are rapidly becoming epidemic globally.


Assuntos
Adipócitos/citologia , Adipócitos/fisiologia , Adipogenia/fisiologia , Adipogenia/genética , Animais , Proteínas Estimuladoras de Ligação a CCAAT/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem da Célula , Forma Celular , Epigênese Genética , Matriz Extracelular/fisiologia , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Modelos Biológicos , PPAR gama/genética , PPAR gama/fisiologia , Transdução de Sinais , Fator de Crescimento Transformador beta/fisiologia , Via de Sinalização Wnt , Proteínas rho de Ligação ao GTP/fisiologia
20.
Mol Biol Rep ; 50(7): 5733-5745, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37217615

RESUMO

BACKGROUND: Maxillary/mandibular bone marrow-derived mesenchymal stem cells (MBMSCs) exhibit a unique property of lower adipogenic potential than other bone marrow-derived MSCs. However, the molecular mechanisms regulating the adipogenesis of MBMSCs remain unclear. This study aimed to explore the roles of mitochondrial function and reactive oxygen species (ROS) in regulating the adipogenesis of MBMSCs. METHODS AND RESULTS: MBMSCs exhibited significantly lower lipid droplet formation than iliac BMSCs (IBMSCs). Moreover, the expression levels of CCAAT/enhancer-binding protein ß (C/EBPß), C/EBPδ, and early B cell factor 1 (Ebf-1), which are early adipogenic transcription factors, and those of peroxisome proliferator-activated receptor-γ (PPARγ) and C/EBPα, which are late adipogenic transcription factors, were downregulated in MBMSCs compared to those in IBMSCs. Adipogenic induction increased the mitochondrial membrane potential and mitochondrial biogenesis in MBMSCs and IBMSCs, with no significant difference between the two cell types; however, intracellular ROS production was significantly enhanced only in IBMSCs. Furthermore, NAD(P)H oxidase 4 (NOX4) expression was significantly lower in MBMSCs than in IBMSCs. Increased ROS production in MBMSCs by NOX4 overexpression or treatment with menadione promoted the expression of early adipogenic transcription factors but did not induce that of late adipogenic transcription factors or lipid droplet accumulation. CONCLUSIONS: These results suggest that ROS may be partially involved in the process of MBMSC adipogenic differentiation from undifferentiated cells to immature adipocytes. This study provides important insights into the tissue-specific properties of MBMSCs.


Assuntos
Adipogenia , Células-Tronco Mesenquimais , Humanos , Adipogenia/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Medula Óssea/metabolismo , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Células da Medula Óssea , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa