Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38257196

RESUMO

To elucidate the anti-inflammatory properties and constituents of Agrimonia pilosa Ledeb. (A. pilosa), a comprehensive investigation was conducted employing activity-guided isolation. The anti-inflammatory effects were evaluated through an in vitro nitric oxide (NO) assay on lipopolysaccharide (LPS)-treated RAW 264.7 macrophage cells. Seven bio-active compounds with anti-inflammatory properties were successfully isolated from the butanol fraction and identified as follows: quercetin-7-O-ß-d-rhamnoside (1), apigenin-7-O-ß-d-glucopyranoside (2), kaempferol-7-O-ß-d-glucopyranoside (3), quercetin (4), kaempferol (5), apigenin (6), and apigenin-7-O-ß-d-glucuronide-6″-butylester (7). All isolated compounds showed strong NO inhibitory activity with IC50 values ranging from 1.4 to 31 µM. Compound 6 demonstrated the most potent NO inhibition. Compound 7, a rare flavonoid, was discerned as a novel anti-inflammatory agent, ascertained through its inaugural demonstration of nitric oxide inhibition. Subsequently, a comprehensive structure-activity relationship (SAR) analysis was conducted employing eight flavonoids derived from A. pilosa. The outcomes elucidated that flavones exhibit superior NO inhibitory effects compared to flavonols, and the aglycone form manifests greater potency in NO inhibition than the glycone counterpart. These results highlight A. pilosa as a promising source of effective anti-inflammatory agents and indicate its potential as a health-beneficial dietary supplement and therapeutic material.


Assuntos
Agrimonia , Flavonoides , Flavonoides/farmacologia , Quercetina , Quempferóis , Óxido Nítrico , Anti-Inflamatórios/farmacologia
2.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38139137

RESUMO

Agrimonia pilosa Ledeb., an important medicinal herb in traditional East Asian medicine, is primarily used to treat abdominal pain, dysentery, and hemostasis. There are ten other reported species of Agrimonia plants, including Agrimonia coreana Nakai-a naturally growing species in South Korea-and Agrimonia eupatoria Linn. Although recent studies have isolated numerous active constituents and investigated their effects, the medicinal utility of this herb is not yet fully explored. Through patch-clamp recording, a previous study reported that Agrimonia plant extracts inhibit the function of Ca2+ release-activated Ca2+ channels (CRACs). Herein, we aimed to identify and isolate the main compounds in A. coreana responsible for CRAC inhibition while assessing the anti-inflammatory effects mediated by this inhibition. We demonstrated for the first time that alphitolic acid isolated from A. coreana has a dose-dependent inhibitory effect on CRAC activity and, thus, an inhibitory effect on intracellular calcium increase. Furthermore, analysis of human CD4+ T cell proliferation via the carboxyfluorescein diacetate succinimidyl ester method revealed that alphitolic acid inhibited T cell proliferation in a concentration-dependent manner. Our findings provide a theoretical basis for the potential therapeutic use of alphitolic acid in the treatment of inflammatory diseases.


Assuntos
Agrimonia , Humanos , Linfócitos T , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Anti-Inflamatórios/farmacologia
3.
Molecules ; 28(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36677776

RESUMO

In this study, we aimed to develop and validate a pretreatment method for separating and analyzing the small amounts of biomarkers contained in topical cream formulations. Analyzing semisolid formulations that contain low concentrations of active ingredients is difficult. Cream formulations containing an aqueous ethanol extract of 0.1% Agrimonia pilosa is an example. Approximately 0.0013% of apigenin-7-O-glucuronide(A7OG) was contained as a biomarker in the cream. To determine the A7OG content present in the cream formulation, liquid-liquid extraction using dichlormethane was applied. In addition, the volume of the distribution liquid was measured using the peak ratios of the indicator component, A7OG, and an internal standard, baicalin. Subsequently, the A7OG content in the cream formulation was calculated. Using this time-saving method, A7OG can be simply analyzed without additional pretreatment steps, such as evaporation and reconstitution. Moreover, the validation results confirmed that this analytical method met all of the criteria. Consequently, A7OG was successfully isolated from the cream, analyzed, and quantified using the developed method.


Assuntos
Agrimonia , Extratos Vegetais , Cromatografia Líquida de Alta Pressão , Água , Etanol , Extração Líquido-Líquido
4.
Molecules ; 28(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36770686

RESUMO

Pseudomonas aeruginosa is one of the most antibiotic multi-resistant bacteria, causing chronic pulmonary disease and leading to respiratory failure and even mortality. Thus, there has been an ever-increasing search for novel and preferably natural antimicrobial compounds. Agrimonia eupatoria L. and Origanum vulgare L. shoots are commonly used as teas or alcoholic tinctures for their human health-promoting and antibacterial properties. Here, we explored the antimicrobial effects of all plant parts, i.e., leaf, flower, stem, and root extracts, prepared in water or in 60% ethanol, against P. aeruginosa. The impact of these extracts on bacterial survival was determined using a luminescent strain of P. aeruginosa, which emits light when alive. In addition, the antimicrobial effects were compared with the antioxidant properties and content of phenolic compounds of plant extracts. Ethanolic extracts of O. vulgare roots and flowers showed the highest antimicrobial activity, followed by A. eupatoria roots. In particular, chlorogenic acid, the ethanolic extract of O. vulgare roots contained high levels of protocatechuic acid, hesperidin, shikimic acid, rutin, quercetin, and morin. The synergistic effects of these phenolic compounds and flavonoids may play a key role in the antibacterial activity of teas and tinctures.


Assuntos
Agrimonia , Anti-Infecciosos , Origanum , Humanos , Pseudomonas aeruginosa , Folhas de Planta , Antioxidantes/farmacologia , Flavonoides/farmacologia , Fenóis , Flores , Antibacterianos/farmacologia , Etanol , Extratos Vegetais/farmacologia
5.
Planta Med ; 88(14): 1369-1383, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35062039

RESUMO

Agrimonia pilosa is a perennial herbaceous flowering plant, commonly known as agrimony or hairy agrimony. The dried aerial parts of this species have been widely used for the treatment of acute diarrhea, hemostasis, and other inflammation-related diseases. However, information on the in vivo metabolism of A. pilosa constituents is limited. In this study, the phytochemical profile of A. pilosa was investigated using HPLC-Q-TOF-MS/MS combined with a nontargeted diagnostic ion network analysis strategy. An information-dependent acquisition method with multiple filters was utilized to screen possible prototypes and metabolites in complex biological matrices. Furthermore, various data-processing techniques were applied to analyze possible prototypes and their metabolites in rat plasma, feces, and urine following oral administration of A. pilosa extract. A total of 62 compounds, which belonged to five main structural classes (21 phenols, 22 flavonoids, 6 coumarins, 3 triterpenes, and 10 organic acids), were tentatively identified in A. pilosa. In addition, using our proposed stepwise method, 32 prototypes and 69 metabolites were detected in rat plasma, feces, and urine. The main metabolic pathways after the oral administration of A. pilosa extract were revealed to include methylation, dihydroxylation, demethylation, hydrolysis, sulfation, and glucuronidation. This comprehensive in vivo and in vitro identification of the possible active components in A. pilosa could provide a basis for understanding its various pharmacological activities.


Assuntos
Agrimonia , Medicamentos de Ervas Chinesas , Ratos , Animais , Agrimonia/química , Agrimonia/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Extratos Vegetais/farmacologia , Flavonoides/química , Medicamentos de Ervas Chinesas/química
6.
Molecules ; 27(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36364425

RESUMO

Plants of the genus Agrimonia, including fragrant agrimony Agrimonia procera Wallr., mainly used as pharmaceutical raw material, perfectly fit into the current trends in nutrition and food technology that are searching for organic raw materials with high contents of bioactive compounds, such as dietary polyphenols and fiber. The aim of the research was to determine the nutritional and polyphenolic composition of fragrant agrimony Agrimonia procera Wallr. from experimental cultivation with varying levels of nitrogen fertilization in the nitrate, ammonium, or amide forms. In the experimental cultivation of fragrant agrimony in a seeding medium with a moderately high level of mineral content, the aerial parts, especially the leaves, were characterized by contents protein, dietary fiber, fat, and polyphenols at levels of 11.5, 58.0, 3.0, and 10.5% of dry matter, respectively, and an energy value of about 260 kcal/100 g of dry matter. The effect of additional nitrogen fertilization, in the form of ammonium nitrate and urea, on the content and yield of nutrients and polyphenol in fragrant agrimony depends both on the dose and the form of nitrogen, as well as the morphological part, of the plant.


Assuntos
Agrimonia , Polifenóis , Nitrogênio , Fertilização
7.
Zhongguo Zhong Yao Za Zhi ; 47(11): 2982-2988, 2022 Jun.
Artigo em Zh | MEDLINE | ID: mdl-35718520

RESUMO

Thirteen lignans were isolated from 60% ethanol extract of Agrimonia pilosa by column chromatography over silica gel, ODS, and MCI and preparative high performance liquid chromatography(HPLC). Their chemical structures were identified by physiochemical properties and spectral data as(7S,8S)-threo-4,7,9,9'-tetrahydroxy-3,3',5'-trimethoxy-8-O-4'-neolignan(1),(+)-4,9,9'-trihydroxy-3-methoxy-3',7-epoxy-8,4'-oxyneolignan(2), dihydrodehydro-diconiferyl alcohol(3), 4,9,9'-trihydroxy-3,3',5-trimethoxy-4',7-epoxy-8,5'-neolignan(4),(-)-secoisolariciresinol(5), 4,7,9,9'-tetrahydroxy-3,3',5'-trimethoxy-8-O-4'-neolignan(6),(+)-isolariciresinol(7), 4,7,9,9'-tetrahydroxy-3,3'-dimethoxy-8-O-4'-neolignan(8), burselignan(9),(-)-evofolin B(10), icariol A2(11), ciwujiatone(12), and(+)-4″,4-dihydroxy-3,3',3″,3,5,5'-hexamethoxy-7,9';7',9-diepoxy-4,8″;4',8-bisoxy-8,8'-dineolignan-7″,7,9″,9-tetraol(13). Compound 1 was a new compound, and compounds 1-13 were isolated from Agrimonia plant for the first time. This study can enrich the chemical components in A. pilosa and provide material conditions for the follow-up study of its biological activity and the elucidation of its pharmacodynamic substances.


Assuntos
Agrimonia , Lignanas , Seguimentos , Lignanas/análise
8.
Photosynth Res ; 149(1-2): 155-170, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33131005

RESUMO

It is hypothesized that plant submergence tolerance could be assessed from the decline of plant biomass due to submergence, as biomass integrates all eco-physiological processes leading to fitness. An alternative hypothesis stated that the consumption rate of carbohydrate is essential in differing tolerance to submergence. In the present study, the responses of biomass, biomass allocation, and carbohydrate content to simulated long-term winter submergence were assessed in four tolerant and four sensitive perennials. The four tolerant perennials occur in a newly established riparian ecosystem created by The Three Gorges Dam, China. They had 100% survival after 120 days' simulated submergence, and had full photosynthesis recovery after 30 days' re-aeration, and the photosynthetic rate was positively related to the growth during the recovery period. Tolerant perennials were characterized by higher carbohydrate levels, compared with the four sensitive perennials (0% survival) at the end of submergence. Additionally, by using a method which simulates posterior estimates, and bootstraps the confidence interval for the difference between strata means, it was found that the biomass response to post-hypoxia, rather than that to submergence, could be a reliable indicator to assess submergence tolerance. Interestingly, the differences of changes in carbohydrate content between tolerant and sensitive perennials during submergence were significant, which were distinct from the biomass response, supporting the hypothesis that tolerant perennials could sacrifice non-vital components of biomass to prioritize the saving of carbohydrates for later recovery. Our study provides some insight into the underlying mechanism(s) of perennials' tolerance to submergence in ecosystems such as temperate wetland and reservoir riparian.


Assuntos
Adaptação Fisiológica , Biomassa , Metabolismo dos Carboidratos , Inundações , Imersão/fisiopatologia , Fotossíntese/fisiologia , Estações do Ano , Agrimonia/fisiologia , Amaranthaceae/fisiologia , China , Chrysanthemum/fisiologia , Cynodon/fisiologia , Paspalum/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Plantaginaceae/fisiologia , Poaceae/fisiologia
9.
Bioorg Med Chem ; 45: 116329, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34329818

RESUMO

Agrimonia pilosa (AP), Galla rhois (RG), and their mixture (APRG64) strongly inhibited SARS-CoV-2 by interfering with multiple steps of the viral life cycle including viral entry and replication. Furthermore, among 12 components identified in APRG64, three displayed strong antiviral activity, ursolic acid (1), quercetin (7), and 1,2,3,4,6-penta-O-galloyl-ß-d-glucose (12). Molecular docking analysis showed these components to bind potently to the spike receptor-binding-domain (RBD) of the SARS-CoV-2 and its variant B.1.1.7. Taken together, these findings indicate APRG64 as a potent drug candidate to treat SARS-CoV-2 and its variants.


Assuntos
Agrimonia/química , Antivirais/química , Produtos Biológicos/química , Tratamento Farmacológico da COVID-19 , Extratos Vegetais/química , SARS-CoV-2/efeitos dos fármacos , Sequência de Aminoácidos , Antivirais/farmacologia , Produtos Biológicos/farmacologia , Descoberta de Drogas , Humanos , Taninos Hidrolisáveis/química , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Ligação Proteica , Quercetina/química , Glicoproteína da Espícula de Coronavírus/química , Triterpenos/química , Internalização do Vírus/efeitos dos fármacos , Ácido Ursólico
10.
Bioorg Chem ; 116: 105341, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34525394

RESUMO

Five new dimeric phloroglucinol derivatives, agrimones A - E (1-5), were isolated from the whole plant of Agrimonia pilosa. Their structures including absolute configurations were determined by a series of spectroscopic data (UV, IR, HR-ESI-MS, 1D and 2D NMR), complemented with the comparison of the experimental and calculated ECD spectra, and gauge-independent atomic orbital (GIAO) NMR calculations. Notably, compounds 1 and 2 represent a highly oxidized 6/6/6 tricyclic ring skeleton based on the cis-fused paraquinone and chroman. Compounds 1a, 4, and 5 exhibited moderate hepatoprotective activities against APAP-induced HepG2 cell injury at 10 µM.


Assuntos
Agrimonia/química , Floroglucinol/farmacologia , Substâncias Protetoras/farmacologia , Acetaminofen , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Estrutura Molecular , Floroglucinol/química , Floroglucinol/isolamento & purificação , Substâncias Protetoras/química , Substâncias Protetoras/isolamento & purificação , Relação Estrutura-Atividade
11.
Acta Biochim Biophys Sin (Shanghai) ; 53(10): 1342-1353, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34523667

RESUMO

Previous studies reported that Agrimonia pilosa (AP) Ledeb possessed diverse biological activities, including anti-inflammatory, antioxidant, and anti-tumor activities. However, the effect of AP on ulcerative colitis (UC) remains unclear. In this study, we investigated the therapeutic effect and mechanisms of AP on dextran sodium sulfate (DSS)-induced colitis. The potential constituents of AP were investigated by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). A total of 13 compounds were recognized by UPLC-Q-TOF/MS chromatogram. Furthermore, a network pharmacology approach revealed that there are 297 candidate targets of UC and 549 common targets for the 13 active ingredients of AP. GO enrichment and KEGG pathway analysis indicated that AP might have a protective effect on UC through the nuclear factor κB (NF-κB) and nucleotide-binding oligomerization domain (NOD)-like receptor signaling pathways. Subsequent experimental validation in a DSS-induced colitis model revealed that AP alleviated the severity of DSS-induced colitis, reduced the production of proinflammatory factors, and protected against the loss of intestinal integrity. Moreover, AP inhibited the phosphorylation of NF-κB p65 and the activation of the NLRP3 inflammasome. In conclusion, AP ameliorated DSS-induced colitis through suppressing the activation of the NLRP3 inflammasome and NF-κB signaling pathways.


Assuntos
Agrimonia/química , Colite Ulcerativa/prevenção & controle , Extratos Vegetais/farmacologia , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/patologia , Citocinas/genética , Citocinas/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Farmacologia em Rede , Extratos Vegetais/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Proteínas de Junções Íntimas/metabolismo
12.
Molecules ; 26(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34946788

RESUMO

Plants of the genus Agrimonia L. perfectly fit the current trends in nutrition and food technology, namely, the need for raw materials with a high content of bioactive natural compounds, including polyphenols, which could be added to food. The composition of polyphenolics, including agrimoniin and flavonoids, in the aerial parts of Agrimonia procera Wallr. (A. procera) and Agrimonia eupatoria L. (A. eupatoria) (Rosaceae) was determined using HPLC-DAD-MS. The polyphenolic content of A. procera was found to be 3.9%, 3.2%, 2.9%, 1.8% and 1.1%, and that of A. eupatoria was determined to be 1.3%, 0.3%, 0.9%, 0.6% and 0.5% in the dry matter of leaves, stems, fruits, seeds and hypanthia, respectively. Except for A. procera hypanthia, agrimoniin was the main polyphenolic compound in the aerial parts of the studied Agrimonia species. Both plants are also a valuable source of flavonoid glycosides, especially apigenin, luteolin and quercetin. The obtained data indicate that both A. procera and A. eupatoria are potentially good sources of polyphenols (albeit significantly different in terms of their qualitative and quantitative composition), and may not only be a medicinal raw material, but also a valuable material for food use such as nutraceuticals or functional food ingredients.


Assuntos
Agrimonia/química , Taninos Hidrolisáveis , Extratos Vegetais/química , Polifenóis , Cromatografia Líquida de Alta Pressão , Taninos Hidrolisáveis/química , Taninos Hidrolisáveis/isolamento & purificação , Polifenóis/química , Polifenóis/isolamento & purificação
13.
J Cell Mol Med ; 24(3): 2169-2177, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31957180

RESUMO

A water-soluble polysaccharide (APP-AW) was isolated from Agrimonia pilosa and prepared to three sulphated derivatives (S1, S2 and S3). The results showed that pre-treatment with APP-AW, S1, S2 and S3 each at the concentration of 50 µg/mL for 48 hours was able to prevent cytotoxicity induced by 1 µmol/L dexamethasone (Dex) in MC3T3-E1 cells via inhibition of apoptosis, which is in line with the findings in flow cytometry analysis. Meanwhile, the decreased ALP activity, collagen content, mineralization, BMP2, Runx2, OSX and OCN protein expression in DEX-treated MC3T3-E1 cells were reversed by the addition of APP-AW, S1, S2 and S3. Moreover, APP-AW, S1, S2 and S3 rescued DEX-induced increase of Bax, cytochrome c and caspase-3 and decrease of Bcl-2, Wnt3, ß-catenin and c-Myc protein expression in MC3T3-E1 cells. Our findings suggest that pre-treatment with APP-AW, S1, S2 and S3 could significantly protect MC3T3-E1 cells against Dex-induced cell injury via inhibiting apoptosis and activating Wnt/ß-Catenin signalling pathway, thus application of these polysaccharides may be a promising alternative strategy for steroid-induced avascular necrosis of the femoral head (SANFH) therapy.


Assuntos
Agrimonia/química , Dexametasona/farmacologia , Polissacarídeos/farmacologia , Substâncias Protetoras/farmacologia , Transdução de Sinais/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo , Células 3T3 , Animais , Apoptose/efeitos dos fármacos , Necrose da Cabeça do Fêmur/tratamento farmacológico , Camundongos
14.
ScientificWorldJournal ; 2020: 7821310, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292295

RESUMO

Agrimonia asiatica is a perennial plant with deep green color and covered with soft hairs and has a slightly aromatic odor. This genus Agrimonia has been used in traditional medicines of China, Greece, and European countries. It was mainly used as a haemostatic, a tonic for asthenia, and an astringent for diarrhea. Agrimony is part of the division Magnoliophyta; class is represented by order Rosales, family Rosaceae, of the genus Agrimonia. Family Rosaceae-or pink eels-is one of the largest families of flowering plants, including about 100 genera and 3000 species. Rosaceae is common in almost all areas of the globe where flowering plants can grow, but most of them are concentrated in the temperate and subtropical zones of the Northern Hemisphere. Phytochemical investigation on ethanolic extract of A. asiatica led to isolation of four flavonoid derivatives (kaempferol-3-glycoside, quercetin-3-O-α-arabinofuranosyl-ß-D-galactopyranoside, 3-O-kaempherol 2,3-di-O-acetyl-4-O-(cis-p-coumaroyl)-6-O-(trans-p-coumaroyl)-ß-D-glucosopyranoside, and catechin) alongside of sucrose. All the extracts, fractions, and isolated compounds were tested for antimicrobial and antiplasmodial activities. We also studied the chemical composition of essential oil obtained from the aerial part of A. asiatica. The essential oil constituents from the aerial part of A. asiatica were obtained using a steam-distillation method in wild growing conditions in Kazakhstan. The essential oil extracted from the aerial part of the plant was analyzed by gas chromatography-mass spectroscopy and its major components amounting to 100% were found to be ß-selinene (36.370%), α-panasinsene (21.720%), hexadecanoic acid (7.839%), and 1,2-nonadiene (6.199%). Neither the extract nor the isolated compounds showed antimicrobial and antiplasmodial activities.


Assuntos
Agrimonia/química , Anti-Infecciosos/farmacologia , Antiprotozoários/farmacologia , Óleos Voláteis/farmacologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Antiprotozoários/química , Antiprotozoários/isolamento & purificação , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Estrutura Molecular , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Testes de Sensibilidade Parasitária , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação
15.
Molecules ; 25(11)2020 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-32486502

RESUMO

Agrimonia pilosa L. (AP) showed potent α-glucosidase inhibitory (AGI) activity, but it is uncertain what phytochemicals play a key factor. The phytochemical study of AP based on AGI activity led to the isolation of four isocoumarins; agrimonolide (1), agrimonolide-6-O-ß-d-glucopyranoside (2), desmethylagrimonolide (3), desmethylagrimonolide-6-O-ß-d-glucopyranoside (4), and four flavonoids; luteolin (5), quercetin (6), vitexin (7), and isovitexin (8). The four isocoumarins were isolated as α-glucosidase inhibitors for the first time. Isocoumarins, compound 1 (agrimonolide) and 3 (desmethylagrimonolide) showed strong α-glucosidase inhibitory activities with IC50 values of 24.2 and 37.4 µM, respectively. Meanwhile, isocoumarin and flavonoid glycosides showed weak AGI activity. In the kinetic analysis, isocoumarins, compounds 1 and 3 showed non-competitive inhibition, whereas flavonoid, compound 6 showed competitive inhibition.


Assuntos
Agrimonia/química , Flavonoides/isolamento & purificação , Inibidores de Glicosídeo Hidrolases/farmacologia , Isocumarinas/isolamento & purificação , Medicamentos de Ervas Chinesas/química , Flavonoides/química , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Glicosídeos/química , Hipoglicemiantes/farmacologia , Concentração Inibidora 50 , Isocumarinas/química , Cinética , Espectroscopia de Ressonância Magnética , Metanol/química , Estrutura Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/química , Quercetina/farmacologia , Relação Estrutura-Atividade
16.
Molecules ; 26(1)2020 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-33375482

RESUMO

Wounds display particular vulnerability to microbial invasion and infections by pathogenic bacteria. Therefore, to reduce the risk of wound infections, researchers have expended considerable energy on developing advanced therapeutic dressings, such as electrospun membranes containing antimicrobial agents. Among the most used antimicrobial agents, medicinal plant extracts demonstrate considerable potential for clinical use, due primarily to their efficacy allied to relatively low incidence of adverse side-effects. In this context, the present work aimed to develop a unique dual-layer composite material with enhanced antibacterial activity derived from a coating layer of Poly(vinyl alcohol) (PVA) and Chitosan (CS) containing Agrimonia eupatoria L. (AG). This novel material has properties that facilitate it being electrospun above a conventional cotton gauze bandage pre-treated with 2,2,6,6-tetramethylpiperidinyl-1-oxy free radical (TEMPO). The produced dual-layer composite material demonstrated features attractive in production of wound dressings, specifically, wettability, porosity, and swelling capacity. Moreover, antibacterial assays showed that AG-incorporated into PVA_CS's coating layer could effectively inhibit Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) growth. Equally important, the cytotoxic profile of the dual-layer material in normal human dermal fibroblast (NHDF) cells demonstrated biocompatibility. In summary, these data provide initial confidence that the TEMPO-oxidized cotton/PVA_CS dressing material containing AG extract demonstrates adequate mechanical attributes for use as a wound dressing and represents a promising approach to prevention of bacterial wound contamination.


Assuntos
Agrimonia/química , Antibacterianos/farmacologia , Bandagens , Quitosana/química , Fibra de Algodão , Nanofibras/química , Álcool de Polivinil/química , Cicatrização/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Derme/patologia , Liberação Controlada de Fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Porosidade , Pseudomonas aeruginosa/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Vapor , Molhabilidade
17.
Bioorg Chem ; 93: 103320, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31585267

RESUMO

Hepatitis C virus (HCV) infection is a significant health problem, with a worldwide prevalence of about 170 million. Recently, the development of direct acting antiviral (DAA) as a therapeutic agent for HCV has been rapidly increasing. However, DAA has a side effect and is costly. Therefore, it is still necessary to develop a therapeutic agent to treat HCV infection using products. Agrimonia pilosa (AP) and Galla rhois (RG) are traditional medicines and are known to display therapeutic activity on various diseases. Notably, they have been reported to have an anti-viral effect on HBV and influenza virus infections. It is expected that anti-viral activity will increase when two extracts are mixed. To investigate their anti-viral activity, the expression level of HCV Core 1b and NS5A was measured. Remarkably, AP, RG, and their mixed compound (APRG64) strongly inhibited the expression of viral proteins, which led us to identify their metabolites. A total of 14 metabolites were identified using liquid chromatography mass spectrometry (LC-MS). These metabolites were evaluated for their anti-HCV activity to identify active ingredients. In conclusion, our results unveiled that anti-HCV activity of Agrimonia pilosa and Galla rhois extract mixture could lead to the development of a novel therapy for HCV infection.


Assuntos
Agrimonia/química , Antivirais/farmacologia , Produtos Biológicos/química , Hepacivirus/efeitos dos fármacos , Extratos Vegetais/farmacologia , Linhagem Celular , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Espectrometria de Massas/métodos , Testes de Sensibilidade Microbiana
18.
BMC Complement Altern Med ; 19(1): 140, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31221152

RESUMO

BACKGROUND: Cholera is one of the most deadly diarrheal diseases that require new treatments. We investigated the neutralization of cholera toxin by five plant extracts obtained from the Rosaceae family that have been traditionally used in Poland to treat diarrhea (of unknown origin). METHODS: Hot water extracts were prepared from the dried plant materials and lyophilized before phytochemical analysis and assessment of antimicrobial activity using microdilution assays. The ability of the plant extracts to neutralize cholera toxin was analyzed by measurement of cAMP levels in cell cultures, enzyme-linked immunosorbent assay and electrophoresis, as well as flow cytometry and fluorescence microscopy studies of fluorescent-labeled cholera toxins with cultured human fibroblasts. RESULTS: The antimicrobial assays displayed modest bacteriostatic potentials. We found that the plant extracts modulate the effects of cholera toxin on intracellular cAMP levels. Three plant extracts (Agrimonia eupatoria L., Rubus fruticosus L., Fragaria vesca L.) suppressed the binding of subunit B of cholera toxin to the cell surface and immobilized ganglioside GM1 while two others (Rubus idaeus L., Rosa.canina L.) interfered with the toxin internalization process. CONCLUSIONS: The traditional application of the Rosaceae plant infusions for diarrhea appears relevant to cholera, slowing the growth of pathogenic bacteria and either inhibiting the binding of cholera toxin to receptors or blocking toxin internalization. The analyzed plant extracts are potential complements to standard antibiotic treatment and Oral Rehydration Therapy for the treatment of cholera.


Assuntos
Antibacterianos/farmacologia , Toxina da Cólera/toxicidade , Cólera/microbiologia , Extratos Vegetais/farmacologia , Rosaceae/química , Agrimonia/química , Antibacterianos/química , Linhagem Celular , Cólera/tratamento farmacológico , Cólera/metabolismo , Toxina da Cólera/metabolismo , Fragaria/química , Gangliosídeo G(M1)/metabolismo , Humanos , Extratos Vegetais/química , Rubus/química , Vibrio cholerae/efeitos dos fármacos , Vibrio cholerae/metabolismo
19.
Microb Pathog ; 116: 84-90, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29339306

RESUMO

Facile, eco-friendly synthesis of metal nanoparticles has been proposed as a cost effective method. In the present study, we propose the facile synthesis of silver-silver chloride (Ag-AgCl) nanoparticles (NPs) using the medicinally important Agrimonia pilosa plant extract without addition of capping or stabilizing agents. The Ag-AgCl NPs synthesis was observed at 40 °C after 10 min incubation; the synthesis of Ag-AgCl NPs was indicated by color change and confirmed by UV-vis spectroscopic peak at 454 nm. TEM analysis confirmed Ag-AgCl NPs were 10-20 nm in size and spherical, and oval in shape. Elemental composition was determined by energy dispersive X-ray analysis, and crystalline structure was confirmed by X-ray diffraction spectroscopy. Different phytocomponents present in the plant extract were analyzed by Gas Chromatography-Mass spectrometry, and the interaction of biomolecules in reduction process was analyzed by Fourier transform infrared spectroscopy studies. The synthesized Ag-AgCl NPs showed significant antibacterial efficiency, analyzed by well diffusion assay against pathogenic bacteria including Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus, Staphylococcus saprophyticus, Escherichia coli, Pseudomonas putida. Minimum inhibitory concentration and minimum bactericidal concentration were evaluated by microbroth dilution, and spread plate method, respectively. The possible mechanism of bacterial growth inhibition is due to changes in bacterial cell wall morphology that was studied by FE-SEM analysis.


Assuntos
Agrimonia/metabolismo , Antibacterianos/metabolismo , Bactérias/citologia , Bactérias/efeitos dos fármacos , Nanopartículas Metálicas , Prata/metabolismo , Bacillus cereus , Contagem de Colônia Microbiana , Escherichia coli , Cromatografia Gasosa-Espectrometria de Massas , Listeria monocytogenes , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Extratos Vegetais/metabolismo , Pseudomonas putida , Prata/química , Espectrometria por Raios X , Espectrofotometria , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus , Staphylococcus saprophyticus , Temperatura , Difração de Raios X
20.
BMC Vet Res ; 14(1): 346, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30442133

RESUMO

BACKGROUND: Because antibiotic use in livestock is assumed to contribute to the emerging public health crisis of antibiotic resistance, alternatives are required. Phytogenic additives are extensively studied due to their antibiotic properties. Components of Agrimonia species have been reported as candidate antimicrobials that possess antioxidative and anti-inflammatory properties. We studied the impact of Agrimonia procera (AP) on the growth of selected strains of gut bacteria, the effect of AP on the mRNA abundance of genes involved in inflammation and bacterial defense in a colon carcinoma cell line, the effect of AP in piglets challenged with lipopolysaccharides, and the effect of AP on the growth performance of healthy piglets. RESULTS: The in vitro growth rate of different bacteria strains was negatively affected by AP, especially in Pediococcus pentosaceus and all tested E. coli strains. Stimulation of Caco-2 cells with TNFα resulted in elevated mRNA expression of CXCL1, IL-8 and GPX2. After pretreatment of cells with AP, stimulation of Caco-2 cells with TNFα still resulted in elevated mRNA expression of CXCL1 and IL-8 at all measured points in time. However, mRNA expression in AP-pretreated cells was lower after 6 h and 24 h. In addition, expression of DEFB1 and GPX2 was significantly elevated after TNFα stimulation. In vivo, application of lipopolysaccharides induced significantly increased animal body temperatures. Piglets pretreated with AP prior to lipopolysaccharide application showed a faster and larger increase in body temperature than controls. In addition, piglets pretreated with AP appeared to release more TNFα than controls. In healthy piglets, AP treatment had no impact on growth performance parameters. Fecal dry matter and total plasma antioxidant capacity tended to be higher in piglets treated with AP than in control piglets (P = 0.055 and P = 0.087, respectively). CONCLUSIONS: AP has antimicrobial effects in vitro and stimulated the expression of proinflammatory cytokines in Caco-2 cells. The additive had no effect on growth in healthy piglets but increased the immune response in LPS-treated animals. In addition, AP appeared to have antioxidative effects in vivo. Therefore, AP merits testing as a future alternative to antibiotics in animal husbandry.


Assuntos
Agrimonia , Anti-Infecciosos/farmacologia , Colo/efeitos dos fármacos , Citocinas/metabolismo , Defensinas/metabolismo , Inflamação/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Extratos Vegetais/farmacologia , Agrimonia/química , Animais , Animais Recém-Nascidos , Proteína C-Reativa/análise , Células CACO-2 , Colo/citologia , Escherichia coli/efeitos dos fármacos , Feminino , Humanos , Inflamação/induzido quimicamente , Lacticaseibacillus casei/efeitos dos fármacos , Masculino , Pediococcus pentosaceus/efeitos dos fármacos , Salmonella typhimurium/efeitos dos fármacos , Suínos , Fator de Necrose Tumoral alfa/sangue
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa