Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.401
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nat Immunol ; 16(1): 75-84, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25347465

RESUMO

In lymph nodes, fibroblastic reticular cells (FRCs) form a collagen-based reticular network that supports migratory dendritic cells (DCs) and T cells and transports lymph. A hallmark of FRCs is their propensity to contract collagen, yet this function is poorly understood. Here we demonstrate that podoplanin (PDPN) regulates actomyosin contractility in FRCs. Under resting conditions, when FRCs are unlikely to encounter mature DCs expressing the PDPN receptor CLEC-2, PDPN endowed FRCs with contractile function and exerted tension within the reticulum. Upon inflammation, CLEC-2 on mature DCs potently attenuated PDPN-mediated contractility, which resulted in FRC relaxation and reduced tissue stiffness. Disrupting PDPN function altered the homeostasis and spacing of FRCs and T cells, which resulted in an expanded reticular network and enhanced immunity.


Assuntos
Colágeno/metabolismo , Fibroblastos/citologia , Lectinas Tipo C/metabolismo , Linfonodos/citologia , Glicoproteínas de Membrana/metabolismo , Amidas/farmacologia , Animais , Sobrevivência Celular/imunologia , Colágeno/imunologia , Citoesqueleto/imunologia , Citoesqueleto/ultraestrutura , Inibidores Enzimáticos/farmacologia , Feminino , Fibroblastos/imunologia , Fibroblastos/ultraestrutura , Lectinas Tipo C/imunologia , Linfonodos/imunologia , Linfonodos/ultraestrutura , Masculino , Glicoproteínas de Membrana/imunologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Fosforilação , Piridinas/farmacologia , Organismos Livres de Patógenos Específicos
2.
PLoS Pathog ; 20(9): e1012574, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39348391

RESUMO

A diverse group of RNA viruses have the ability to gain access to the central nervous system (CNS) and cause severe neurological disease. Current treatment for people with this type of infection is generally limited to supportive care. To address the need for reliable antivirals, we utilized a strategy of lethal mutagenesis to limit virus replication. We evaluated ribavirin (RBV), favipiravir (FAV) and N4-hydroxycytidine (NHC) against La Crosse virus (LACV), which is one of the most common causes of pediatric arboviral encephalitis cases in North America and serves as a model for viral CNS invasion during acute infection. NHC was approximately 3 to 170 times more potent than RBV or FAV in neuronal cells. Oral administration of molnupiravir (MOV), the prodrug of NHC, decreased neurological disease development (assessed as limb paralysis, ataxia and weakness, repeated seizures, or death) by 31% (4 mice survived out of 13) when treatment was started on the day of infection. MOV also reduced disease by 23% when virus was administered intranasally (IN). NHC and MOV produced less fit viruses by incorporating predominantly G to A or C to U mutations. Furthermore, NHC also inhibited virus production of two other orthobunyaviruses, Jamestown Canyon virus and Cache Valley virus. Collectively, these studies indicate that NHC/MOV has therapeutic potential to inhibit viral replication and subsequent neurological disease caused by orthobunyaviruses and potentially as a generalizable strategy for treating acute viral encephalitis.


Assuntos
Antivirais , Citidina , Vírus La Crosse , Replicação Viral , Animais , Camundongos , Antivirais/farmacologia , Citidina/análogos & derivados , Citidina/farmacologia , Replicação Viral/efeitos dos fármacos , Vírus La Crosse/efeitos dos fármacos , Vírus La Crosse/genética , Mutação , Ribavirina/farmacologia , Pirazinas/farmacologia , Hidroxilaminas/farmacologia , Amidas/farmacologia , Amidas/uso terapêutico , Encefalite da Califórnia/tratamento farmacológico , Encefalite da Califórnia/virologia , Humanos , Feminino
3.
Biochem Biophys Res Commun ; 697: 149547, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38245926

RESUMO

A new series of thiophenpiperazine amide derivatives as potent dual ligands for the µ-opioid (MOR) and sigma-1 (σ1R) receptors are reported. Compound 23 exhibited good affinity to σ1R (Ki = 44.7 ± 7.05 nM) and high selectivity to σ2R. Furthermore, Compound 23 exerted MOR agonism and σ1R antagonism and potent analgesic activity in animal moldes (the abdominal constriction test (ED50 = 3.83 mg/kg) and carrageenan-induced inflammatory hyperalgesia model (ED50 = 5.23 mg/kg)). We obtained new dual ligands that might serve as starting points for preparing targeted tools. Furthermore, 23 may be a useful chemical probe for understanding more fully analgesic effects associated with MOR agonism and σ1R antagonism.


Assuntos
Amidas , Receptores sigma , Animais , Amidas/farmacologia , Amidas/uso terapêutico , Dor/induzido quimicamente , Dor/tratamento farmacológico , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Analgésicos/química , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Ligantes , Receptores Opioides mu
4.
Appl Environ Microbiol ; 90(7): e0052824, 2024 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-38916293

RESUMO

Xenorhabdus nematophila is a symbiotic Gammaproteobacterium that produces diverse natural products that facilitate mutualistic and pathogenic interactions in their nematode and insect hosts, respectively. The interplay between X. nematophila secondary metabolism and symbiosis stage is tuned by various global regulators. An example of such a regulator is the LysR-type protein transcription factor LrhA, which regulates amino acid metabolism and is necessary for virulence in insects and normal nematode progeny production. Here, we utilized comparative metabolomics and molecular networking to identify small molecule factors regulated by LrhA and characterized a rare γ-ketoacid (GKA) and two new N-acyl amides, GKA-Arg (1) and GKA-Pro (2) which harbor a γ-keto acyl appendage. A lrhA null mutant produced elevated levels of compound 1 and reduced levels of compound 2 relative to wild type. N-acyl amides 1 and 2 were shown to be selective agonists for the human G-protein-coupled receptors (GPCRs) C3AR1 and CHRM2, respectively. The CHRM2 agonist 2 deleteriously affected the hatch rate and length of Steinernema nematodes. This work further highlights the utility of exploiting regulators of host-bacteria interactions for the identification of the bioactive small molecule signals that they control. IMPORTANCE: Xenorhabdus bacteria are of interest due to their symbiotic relationship with Steinernema nematodes and their ability to produce a variety of natural bioactive compounds. Despite their importance, the regulatory hierarchy connecting specific natural products and their regulators is poorly understood. In this study, comparative metabolomic profiling was utilized to identify the secondary metabolites modulated by the X. nematophila global regulator LrhA. This analysis led to the discovery of three metabolites, including an N-acyl amide that inhibited the egg hatching rate and length of Steinernema carpocapsae nematodes. These findings support the notion that X. nematophila LrhA influences the symbiosis between X. nematophila and S. carpocapsae through N-acyl amide signaling. A deeper understanding of the regulatory hierarchy of these natural products could contribute to a better comprehension of the symbiotic relationship between X. nematophila and S. carpocapsae.


Assuntos
Amidas , Proteínas de Bactérias , Simbiose , Fatores de Transcrição , Xenorhabdus , Xenorhabdus/genética , Xenorhabdus/metabolismo , Xenorhabdus/fisiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Amidas/farmacologia , Amidas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Nematoides/microbiologia
5.
Chemistry ; 30(49): e202401781, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38923708

RESUMO

Small molecular kinase inhibitors play a key role in modern cancer therapy. Protein kinases are essential mediators in the growth and progression of cancerous tumors, rendering involved kinases an increasingly important target for therapy. However, kinase inhibitors are almost insoluble in water because of their hydrophobic aromatic nature, often lowering their availability and pharmacological efficacy. Direct drug functionalization with polar groups represents a simple strategy to improve the drug solubility, availability, and performance. Here, we present a strategy to functionalize secondary amines with oligoethylene glycol (OEG) phosphate using a one-pot synthesis in three exemplary kinase inhibiting drugs Ceritinib, Crizotinib, and Palbociclib. These OEG-prodrug conjugates demonstrate superior solubility in water compared to the native drugs, with the solubility increasing up to 190-fold. The kinase inhibition potential is only slightly decreased for the conjugates compared to the native drugs. We further show pH dependent hydrolysis of the OEG-prodrugs which releases the native drug. We observe a slow release at pH 3, while the conjugates remain stable over 96 h under physiological conditions (pH 7.4). Using confocal microscopy, we verify improved cell uptake of the drug-OEG conjugates into the cytoplasm of HeLa cells, further supporting our universal solubility approach.


Assuntos
Aminas , Ácidos Fosfóricos , Pró-Fármacos , Inibidores de Proteínas Quinases , Solubilidade , Água , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Humanos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Água/química , Aminas/química , Ácidos Fosfóricos/química , Células HeLa , Amidas/química , Amidas/farmacologia , Polietilenoglicóis/química , Concentração de Íons de Hidrogênio , Hidrólise
6.
Exp Eye Res ; 242: 109857, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479724

RESUMO

Penetrating keratoplasty remains the most common treatment to restore vision for corneal diseases. Immune rejection after corneal transplantation is one of the major causes of graft failure. In recent years, Rho-associated protein kinase (ROCK) inhibitors have been found to be associated with the activation of the STATs pathway and are widely studied in autoimmune diseases. Therefore, it may be possible that the ROCK inhibitors also participate in the local and systemic immune regulation in corneal transplantation through activation of the STATs pathway and affect the CD4+ T cell differentiation. This study aimed to explore the role of ROCK-STATs pathway in the occurrence of immune rejection in corneal transplantation by applying Y27632, a ROCK inhibitor, to the recipient mice and peripheral CD4+ T cells. We found that Y27632 significantly up-regulated the phosphorylation level of STAT5 in both spleen and lymph nodes, down-regulated the phosphorylation level of STAT3 in the CD4+ T cells in the spleen. It also increased the proportion of CD4+CD25+Foxp3+Helios+ Tregs while decreased CD4+IL17A+ -Th17 cells. Moreover, Y27632 also reduced the proportion of dendritic cells in both spleen and lymph nodes, as well as the expression level of CD86 on their surfaces in the spleen, while the proportion of macrophages was not affected. The expression levels of ROCK1, ROCK2, CD11c and IL-17A mRNA were also found to be low in the graft tissue while the expression of Helios was upregulated. Rho-kinase inhibitor can modulate the balance of Tregs/Th17 by regulating the phosphorylation levels of both STAT3 and STAT5, thereby inhibiting the occurrence of immune rejection in allogeneic corneal transplantation.


Assuntos
Amidas , Linfócitos T CD4-Positivos , Rejeição de Enxerto , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Piridinas , Fator de Transcrição STAT3 , Fator de Transcrição STAT5 , Quinases Associadas a rho , Animais , Camundongos , Rejeição de Enxerto/metabolismo , Rejeição de Enxerto/prevenção & controle , Quinases Associadas a rho/antagonistas & inibidores , Linfócitos T CD4-Positivos/imunologia , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT5/metabolismo , Amidas/farmacologia , Amidas/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Modelos Animais de Doenças , Fosforilação , Citometria de Fluxo , Ceratoplastia Penetrante , Western Blotting , Transplante de Córnea , Masculino
7.
Nat Chem Biol ; 18(1): 64-69, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34934192

RESUMO

Direct control of protein interactions by chemically induced protein proximity holds great potential for both cell and synthetic biology as well as therapeutic applications. Low toxicity, orthogonality and excellent cell permeability are important criteria for chemical inducers of proximity (CIPs), in particular for in vivo applications. Here, we present the use of the agrochemical mandipropamid (Mandi) as a highly efficient CIP in cell culture systems and living organisms. Mandi specifically induces complex formation between a sixfold mutant of the plant hormone receptor pyrabactin resistance 1 (PYR1) and abscisic acid insensitive (ABI). It is orthogonal to other plant hormone-based CIPs and rapamycin-based CIP systems. We demonstrate the applicability of the Mandi system for rapid and efficient protein translocation in mammalian cells and zebrafish embryos, protein network shuttling and manipulation of endogenous proteins.


Assuntos
Amidas/farmacologia , Ácidos Carboxílicos/farmacologia , Fungicidas Industriais/farmacologia , Ácido Abscísico/metabolismo , Animais , Dimerização , Peixe-Zebra/embriologia
8.
Bioorg Med Chem Lett ; 113: 129978, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39341397

RESUMO

To find highly effective and low-toxicity antitumor drugs to overcome the challenge of cancer, we designed and synthesized a series of novel 4-oxobutanamide derivatives using the principle of molecular hybridization and tested the antiproliferative ability of the title compounds against human cervical carcinoma cells (HeLa), human breast carcinoma cells (MDA-MB-231) and human kidney carcinoma cells (A498). Among them, N1-(4-methoxybenzyl)-N4-(4-methoxyphenyl)-N1-(3,4,5-trimethoxyphenyl) succinimide DN4 (IC50 = 1.94 µM) showed the best proliferation activity on A498, superior to the positive control paclitaxel (IC50 = 8.81 µM) and colchicine (IC50 = 7.17 µM). Compound DN4 not only inhibited the proliferation, adhesion and invasion of A498, but also inhibited angiogenesis and tumor growth in a dose-dependent manner in the xenograft model of A498 cells. In addition, we also predicted the physicochemical properties and toxicity (ADMET) of these derivatives, and the results suggested that these derivatives may have the absorption, distribution, metabolism, excretion, and toxicity properties of drug candidates. Thus, compound DN4 may be a promising drug candidate for the treatment of cancer.


Assuntos
Antineoplásicos , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Animais , Relação Estrutura-Atividade , Camundongos , Amidas/química , Amidas/farmacologia , Amidas/síntese química , Estrutura Molecular , Relação Dose-Resposta a Droga , Células HeLa
9.
Bioorg Med Chem Lett ; 105: 129741, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38599296

RESUMO

ZJ-101, a structurally simplified analog of marine natural product superstolide A, was previously designed and synthesized in our laboratory. In the present study four new analogs of ZJ-101 were designed and synthesized to investigate the structure-activity relationship of the acetamide moiety of the molecule. The biological evaluation showed that the amide moiety is important for the molecule's anticancer activity. Replacing the amide with other functional groups such as a sulfonamide group, a carbamate group, and a urea group resulted in the decrease in anticancer activity.


Assuntos
Amidas , Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Humanos , Amidas/química , Amidas/farmacologia , Amidas/síntese química , Linhagem Celular Tumoral , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Macrolídeos/química , Macrolídeos/farmacologia , Macrolídeos/síntese química , Relação Dose-Resposta a Droga
10.
Bioorg Med Chem Lett ; 108: 129813, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38788964

RESUMO

Succinate dehydrogenase inhibitors are essential fungicides used in agriculture. To explore new pyrazole-carboxamides with high fungicidal activity, a series of N-substitutedphenyl-3-di/trifluoromethyl-1-methyl-1H-pyrazole-4-carboxamides bearing a branched alkyl ether moiety were designed and synthesized. The in vitro bioassay indicated that some target compounds displayed appreciable fungicidal activity. For example, compounds 5d and 5e showed high efficacy against S. sclerotiorum with EC50 values of 3.26 and 1.52 µg/mL respectively, and also exhibited excellent efficacy against R. solani with EC50 values of 0.27 and 0.06 µg/mL respectively, which were comparable or superior to penflufen. The further in vivo bioassay on cucumber leaves demonstrated that 5e provided strong protective activity of 94.3 % against S. sclerotiorum at 100 µg/mL, comparable to penflufen (99.1 %). Cytotoxicity assessment against human renal cell lines (239A cell) revealed that 5e had low cytotoxicity within the median effective concentrations. Docking study of 5e with succinate dehydrogenase illustrated that R-5e formed one hydrogen bond and two π-π stacking interactions with amino acid residues of target enzyme, while S-5e formed only one π-π stacking interaction with amino acid residue. This study provides a valuable reference for the design of new succinate dehydrogenase inhibitor.


Assuntos
Fungicidas Industriais , Simulação de Acoplamento Molecular , Pirazóis , Succinato Desidrogenase , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Humanos , Relação Estrutura-Atividade , Fungicidas Industriais/farmacologia , Fungicidas Industriais/síntese química , Fungicidas Industriais/química , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ascomicetos/efeitos dos fármacos , Amidas/química , Amidas/farmacologia , Amidas/síntese química , Relação Dose-Resposta a Droga , Éteres/química , Éteres/farmacologia , Éteres/síntese química , Rhizoctonia
11.
Bioorg Med Chem Lett ; 113: 129960, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39265894

RESUMO

We report the design, synthesis, and validation of carboxamide-based pyrazole and isoxazole conjugates with a multifaceted activity against Breast Cancer Cell Line MDA-MB-231. The study established that amongst the series, N-(3,5-bis(trifluoromethyl)benzyl)-3-(3,4,5-trimethoxyphenyl)-1H-pyrazole-5-carboxamide (5g) exhibits the highest potency in inhibiting Breast Cancer Cell Line MDA-MB-231 with an IC50 value of 15.08 ± 0.04 µM. The MDA-MB-231 cells, upon treatment with compound 5g, exhibited characteristic apoptotic specific activities such as nuclear fragmentation, phosphatidylserine translocation to the outer plasma membrane, release of lactate dehydrogenase (LDH), and upregulation of caspase 3 and caspase 9 activities. Also, the modulation of pro and antiapoptotic proteins in 5g treated MDA-MB-231 cells was revealed by membrane array analysis. More importantly, the combination of paclitaxel and compound 5g has exhibited improved activity by several folds via their synergistic effects.


Assuntos
Antineoplásicos , Apoptose , Ensaios de Seleção de Medicamentos Antitumorais , Pirazóis , Neoplasias de Mama Triplo Negativas , Humanos , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Linhagem Celular Tumoral , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Estrutura-Atividade , Apoptose/efeitos dos fármacos , Desenho de Fármacos , Estrutura Molecular , Relação Dose-Resposta a Droga , Proliferação de Células/efeitos dos fármacos , Feminino , Descoberta de Drogas , Amidas/química , Amidas/farmacologia , Amidas/síntese química , Paclitaxel/farmacologia , Paclitaxel/química , Paclitaxel/síntese química , Células MDA-MB-231
12.
Bioorg Med Chem Lett ; 108: 129816, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38806101

RESUMO

As our ongoing work, a novel series of the amide-based CA-4 analogues were successfully designed, synthesized, and explored for their biological evaluation. Among these compounds, 7d and 8a illustrated most potent antiproliferative activity toward A549, HeLa, HCT116, and HT-29 cell lines. Most importantly, these two compounds didn't display noticeable cytotoxic activity on the non-tumoural cell line HEK-293. Further mechanism studies revealed that analogue 8a was identified as a novel tubulin polymerization inhibitor with an IC50 value of 6.90 µM, which is comparable with CA-4. The subsequent investigations unveiled that analogue 8a not only effectively caused cell cycle arrest at the G2/M phase but also induced apoptosis in A549 cells via a concentration-dependent manner. The molecular docking revealed that 8a could occupy well the colchicine-binding site of tubulin. Collectively, these findings indicate that amide-based CA-4 scaffold could be worthy of further evaluation for development of novel tubulin inhibitors with improved safety profile.


Assuntos
Amidas , Antineoplásicos , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Estilbenos , Moduladores de Tubulina , Tubulina (Proteína) , Humanos , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química , Tubulina (Proteína)/metabolismo , Relação Estrutura-Atividade , Amidas/química , Amidas/farmacologia , Amidas/síntese química , Proliferação de Células/efeitos dos fármacos , Estilbenos/química , Estilbenos/farmacologia , Estilbenos/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Estrutura Molecular , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Células HEK293
13.
Inorg Chem ; 63(30): 13893-13902, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39011904

RESUMO

Two new p-cresol-2,6-bis(amide-tether-dpa4-X) ligands (HL4-X, X = MeO and Cl) and their dicopper complexes [Cu2(µ-1,1-OAc)(µ-1,3-OAc)(L4-MeO)]Y (Y = PF6 1a, OAc 1b) and [Cu2(µ-1,3-OAc)2(L4-Cl)]Y (Y = ClO4 2a, OAc 2b) were synthesized. The electronic and hydrophobic effects of the MeO and Cl groups were examined compared with nonsubstituted complex [Cu2(µ-1,1-OAc)(µ-1,3-OAc)(L)]+ (3). The electronic effects were found in crystal structures, spectroscopic characterization, and redox potentials of these complexes. 1b and 2b were reduced to Cu(I)Cu(I) with sodium ascorbate and reductively activated O2 to produce H2O2 and HO•. The H2O2 release and HO• generation are promoted by the electronic effects. The hydrophobic effects increased the lipophilicity of 1b and 2b. Cellular ROS generation of 1b, 2b, and 3 was visualized by DCFH-DA. To examine the intracellular behavior, boron dipyrromethene (Bodipy)-modified complexes 4B and 5B corresponding to 1b and 2b were synthesized. These support that 1b and 2b are localized at the ER and Golgi apparatus. The cytotoxicity of 1b and 2b against various cell lines was examined by MTT assay. 1b and 2b were 7- and 41-fold more cytotoxic than 3. 1b generated ROS selectively in cancer cell but 2b nonselectively in cancer and normal cells, causing cancer- and normal-cell-selective cytotoxicity, respectively.


Assuntos
Antineoplásicos , Complexos de Coordenação , Cobre , Interações Hidrofóbicas e Hidrofílicas , Espécies Reativas de Oxigênio , Humanos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Espécies Reativas de Oxigênio/metabolismo , Cobre/química , Cobre/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Cresóis/química , Cresóis/farmacologia , Cresóis/síntese química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Elétrons , Amidas/química , Amidas/farmacologia , Amidas/síntese química
14.
Bioorg Med Chem ; 98: 117558, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142562

RESUMO

Vascular adhesion protein-1 (VAP-1), also known as plasma amine oxidase or semicarbazide-sensitive amine oxidase, is an enzyme that degrades primary amines to aldehydes with the formation of hydrogen peroxide and ammonia. Among others, it plays a role in inflammatory processes as it can mediate the migration of leukocytes from the blood to the inflamed tissue. We prepared a series of ω-(5-phenyl-2H-tetrazol-2-yl)alkyl-substituted glycine amides and related compounds and tested them for inhibition of purified bovine plasma VAP-1. Compounds with submicromolar activity were obtained. Studies on the mechanism of action revealed that the glycine amides are substrate inhibitors, i.e., they are also converted to an aldehyde derivative. However, the reaction proceeds much more slowly than that of the substrate used in the assay, whose conversion is thus blocked. Examination of the selectivity of the synthesized glycine amides with respect to other amine oxidases showed that they inhibited diamine oxidase, which is structurally related to VAP-1, but only to a much lesser extent. In contrast, the activity of monoamine oxidase A and B was not affected. Selected compounds also inhibited VAP-1 in human plasma. The IC50 values measured were higher than those determined with the bovine enzyme. However, the structure-activity relationships obtained with the glycine amides were similar for both enzymes.


Assuntos
Amina Oxidase (contendo Cobre) , Monoaminoxidase , Animais , Bovinos , Humanos , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/farmacologia , Aminas/farmacologia , Aldeídos , Amina Oxidase (contendo Cobre)/metabolismo , Glicina/farmacologia , Amidas/farmacologia
15.
Bioorg Med Chem ; 111: 117844, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39106652

RESUMO

Monoacylglycerol lipase (MAGL) is a key enzyme responsible for the metabolism of the endocannabinoid 2-arachidonoylglycerol (2-AG), and has attracted great interest due to its involvement in various physiological and pathological processes, such as cancer progression. In the past, a number of covalent irreversible inhibitors have been reported for MAGL, however, experimental evidence highlighted some drawbacks associated with the use of these irreversible agents. Therefore, efforts were mainly focused on the development of reversible MAGL inhibitor in recent years. Here, we designed and synthesized a series of naphthyl amide derivatives (12-39) as another type of reversible MAGL inhibitors, exemplified by ± 34, which displayed good MAGL inhibition with a pIC50 of 7.1, and the potency and selectivity against endogenous MAGL were further demonstrated by competitive ABPP. Moreover, the compound showed appreciable antiproliferative activities against several cancer cells, including H460, HT29, CT-26, Huh7 and HCCLM-3. The investigations culminated in the discovery of the naphthyl amide derivative ± 34, and it may represent as a new scaffold for MAGL inhibitor development, particularly for the reversible ones.


Assuntos
Amidas , Antineoplásicos , Proliferação de Células , Desenho de Fármacos , Inibidores Enzimáticos , Monoacilglicerol Lipases , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/metabolismo , Humanos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Amidas/química , Amidas/farmacologia , Amidas/síntese química , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Naftalenos/farmacologia , Naftalenos/síntese química , Naftalenos/química , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular
16.
J Nat Prod ; 87(4): 906-913, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38430199

RESUMO

The chemical diversity of annelids, particularly those belonging to the class Sipuncula, remains largely unexplored. However, as part of a Marine Biodiscovery program in Ireland, the peanut worm Phascolosoma granulatum emerged as a promising source of unique metabolites. The purification of the MeOH/CH2Cl2 extract of this species led to the isolation of six new linear guanidine amides, named phascolosomines A-F (1-6). NMR analysis allowed for the elucidation of their structures, all of which feature a terminal guanidine, central amide linkage, and a terminal isobutyl group. Notably, these guanidine amides were present in unusually high concentrations, comprising ∼3% of the dry mass of the organism. The primary concentration of the phascolosomines in the viscera is similar to that previously identified in linear amides from sipunculid worms and marine fireworms. The compounds from sipunculid worms have been hypothesized to be toxins, while those from fireworms are reported to be defensive irritants. However, screening of the newly isolated compounds for inhibitory bioactivity showed no significant inhibition in any of the assays conducted.


Assuntos
Amidas , Anelídeos , Guanidinas , Animais , Amidas/química , Amidas/farmacologia , Amidas/isolamento & purificação , Guanidina/química , Guanidina/farmacologia , Guanidinas/química , Guanidinas/farmacologia , Guanidinas/isolamento & purificação , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Anelídeos/química
17.
Bioorg Chem ; 143: 107024, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103331

RESUMO

To discover and develop new insecticides of the phenylpyrazole class, a series of heptafluoroisopropyl N-phenylpyrazole aryl amide compounds bearing cyanoalkyl groups were synthesized based on the lead compound nicofluprole. Their structures were established by HRMS, 1H NMR and 13C NMR. Bioassay results indicated that several of these compounds exhibited remarkable acaricidal and insecticidal activities. The LC50 values for compounds A1, A2 and A5 against Tetranychus cinnabarinus (T. cinnabarinus) were 1.7-4.2 times lower than that of nicofluprole (3.124 mg/L). Compounds A1, A2, A4 and A7 against Myzus persicae (M. persicae) had LC50 values of 0.261, 1.292, 0.589 and 1.133 mg/L respectively, exceeding that of nicofluprole (LC50 = 4.200 mg/L). Some compounds also demonstrated good insecticidal activity against Plutella xylostella (P. xylostella). For example, compounds A1-A4, A6, and A7 had a mortality rate of 100 % at a low concentration of 1.25 mg/L, which was comparable to nicofluprole (93.3%). Compound A1 exhibited insecticidal activity against Chilo suppressalis (C. suppressalis) with an LC50 value of 2.271 mg/L, which was superior to both nicofluprole (6.021 mg/L) and the positive control broflanilide (6.895 mg/L). Taking compound A5 as a representative, we tested the insecticidal activity against Aphis fabae (A. fabae), Aphis gossypii Glover (A. gossypii Glover), Nilaparvata lugens (N. lugens) and Laodelphax striatellus (L. striatellus) at 10 mg/L, and our results revealed that compound A5 exhibited broad-spectrum insecticidal activity. Molecular docking studies suggested that A1 had a lower binding energy of -7.764 kcal/mol with the P. xylostella gamma-aminobutyric acid receptors (GABAR). Density functional theory calculations (DFT) provided insights into the design of new compounds. This research suggested that the novel phenylpyrazoles featuring cyanoalkyl moieties in this work hold potential as novel insecticides for further research and development.


Assuntos
Afídeos , Inseticidas , Animais , Inseticidas/química , Estrutura Molecular , Relação Estrutura-Atividade , Amidas/farmacologia , Amidas/química , Simulação de Acoplamento Molecular , Pirazóis/química , Desenho de Fármacos
18.
Bioorg Chem ; 150: 107580, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38959646

RESUMO

α-Glucosidase inhibitory activity of galbanic acid and its new amide derivatives 3a-n were investigated. Galbanic acid and compounds 3a-n showed excellent anti-α-glucosidase activity with IC50 values ranging from 0.3 ± 0.3 µM to 416.0 ± 0.2 µM in comparison to positive control acarbose with IC50 value of = 750.0 ± 5.6. In the kinetic study, the most potent compound 3h demonstrated a competitive mode of inhibition with Ki = 0.57 µM. The interaction of the most potent compound 3h with the α-glucosidase was further elaborated by in vitro Circular dichroism assessment and in silico molecular docking and Molecular dynamics studies. Compound 3h was also non-cytotoxic on human normal cells. In silico study on pharmacokinetics and toxicity profile of the most potent galbanic acid derivatives demonstrated that these compounds are valuable lead compounds for further study in order to achieve new anti-diabetic agents.


Assuntos
Amidas , Inibidores de Glicosídeo Hidrolases , Simulação de Acoplamento Molecular , alfa-Glucosidases , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/síntese química , alfa-Glucosidases/metabolismo , Humanos , Relação Estrutura-Atividade , Estrutura Molecular , Amidas/química , Amidas/farmacologia , Amidas/síntese química , Relação Dose-Resposta a Droga , Saccharomyces cerevisiae/enzimologia
19.
Bioorg Chem ; 144: 107116, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237391

RESUMO

Four undescribed coumarin derivatives, ficusalt A (1) and ficusalt B (2), a pair of racemic coumarins, (±) ficudimer A (3a/3b), along with ten known amides, were isolated from the roots of Ficus hirta. Their structures were elucidated by several spectroscopic data analyses, including HRESIMS, NMR, and X-ray single-crystal diffraction. The cytotoxic activities of all compounds against HeLa, HepG2, MCF-7, and H460 cell lines were detected using the MTT assay. Among these, 5 showed the highest activity against HeLa cells. Subsequently, the apoptotic, anti-invasive, and anti-migration effects of 5 on HeLa cells were determined by flow cytometer, transwell invasion assay, and wound-healing assay, respectively. The result suggested that 5 distinctly induced the apoptosis in HeLa cells and inhibited their invasion and migration. Further studies on anticancer mechanisms were conducted using Western blotting. As a result, 5 increased the cleavage of PARP and the expression of pro-apoptotic protein Bax. Moreover, 5 notably upregulated the phosphorylation of p38 and JNK, whereas inhibited the expression of p-ERK and p-AKT. Our results demonstrated that 5 could be a potential leading compound for further application in the treatment of cervical cancer.


Assuntos
Antineoplásicos , Ficus , Feminino , Humanos , Células HeLa , Ficus/química , Amidas/farmacologia , Cumarínicos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose
20.
Bioorg Chem ; 143: 107094, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199139

RESUMO

Microtubule dynamics are critical for spindle assembly and chromosome segregation during cell division. Pharmacological inhibition of microtubule dynamics in cells causes prolonged mitotic arrest, resulting in apoptosis, an approach extensively employed in treating different types of cancers. The present study reports the synthesis of thirty-two novel bis-amides (SSE1901-SSE1932) and the evaluation of their antiproliferative activities. N-(1-oxo-3-phenyl-1-(phenylamino)propan-2-yl)benzamide (SSE1917) exhibited the most potent activity with GI50 values of 0.331 ± 0.01 µM in HCT116 colorectal and 0.48 ± 0.27 µM in BT-549 breast cancer cells. SSE1917 stabilized microtubules in biochemical and cellular assays, bound to taxol site in docking studies, and caused aberrant mitosis and G2/M arrest in cells. Prolonged treatment of cells with the compound increased p53 expression and triggered apoptotic cell death. Furthermore, SSE1917 suppressed the growth of both mouse and patient-derived human colon cancer organoids, highlighting its potential therapeutic value as an anticancer agent.


Assuntos
Antineoplásicos , Moduladores de Tubulina , Tubulina (Proteína) , Animais , Humanos , Camundongos , Amidas/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Microtúbulos/metabolismo , Mitose , Tubulina (Proteína)/efeitos dos fármacos , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa