Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 295(2): 539-551, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31801828

RESUMO

Sensing of red and far-red light by bacteriophytochromes involves intricate interactions between their bilin chromophore and the protein environment. The light-triggered rearrangements of the cofactor configuration and eventually the protein conformation enable bacteriophytochromes to interact with various protein effector domains for biological modulation of diverse physiological functions. Excitation of the holoproteins by red or far-red light promotes the photoconversion to their far-red light-absorbing Pfr state or the red light-absorbing Pr state, respectively. Because prototypical bacteriophytochromes have a parallel dimer architecture, it is generally assumed that symmetric activation with two Pfr state protomers constitutes the signaling-active species. However, the bacteriophytochrome from Idiomarina species A28L (IsPadC) has recently been reported to enable long-range signal transduction also in asymmetric dimers containing only one Pfr protomer. By combining crystallography, hydrogen-deuterium exchange coupled to MS, and vibrational spectroscopy, we show here that Pfr of IsPadC is in equilibrium with an intermediate "Pfr-like" state that combines features of Pfr and Meta-R states observed in other bacteriophytochromes. We also show that structural rearrangements in the N-terminal segment (NTS) can stabilize this Pfr-like state and that the PHY-tongue conformation of IsPadC is partially uncoupled from the initial changes in the NTS. This uncoupling enables structural asymmetry of the overall homodimeric assembly and allows signal transduction to the covalently linked physiological diguanylate cyclase output module in which asymmetry might play a role in the enzyme-catalyzed reaction. The functional differences to other phytochrome systems identified here highlight opportunities for using additional red-light sensors in artificial sensor-effector systems.


Assuntos
Alteromonadaceae/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Fitocromo/metabolismo , Regulação Alostérica , Alteromonadaceae/química , Proteínas de Bactérias/química , Cristalografia por Raios X , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Ativação Enzimática , Proteínas de Escherichia coli/química , Modelos Moleculares , Fósforo-Oxigênio Liases/química , Fitocromo/química , Conformação Proteica , Multimerização Proteica
2.
Arch Microbiol ; 203(4): 1293-1298, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33284382

RESUMO

Strain CECT 9734 T, a Gram-negative, aerobic, chemoorganotrophic bacterium, motile by polar flagella, was isolated from cultured European seabass, Dicenthrarchus labrax, in Spain. It grows from 5 to 42 ºC, 6-9 pH and 1-12% total salinity. Major cellular fatty acids are C15:0 iso, summed feature 9 (C17:1 iso w9c/C16:0 10-methyl) and C17:0 iso. The genome size is 2.5 Mbp and G + C content is 49.5 mol%. Comparative analysis of the 16S rRNA gene sequence shows that the strain is a member of Pseudidiomarina, with highest similarities with Pseudidiomarina halophila (97.0%) and Pseudidiomarina salinarum (96.9%). Phylogenomic tree based on UBCG program shows P. halophila as its closest relative. ANI and in-silico DDH with other Pseudidiomarina spp. are lower than 87 and 20%, respectively, suggesting that strain CECT 9734 T represents a new species, for which we propose the name Pseudidiomarina piscicola sp. nov. and CECT 9734 T (= LUBLD50 7aT = LMG 31044 T) as type strain.


Assuntos
Alteromonadaceae/classificação , Alteromonadaceae/fisiologia , Perciformes/microbiologia , Alteromonadaceae/química , Animais , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/análise , Genoma Bacteriano/genética , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
3.
J Nat Prod ; 83(4): 1295-1299, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32191468

RESUMO

Three new alkanoyl imidazoles, designated bulbimidazoles A-C (1-3), were found from the culture extract of the gammaproteobacterium Microbulbifer sp. DC3-6 isolated from a stony coral of the genus Tubastraea. The absolute configuration of the anteiso-methyl substitution in 1 was established to be a mixture of (R)- and (S)-configurations in a ratio of 9:91 by applying the Ohrui-Akasaka method. Compounds 1-3 displayed unique broad-spectrum antimicrobial activity against Gram-positive and -negative bacteria and fungi with MICs ranging from 0.78 to 12.5 µg/mL. They also exhibited cytotoxicity toward P388 murine leukemia cells with IC50 in the micromolar range.


Assuntos
Alteromonadaceae/isolamento & purificação , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , DNA Bacteriano/química , Imidazóis/química , Alteromonadaceae/química , Animais , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , DNA Bacteriano/genética , Gammaproteobacteria/isolamento & purificação , Gammaproteobacteria/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , RNA Ribossômico 16S/química , RNA Ribossômico 16S/metabolismo
4.
Org Biomol Chem ; 17(12): 3129-3140, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30838361

RESUMO

Colwellia psychrerythraea 34H is a psychrophilic Gram-negative bacterium, able to survive at subzero temperatures by producing a unique capsular polysaccharide (CPS) with anti-freeze properties similar to those of the well-known anti-freeze (glyco)proteins. The tetrasaccharide repeating unit of the CPS - constituted of alternating amino sugars and uronic acid moieties in a glycosaminoglycan-like fashion with an amide-linked threonine (Thr) decoration - was synthesized as an O-n-propyl glycoside. The synthesis faced some challenging features such as building up a crowded [→2)α-d-Galp(1→] moiety as well as differentiating the two uronic units for the regioselective insertion of the Thr amide only on one of them. NMR data for the obtained tetrasaccharide confirmed the structure proposed for the C. psychrerythraea polysaccharide.


Assuntos
Alteromonadaceae/química , Oligossacarídeos/síntese química , Configuração de Carboidratos , Oligossacarídeos/química
5.
Mar Drugs ; 17(4)2019 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-31013612

RESUMO

The γ-carbonic anhydrases (CAs, EC 4.2.1.1) present in the Antarctic marine bacteria Pseudoalteromonas haloplanktis and Colwellia psychrerythraea, herein referred to as PhaCA and CpsCA, respectively, were investigated for their activation with a panel of 24 amino acids and amines. Both bacteria are considered Antarctic models for the investigation of photosynthetic and metabolic pathways in organisms adapted to live in cold seawater. PhaCA was much more sensitive to activation by these compounds compared to the genetically related enzyme CpsCA. The most effective PhaCA activators were d-Phe, l-/d-DOPA, l-Tyr and 2-pyridyl-methylamine, with the activation constant KA values of 0.72-3.27 µM. d-His, l-Trp, d-Tyr, histamine, dopamine, serotonin anddicarboxylic amino acids were also effective activators of PhaCA, with KA values of 6.48-9.85 µM. CpsCA was activated by d-Phe, d-DOPA, l-Trp, l-/d-Tyr, 4-amino-l-Phe, histamine, 2-pyridyl-methylamine and l-/d-Glu with KA values of 11.2-24.4 µM. The most effective CpsCA activator was l-DOPA (KA of 4.79 µM). Given that modulators of CAs from Antarctic bacteria have not been identified and investigated in detail for their metabolic roles to date, this research sheds some light on these poorly understood processes.


Assuntos
Alteromonadaceae/química , Aminas/química , Aminoácidos/química , Organismos Aquáticos/química , Anidrases Carbônicas/química , Pseudoalteromonas/química , Regiões Antárticas , Cinética , Redes e Vias Metabólicas/fisiologia , Relação Estrutura-Atividade
6.
Mar Drugs ; 17(6)2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242622

RESUMO

Alginate lyase degrades alginate by the ß-elimination mechanism to produce oligosaccharides with special bioactivities. The low thermal stability of alginate lyase limits its industrial application. In this study, introducing the disulfide bonds while using the rational design methodology enhanced the thermal stability of alginate lyase cAlyM from Microbulbifer sp. Q7. Enzyme catalytic sites, secondary structure, spatial configuration, and molecular dynamic simulation were comprehensively analyzed. When compared with cAlyM, the mutants D102C-A300C and G103C-T113C showed an increase by 2.25 and 1.16 h, respectively, in half-life time at 45 °C, in addition to increases by 1.7 °C and 0.4 °C in the melting temperature, respectively. The enzyme-specific activity and kcat/Km values of D102C-A300C were 1.8- and 1.5-times higher than those of cAlyM, respectively. The rational design strategy that was used in this study provides a valuable method for improving the thermal stability of the alginate lyase.


Assuntos
Alginatos/química , Alteromonadaceae/química , Proteínas de Bactérias/química , Polissacarídeo-Liases/química , Domínio Catalítico , Estabilidade Enzimática/efeitos dos fármacos , Oligossacarídeos/química , Especificidade por Substrato , Temperatura
7.
Biochemistry ; 57(26): 3625-3640, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29737840

RESUMO

Cold-shock proteins (Csps) are expressed at lower-than-optimum temperatures, and they function as RNA chaperones; however, no structural studies on psychrophilic Csps have been reported. Here, we aimed to investigate the structure and dynamics of the Csp of psychrophile Colwellia psychrerythraea 34H, ( Cp-Csp). Although Cp-Csp shares sequence homology, common folding patterns, and motifs, including a five ß-stranded barrel, with its thermophilic counterparts, its thermostability (37 °C) was markedly lower than those of other Csps. Cp-Csp binds heptathymidine with an affinity of 10-7 M, thereby increasing its thermostability to 50 °C. Nuclear magnetic resonance spectroscopic analysis of the Cp-Csp structure and backbone dynamics revealed a flexible structure with only one salt bridge and 10 residues in the hydrophobic cavity. Notably, Cp-Csp contains Tyr51 instead of the conserved Phe in the hydrophobic core, and its phenolic hydroxyl group projects toward the surface. The Y51F mutation increased the stability of hydrophobic packing and may have allowed for the formation of a K3-E21 salt bridge, thereby increasing its thermostability to 43 °C. Cp-Csp exhibited conformational exchanges in its ribonucleoprotein motifs 1 and 2 (754 and 642 s-1), and heptathymidine binding markedly decreased these motions. Cp-Csp lacks salt bridges and has longer flexible loops and a less compact hydrophobic cavity resulting from Tyr51 compared to mesophilic and thermophilic Csps. These might explain the low thermostability of Cp-Csp. The conformational flexibility of Cp-Csp facilitates its accommodation of nucleic acids at low temperatures in polar oceans and its function as an RNA chaperone for cold adaptation.


Assuntos
Alteromonadaceae/química , Proteínas de Bactérias/química , Proteínas e Peptídeos de Choque Frio/química , Alteromonadaceae/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Proteínas e Peptídeos de Choque Frio/metabolismo , Temperatura Alta , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Estabilidade Proteica , Alinhamento de Sequência , Timidina/análogos & derivados , Timidina/metabolismo , Tirosina/química , Tirosina/metabolismo
8.
J Biol Chem ; 292(11): 4457-4468, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28154171

RESUMO

Alginate lyases that degrade alginate via a ß-elimination reaction fall into seven polysaccharide lyase (PL) families. Although the structures and catalytic mechanisms of alginate lyases in the other PL families have been clarified, those in family PL6 have yet to be revealed. Here, the crystal structure of AlyGC, a PL6 alginate lyase from marine bacterium Glaciecola chathamensis S18K6T, was solved, and its catalytic mechanism was illustrated. AlyGC is a homodimeric enzyme and adopts a structure distinct from other alginate lyases. Each monomer contains a catalytic N-terminal domain and a functionally unknown C-terminal domain. A combined structural and mutational analysis using the structures of AlyGC and of an inactive mutant R241A in complex with an alginate tetrasaccharide indicates that conformational changes occur in AlyGC when a substrate is bound and that the two active centers in AlyGC may not bind substrates simultaneously. The C-terminal domain is shown to be essential for the dimerization and the catalytic activity of AlyGC. Residues Tyr130, Arg187, His242, Arg265, and Tyr304 in the active center are also important for the activity of AlyGC. In catalysis, Lys220 and Arg241 function as the Brønsted base and acid, respectively, and a Ca2+ in the active center neutralizes the negative charge of the C5 carboxyl group of the substrate. Finally, based on our data, we propose a metal ion-assisted catalytic mechanism of AlyGC for alginate cleavage with a state change mode, which provides a better understanding for polysaccharide lyases and alginate degradation.


Assuntos
Alteromonadaceae/enzimologia , Polissacarídeo-Liases/química , Alteromonadaceae/química , Alteromonadaceae/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Modelos Moleculares , Polissacarídeo-Liases/metabolismo , Conformação Proteica , Multimerização Proteica , Alinhamento de Sequência , Especificidade por Substrato
9.
Appl Microbiol Biotechnol ; 102(20): 8855-8866, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30128580

RESUMO

Agar is a major polysaccharide of red algal cells and is mainly decomposed into neoagarobiose by the co-operative effort of ß-agarases. Neoagarobiose is hydrolyzed into monomers, D-galactose and 3,6-anhydro-L-galactose, via a microbial oxidative process. Therefore, the enzyme, 1,3-α-3,6-anhydro-L-galactosidase (α-neoagarobiose/neoagarooligosaccharide hydrolase) involved in the final step of the agarolytic pathway is crucial for bioindustrial application of agar. A novel cold-adapted α-neoagarooligosaccharide hydrolase, Ahg786, was identified and characterized from an agarolytic marine bacterium Gayadomonas joobiniege G7. Ahg786 comprises 400 amino acid residues (45.3 kDa), including a 25 amino acid signal peptide. Although it was annotated as a hypothetical protein from the genomic sequencing analysis, NCBI BLAST search showed 57, 58, and 59% identities with the characterized α-neoagarooligosaccharide hydrolases from Saccharophagus degradans 2-40, Zobellia galactanivorans, and Bacteroides plebeius, respectively. The signal peptide-deleted recombinant Ahg786 expressed and purified from Escherichia coli showed dimeric forms and hydrolyzed neoagarobiose, neoagarotetraose, and neoagarohexaose into 3,6-anhydro-L-galactose and other compounds by cleaving α-1,3-glycosidic bonds from the non-reducing ends of neoagarooligosaccharides, as confirmed by thin-layer chromatography and mass spectrometry. The optimum pH and temperature for Ahg786 activity were 7.0 and 15 °C, respectively, indicative of its unique cold-adapted features. The enzymatic activity severely inhibited with 0.5 mM ethylenediaminetetraacetic acid was completely restored or remarkably enhanced by Mn2+ in a concentration-dependent manner, suggestive of the dependence of the enzyme on Mn2+ ions. Km and Vmax values for neoagarobiose were 4.5 mM and 1.33 U/mg, respectively.


Assuntos
Alteromonadaceae/enzimologia , Proteínas de Bactérias/química , Galactosidases/química , Alteromonadaceae/química , Alteromonadaceae/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Estabilidade Enzimática , Galactosidases/genética , Galactosidases/metabolismo , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Sinais Direcionadores de Proteínas , Alinhamento de Sequência , Temperatura
10.
Curr Microbiol ; 75(11): 1523-1529, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30128841

RESUMO

Monomeric isocitrate dehydrogenases of a psychrophilic bacterium, Colwellia maris, and a psychrotolerant bacterium, Pseudomonas psychrophila, (CmIDH and PpIDH) are cold-adapted and mesophilic, respectively. On the other hand, previous studies revealed that the monomeric IDH of Azotobacter vinelandii (AvIDH) is also mesophilic and the regions 2 and 3 among three regions of this enzyme are involved in the thermal properties. Therefore, to examine whether the region(s) responsible for the mesophilic properties are common between PpIDH and AvIDH, the genes of chimeric IDHs exchanging three regions of PpIDH and CmIDH in various combinations were constructed and overexpressed as His-tagged recombinant proteins in the Escherichia coli cells, and the chimeric and wild-type PpIDH and CmIDH were purified with Ni-chelating affinity column chromatography. The swapping chimeras of the regions 2 or 3 in PpIDH and CmIDH showed lower and higher optimum temperatures for activities and their thermostabilities than the wild-type ones, respectively. On the other hand, the exchange of the respective region 1 hardly influenced these properties of the two IDHs. Therefore, the regions 2 and 3 of the two IDHs were confirmed to be involved in their thermal properties. These results were coincident with those of the previous study on chimeric IDHs between AvIDH and CmIDH, indicating that the common regions of AvIDH and PpIDH are responsible for their mesophilic properties and the amino acid residues involved in their thermal properties are present in the regions 2 and 3.


Assuntos
Alteromonadaceae/enzimologia , Proteínas de Bactérias/química , Isocitrato Desidrogenase/química , Alteromonadaceae/química , Alteromonadaceae/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Estabilidade Enzimática , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Domínios Proteicos , Temperatura
11.
J Biol Chem ; 291(11): 5871-5878, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26763234

RESUMO

Ulvan is the main polysaccharide component of the Ulvales (green seaweed) cell wall. It is composed of disaccharide building blocks comprising 3-sulfated rhamnose linked to d-glucuronic acid (GlcUA), l-iduronic acid (IdoUA), or d-xylose (Xyl). The degradation of ulvan requires ulvan lyase, which catalyzes the endolytic cleavage of the glycoside bond between 3-sulfated rhamnose and uronic acid according to a ß-elimination mechanism. The first characterized ulvan lyase was identified in Nonlabens ulvanivorans, an ulvanolytic bacterial isolate. In the current study, we have identified and biochemically characterized novel ulvan lyases from three Alteromonadales isolated bacteria. Two homologous ulvan lyases (long and short) were found in each of the bacterial genomes. The protein sequences have no homology to the previously reported ulvan lyases and therefore are the first representatives of a new family of polysaccharide lyases. The enzymes were heterologously expressed in Escherichia coli to determine their mode of action. The heterologous expressed enzymes were secreted into the milieu subsequent to their signal sequence cleavage. An endolytic mode of action was observed and studied using gel permeation chromatography and (1)H NMR. In contrast to N. ulvanivorans ulvan lyase, cleavage occurred specifically at the GlcUA residues. In light of the genomic context and modular structure of the ulvan lyase families identified to date, we propose that two ulvan degradation pathways evolved independently.


Assuntos
Alteromonadaceae/enzimologia , Polissacarídeo-Liases/metabolismo , Polissacarídeos/metabolismo , Alteromonadaceae/química , Alteromonadaceae/genética , Alteromonadaceae/metabolismo , Genoma Bacteriano , Cinética , Polissacarídeo-Liases/química , Polissacarídeo-Liases/genética , Regulação para Cima
12.
Biomacromolecules ; 18(8): 2267-2276, 2017 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-28650649

RESUMO

Several threonine (Thr)- and alanine (Ala)-rich antifreeze glycoproteins (AFGPs) and polysaccharides act in nature as ice recrystallization inhibitors. Among them, the Thr-decorated capsular polysaccharide (CPS) from the cold-adapted Colwellia psychrerythraea 34H bacterium was recently investigated for its cryoprotectant activity. A semisynthetic mimic thereof was here prepared from microbial sourced chondroitin through a four-step strategy, involving a partial protection of the chondroitin polysaccharide as a key step for gaining an unprecedented quantitative amidation of its glucuronic acid units. In-depth NMR and computational analysis suggested a fairly linear conformation for the semisynthetic polysaccharide, for which the antifreeze activity by a quantitative ice recrystallization inhibition assay was measured. We compared the structure-activity relationships for the Thr-derivatized chondroitin and the natural Thr-decorated CPS from C. psychrerythraea.


Assuntos
Alteromonadaceae/química , Condroitina , Polissacarídeos Bacterianos , Treonina/química , Condroitina/síntese química , Condroitina/química , Polissacarídeos Bacterianos/síntese química , Polissacarídeos Bacterianos/química
13.
Antonie Van Leeuwenhoek ; 110(11): 1377-1387, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28161737

RESUMO

Colwellia psychrerythraea strain 34H, a Gram-negative bacterium isolated from Arctic marine sediments, is considered a model to study the adaptation to cold environments. Recently, we demonstrated that C. psychrerythraea 34H produces two different extracellular polysaccharides, a capsular polysaccharide and a medium released polysaccharide, which confer cryoprotection to the bacterium. In this study, we report the structure of an additional capsular polysaccharide produced by Colwellia grown at a different temperature. The structure was determined using chemical methods, and one- and two-dimensional NMR spectroscopy. The results showed a trisaccharide repeating unit made up of only amino-sugar residues: N-acetyl-galactosamine, 2,4-diacetamido-2,4,6-trideoxy-glucose (bacillosamine), and 2-acetamido-2-deoxyglucuronic acid with the following structure: â†’4)-ß-D-GlcpNAcA-(1 â†’3)-ß-D-QuipNAc4NAc-(1 â†’3)-ß-D-GalpNAc-(1 â†’. The 3D model, generated in accordance with 1H,1H-NOE NMR correlations and consisting of ten repeating units, shows a helical structure. In contrast with the other extracellular polysaccharides produced from Colwellia at 4 °C, this molecule displays only a low ice recrystallization inhibition activity.


Assuntos
Alteromonadaceae/química , Amino Açúcares/química , Proteínas Anticongelantes/química , Modelos Moleculares , Polissacarídeos Bacterianos/química , Adaptação Fisiológica , Alteromonadaceae/citologia , Proteínas Anticongelantes/isolamento & purificação , Sequência de Carboidratos , Temperatura Baixa , Espectroscopia de Ressonância Magnética , Conformação Molecular , Simulação de Dinâmica Molecular , Polissacarídeos Bacterianos/isolamento & purificação
14.
Phys Chem Chem Phys ; 18(42): 29101-29112, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27725981

RESUMO

Bacterial extra polymeric substances (EPS) have been associated with the extracellular precipitation of uranium. Here we report findings on the biomineralisation of uranium, with extracellular DNA (eDNA) used as a model biomolecule representative of EPS. The complexation and precipitation of eDNA with uranium were investigated as a function of pH, ionic strength and varying concentrations of reactants. The role of phosphate moieties in the biomineralisation mechanism was studied by enzymatically releasing phosphate (ePO4) from eDNA compared to abiotic phosphate (aPO4). The eDNA-uranium precipitates and uranium minerals obtained were characterised by Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FT-IR) spectroscopy, Scanning Electron Microscopy-Energy Dispersive X-Ray analysis (SEM-EDX), X-Ray Powder Diffraction (XRD) and X-Ray Photoelectron Spectroscopy (XPS). ATR-FT-IR showed that at pH 5, the eDNA-uranium precipitation mechanism was predominantly mediated by interactions with phosphate moieties from eDNA. At pH 2, the uranium interactions with eDNA occur mainly through phosphate. The solubility equilibrium was dependent on pH with the formation of precipitate reduced as the pH increased. The XRD data confirmed the formation of a uranium phosphate precipitate when synthesised using ePO4. XPS and SEM-EDX studies showed the incorporation of carbon and nitrogen groups from the enzymatic orthophosphate hydrolysis on the obtained precipitated. These results suggested that the removal of uranium from solution occurs via two mechanisms: complexation by eDNA molecules and precipitation of a uranium phosphate mineral of the type (UO2HPO4)·xH2O by enzymatic orthophosphate hydrolysis. This demonstrated that eDNA from bacterial EPS is a key contributor to uranium biomineralisation.


Assuntos
DNA/química , Urânio/química , Alteromonadaceae/química , Alteromonadaceae/genética , Precipitação Química , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Concentração Osmolar , Fosfatos/química , Espectroscopia Fotoeletrônica , Espectroscopia de Infravermelho com Transformada de Fourier
15.
J Biol Chem ; 289(12): 8645-55, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24478312

RESUMO

Brown macroalgae represent an ideal source for complex polysaccharides that can be utilized as precursors for cellulosic biofuels. The lack of recalcitrant lignin components in macroalgae polysaccharide reserves provides a facile route for depolymerization of constituent polysaccharides into simple monosaccharides. The most abundant sugars in macroalgae are alginate, mannitol, and glucan, and although several classes of enzymes that can catabolize the latter two have been characterized, studies of alginate-depolymerizing enzymes have lagged. Here, we present several crystal structures of Alg17c from marine bacterium Saccharophagus degradans along with structure-function characterization of active site residues that are suggested to be involved in the exolytic mechanism of alginate depolymerization. This represents the first structural and biochemical characterization of a family 17 polysaccharide lyase enzyme. Despite the lack of appreciable sequence conservation, the structure and ß-elimination mechanism for glycolytic bond cleavage by Alg17c are similar to those observed for family 15 polysaccharide lyases and other lyases. This work illuminates the evolutionary relationships among enzymes within this unexplored class of polysaccharide lyases and reinforces the notion of a structure-based hierarchy in the classification of these enzymes.


Assuntos
Alteromonadaceae/enzimologia , Polissacarídeo-Liases/química , Alginatos/química , Alginatos/metabolismo , Alteromonadaceae/química , Alteromonadaceae/genética , Alteromonadaceae/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Ácido Glucurônico/química , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/química , Ácidos Hexurônicos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Conformação Proteica , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Trissacarídeos/química , Trissacarídeos/metabolismo , Zinco/metabolismo
16.
Proteins ; 83(2): 309-17, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25388768

RESUMO

Oligomeric proteins are important targets for structure determination in solution. While in most cases the fold of individual subunits can be determined experimentally, or predicted by homology-based methods, protein-protein interfaces are challenging to determine de novo using conventional NMR structure determination protocols. Here we focus on a member of the bet-V1 superfamily, Aha1 from Colwellia psychrerythraea. This family displays a broad range of crystallographic interfaces none of which can be reconciled with the NMR and SAXS data collected for Aha1. Unlike conventional methods relying on a dense network of experimental restraints, the sparse data are used to limit conformational search during optimization of a physically realistic energy function. This work highlights a new approach for studying minor conformational changes due to structural plasticity within a single dimeric interface in solution.


Assuntos
Proteínas de Bactérias/química , Alteromonadaceae/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Soluções , Difração de Raios X
17.
Glycobiology ; 25(1): 115-23, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25214154

RESUMO

N-Acetylneuraminate lyase synthase (NeuB; E.C. 2.5.1.56) is a key enzyme in pathogenic microorganisms for producing N-acetylneuraminic acid through the irreversible condensation of N-acetylmannosamine (ManNAc) and phosphoenolpyruvate (PEP). However, nothing is known about this enzyme in non-pathogenic bacteria. This paper describes, for the first time, one of the two putative N-acetylneuraminate synthases from the halophilic non-pathogenic gamma-proteobacterium Idiomarina loihiensis NeuB1 (IlNeuB1). The obtained 95-kDa dimeric enzyme showed maximal activity at pH 7.0 and 40°C and was more stable at pH 8.0 (8 h half-life) than the previously described NeuB. Its catalytic efficiency towards ManNAc and PEP was 10- and 40-fold higher, respectively, than that determined for Campylobacter jejuni NeuB, but only half that found for Neisseria meningitidis NeuB towards PEP. The phylogenetic and structural analyses of NeuB enzymes revealed the new domain architecture 4 has no cystathionine-ß-synthase domain (cystathionine-ß-synthetase domain), unlike domain architecture 3. In addition, 10 conserved blocks (I-X) were found, and surprisingly, this study showed that the arginine essential for catalysis that is present in antifreeze-like domain (block X) was not fully conserved in NeuB, but is replaced by a serine in a long sequence (>700 residues) NeuB, such as that existing in domain architectures 3 and 4.


Assuntos
Alteromonadaceae/química , Proteínas de Bactérias/química , Hexosaminas/química , Oxo-Ácido-Liases/química , Fosfoenolpiruvato/química , Alteromonadaceae/classificação , Alteromonadaceae/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Campylobacter jejuni/química , Campylobacter jejuni/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Meia-Vida , Hexosaminas/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Dados de Sequência Molecular , Neisseria meningitidis/química , Neisseria meningitidis/enzimologia , Oxo-Ácido-Liases/genética , Oxo-Ácido-Liases/metabolismo , Fosfoenolpiruvato/metabolismo , Filogenia , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Especificidade da Espécie , Especificidade por Substrato
18.
J Am Chem Soc ; 137(1): 179-89, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25525681

RESUMO

The low temperatures of polar regions and high-altitude environments, especially icy habitats, present challenges for many microorganisms. Their ability to live under subfreezing conditions implies the production of compounds conferring cryotolerance. Colwellia psychrerythraea 34H, a γ-proteobacterium isolated from subzero Arctic marine sediments, provides a model for the study of life in cold environments. We report here the identification and detailed molecular primary and secondary structures of capsular polysaccharide from C. psychrerythraea 34H cells. The polymer was isolated in the water layer when cells were extracted by phenol/water and characterized by one- and two-dimensional NMR spectroscopy together with chemical analysis. Molecular mechanics and dynamics calculations were also performed. The polysaccharide consists of a tetrasaccharidic repeating unit containing two amino sugars and two uronic acids bearing threonine as substituent. The structural features of this unique polysaccharide resemble those present in antifreeze proteins and glycoproteins. These results suggest a possible correlation between the capsule structure and the ability of C. psychrerythraea to colonize subfreezing marine environments.


Assuntos
Alteromonadaceae/química , Proteínas Anticongelantes/química , Polissacarídeos/química , Alteromonadaceae/citologia , Proteínas Anticongelantes/isolamento & purificação , Configuração de Carboidratos , Sequência de Carboidratos , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Polissacarídeos/isolamento & purificação
19.
Mar Drugs ; 13(8): 5492-507, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26308011

RESUMO

l-Methionine γ-lyase (MGL), a pyridoxal 5'-phosphate-dependent enzyme, possesses anti-tumor activity. However, the low activity of MGL blocks the anti-tumor effect. This study describes an efficient production process for the recombinant MGL (rMGL) from Idiomarina constructed using the overexpression plasmid in Escherichia coli BL21 (DE3), purification, and large-scale production. The enzyme produced by the transformants accounted for 53% of the total proteins and accumulated at 1.95 mg/mL using a 500 L fermentor. The enzyme was purified to approximately 99% purity using a high-pressure mechanical homogenizer and nickel (Ni) Sepharose 6 Fast Flow (FF) chromatography. Then, the enzyme was polished by gel filtration, the endotoxins were removed using diethyl-aminoethanol (DEAE) Sepharose FF, and the final product was lyophilized with a vacuum freeze dryer at -35 °C. The specific activity of rMGL in the lyophilized powder was up to 108 U/mg. Compared to the control, the enzyme significantly inhibited cellular proliferation in a concentration-dependent manner as tested using the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay and induced cellular apoptosis as analyzed by Annexin V-fluorescein isothiocyanate (FITC) with fluorescence-activated cell sorting (FACS) in leukemia cells. This paper demonstrated the cloning, overexpression, and large-scale production protocols for rMGL, which enabled rMGL to be used as a novel anti-leukemic drug.


Assuntos
Alteromonadaceae/metabolismo , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Liases de Carbono-Enxofre/metabolismo , Liases de Carbono-Enxofre/farmacologia , Leucemia/tratamento farmacológico , Alteromonadaceae/química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Liases de Carbono-Enxofre/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Escherichia coli/metabolismo , Humanos
20.
J Basic Microbiol ; 55(7): 838-45, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25707451

RESUMO

Colwellia psychrerythraea strain 34H is an obligately psychrophilic bacterium that has been used as a model cold-adapted microorganism because of its psychrophilic growth profile, significant production of cold-active enzymes, and cryoprotectant extracellular polysaccharide substances. However, its fatty acid components, particularly trans unsaturated fatty acids and long-chain polyunsaturated fatty acids (LC-PUFAs), have not been fully investigated. In this study, we biochemically identified Δ9-trans hexadecenoic acid [16:1(9t)] and LC-PUFAs such as docosahexaenoic acid. These results are comparable with the fact that the strain 34H genome sequence includes pfa and cti genes that are responsible for the biosynthesis of LC-PUFAs and trans unsaturated fatty acids, respectively. Strain 34H cells grown under static conditions at 5 °C had higher levels of 16:1(9t) than those grown under shaken conditions, and this change was accompanied by an antiparallel decrease in the levels of Δ9-cis hexadecenoic acid [16:1(9c)], suggesting that the cis-to-trans isomerization reaction of 16:1(9c) is activated under static (microanaerobic) culture conditions, that is, the enzyme could be activated by the decreased dissolved oxygen concentration of cultures. On the other hand, the levels of LC-PUFAs were too low (less than 3% of the total), even for cells grown at 5 °C, to evaluate their cold-adaptive function in this bacterium.


Assuntos
Alteromonadaceae/química , Ácidos Graxos Monoinsaturados/análise , Ácidos Graxos Insaturados/análise , Ácidos Graxos trans/análise , Alteromonadaceae/enzimologia , Alteromonadaceae/genética , Alteromonadaceae/crescimento & desenvolvimento , Sequência de Bases , Temperatura Baixa , Isomerismo , Polissacarídeos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa