Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 617
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Exp Immunol ; 216(1): 25-35, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346116

RESUMO

In peanut allergy, Arachis hypogaea 2 (Ara h 2) and Arachis hypogaea 6 (Ara h 6) are two clinically relevant peanut allergens with known structural and sequence homology and demonstrated cross-reactivity. We have previously utilized X-ray crystallography and epitope binning to define the epitopes on Ara h 2. We aimed to quantitatively characterize the cross-reactivity between Ara h 2 and Ara h 6 on a molecular level using human monoclonal antibodies (mAbs) and structural characterization of allergenic epitopes. We utilized mAbs cloned from Ara h 2 positive single B cells isolated from peanut-allergic, oral immunotherapy-treated patients to quantitatively analyze cross-reactivity between recombinant Ara h 2 (rAra h 2) and Ara h 6 (rAra h 6) proteins using biolayer interferometry and indirect inhibitory ELISA. Molecular dynamics simulations assessed time-dependent motions and interactions in the antibody-antigen complexes. Three epitopes-conformational epitopes 1.1 and 3, and the sequential epitope KRELRNL/KRELMNL-are conserved between Ara h 2 and Ara h 6, while two more conformational and three sequential epitopes are not. Overall, mAb affinity was significantly lower to rAra h 6 than it was to rAra h 2. This difference in affinity was primarily due to increased dissociation of the antibodies from rAra h 6, a phenomenon explained by the higher conformational flexibility of the Ara h 6-antibody complexes in comparison to Ara h 2-antibody complexes. Our results further elucidate the cross-reactivity of peanut 2S albumins on a molecular level and support the clinical immunodominance of Ara h 2.


Assuntos
Arachis , Proteínas de Plantas , Humanos , Arachis/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Antígenos de Plantas/química , Anticorpos Monoclonais , Albuminas 2S de Plantas/química , Imunoglobulina E , Epitopos , Alérgenos
2.
Int J Mol Sci ; 25(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38732184

RESUMO

Today, allergies have become a serious problem. PR-10 proteins are clinically relevant allergens that have the ability to bind hydrophobic ligands, which can significantly increase their allergenicity potential. It has been recently shown that not only the birch pollen allergen Bet v 1 but also the alder pollen allergen Aln g 1, might act as a true sensitizer of the immune system. The current investigation is aimed at the further study of the allergenic and structural features of Aln g 1. By using qPCR, we showed that Aln g 1 was able to upregulate alarmins in epithelial cells, playing an important role in sensitization. With the use of CD-spectroscopy and ELISA assays with the sera of allergic patients, we demonstrated that Aln g 1 did not completely restore its structure after thermal denaturation, which led to a decrease in its IgE-binding capacity. Using site-directed mutagenesis, we revealed that the replacement of two residues (Asp27 and Leu30) in the structure of Aln g 1 led to a decrease in its ability to bind to both IgE from sera of allergic patients and lipid ligands. The obtained data open a prospect for the development of hypoallergenic variants of the major alder allergen Aln g 1 for allergen-specific immunotherapy.


Assuntos
Alérgenos , Antígenos de Plantas , Imunoglobulina E , Proteínas de Plantas , Pólen , Humanos , Pólen/imunologia , Pólen/química , Alérgenos/imunologia , Alérgenos/química , Antígenos de Plantas/imunologia , Antígenos de Plantas/química , Imunoglobulina E/imunologia , Proteínas de Plantas/imunologia , Proteínas de Plantas/química , Alnus/imunologia , Alnus/química
3.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38928218

RESUMO

Pollen from common ragweed is an important allergen source worldwide and especially in western and southern Romania. More than 100 million patients suffer from symptoms of respiratory allergy (e.g., rhinitis, asthma) to ragweed pollen. Among the eleven characterized allergens, Amb a 6 is a non-specific lipid transfer protein (nsLTP). nsLTPs are structurally stable proteins in pollen and food from different unrelated plants capable of inducing severe reactions. The goal of this study was to produce Amb a 6 as a recombinant and structurally folded protein (rAmb a 6) and to characterize its physicochemical and immunological features. rAmb a 6 was expressed in Spodoptera frugiperda Sf9 cells as a secreted protein and characterized by mass spectrometry and circular dichroism (CD) spectroscopy regarding molecular mass and fold, respectively. The IgE-binding frequency towards the purified protein was evaluated using sera from 150 clinically well-characterized ragweed-allergic patients. The allergenic activities of rAmb a 6 and the nsLTP from the weed Parietaria judaica (Par j 2) were evaluated in basophil activation assays. rAmb a 6-specific IgE reactivity was associated with clinical features. Pure rAmb a 6 was obtained by insect cell expression. Its deduced molecular weight corresponded to that determined by mass spectrometry (i.e., 10,963 Da). rAmb a 6 formed oligomers as determined by SDS-PAGE under non-reducing conditions. According to multiple sequence comparisons, Amb a 6 was a distinct nsLTP with less than 40% sequence identity to currently known plant nsLTP allergens, except for nsLTP from Helianthus (i.e., 52%). rAmb a 6 is an important ragweed allergen recognized by 30% of ragweed pollen allergic patients. For certain patients, rAmb a 6-specific IgE levels were higher than those specific for the major ragweed allergen Amb a 1 and analysis also showed a higher allergenic activity in the basophil activation test. rAmb a 6-positive patients suffered mainly from respiratory symptoms. The assumption that Amb a 6 is a source-specific ragweed allergen is supported by the finding that none of the patients showing rAmb a 6-induced basophil activation reacted with Par j 2 and only one rAmb a 6-sensitized patient had a history of plant food allergy. Immunization of rabbits with rAmb a 6 induced IgG antibodies which strongly inhibited IgE binding to rAmb a 6. Our results demonstrate that Amb a 6 is an important source-specific ragweed pollen allergen that should be considered for diagnosis and allergen-specific immunotherapy of ragweed pollen allergy.


Assuntos
Alérgenos , Antígenos de Plantas , Proteínas de Transporte , Imunoglobulina E , Humanos , Alérgenos/imunologia , Imunoglobulina E/imunologia , Antígenos de Plantas/imunologia , Antígenos de Plantas/química , Animais , Proteínas de Transporte/imunologia , Proteínas de Transporte/metabolismo , Proteínas de Plantas/imunologia , Proteínas de Plantas/química , Feminino , Rinite Alérgica Sazonal/imunologia , Masculino , Adulto , Ambrosia/imunologia , Spodoptera/imunologia , Proteínas Recombinantes/imunologia , Sequência de Aminoácidos , Células Sf9 , Pessoa de Meia-Idade , Extratos Vegetais
4.
Int J Mol Sci ; 25(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38791214

RESUMO

Common ragweed pollen allergy has become a health burden worldwide. One of the major allergens in ragweed allergy is Amb a 1, which is responsible for over 90% of the IgE response in ragweed-allergic patients. The major allergen isoform Amb a 1.01 is the most allergenic isoform in ragweed pollen. So far, no recombinant Amb a 1.01 with similar allergenic properties to its natural counterpart (nAmb a 1.01) has been produced. Hence, this study aimed to produce a recombinant Amb a 1.01 with similar properties to the natural isoform for improved ragweed allergy management. Amb a 1.01 was expressed in insect cells using a codon-optimized DNA construct with a removable N-terminal His-Tag (rAmb a 1.01). The recombinant protein was purified by affinity chromatography and physicochemically characterized. The rAmb a 1.01 was compared to nAmb a 1.01 in terms of the IgE binding (enzyme-linked immunosorbent assay (ELISA), immunoblot) and allergenic activity (mediator release assay) in well-characterized ragweed-allergic patients. The rAmb a 1.01 exhibited similar IgE reactivity to nAmb a 1.01 in different IgE-binding assays (i.e., IgE immunoblot, ELISA, quantitative ImmunoCAP inhibition measurements). Furthermore, the rAmb a 1.01 showed comparable dose-dependent allergenic activity to nAmb a 1.01 regarding basophil activation. Overall, the results showed the successful expression of an rAmb a 1.01 with comparable characteristics to the corresponding natural isoform. Our findings provide the basis for an improvement in ragweed allergy research, diagnosis, and immunotherapy.


Assuntos
Alérgenos , Ambrosia , Antígenos de Plantas , Imunoglobulina E , Proteínas Recombinantes , Humanos , Antígenos de Plantas/imunologia , Antígenos de Plantas/genética , Antígenos de Plantas/química , Imunoglobulina E/imunologia , Animais , Alérgenos/imunologia , Alérgenos/genética , Ambrosia/imunologia , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Feminino , Adulto , Proteínas de Plantas/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/química , Rinite Alérgica Sazonal/imunologia , Masculino , Pessoa de Meia-Idade , Extratos Vegetais/química
5.
J Sci Food Agric ; 104(13): 7977-7984, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38817117

RESUMO

BACKGROUND: Food allergies are a growing concern worldwide, with soy proteins being important allergens that are widely used in various food products. This study investigated the potential of transglutaminase (TGase) and lactic acid bacteria (LAB) treatments to modify the allergenicity and structural properties of soy protein isolate (SPI), aiming to develop safer soy-based food products. RESULTS: Treatment with TGase, LAB or their combination significantly reduced the antibody reactivity of ß-conglycinin and the immunoglobulin E (IgE) binding capacity of soy protein, indicating a decrease in allergenicity. TGase treatment led to the formation of high-molecular-weight aggregates, suggesting protein crosslinking, while LAB treatment resulted in partial protein hydrolysis. These structural changes were confirmed by Fourier transform infrared spectroscopy, which showed a decrease in ß-sheet content and an increase in random coil and ß-turn contents. In addition, changes in intrinsic fluorescence and ultraviolet spectroscopy were also observed. The alterations in protein interaction and the reduction in free sulfhydryl groups highlighted the extensive structural modifications induced by these treatments. CONCLUSION: The synergistic application of TGase and LAB treatments effectively reduced the allergenicity of SPI through significant structural modifications. This approach not only diminished antibody reactivity of ß-conglycinin and IgE binding capacity of soy protein but also altered the protein's primary, secondary and tertiary structures, suggesting a comprehensive alteration of SPI's allergenic potential. These findings provide a promising strategy for mitigating food allergy concerns and lay the foundation for future research on food-processing techniques aimed at allergen reduction. © 2024 Society of Chemical Industry.


Assuntos
Alérgenos , Hipersensibilidade Alimentar , Imunoglobulina E , Proteínas de Soja , Transglutaminases , Proteínas de Soja/química , Proteínas de Soja/imunologia , Transglutaminases/química , Transglutaminases/imunologia , Hipersensibilidade Alimentar/imunologia , Hipersensibilidade Alimentar/prevenção & controle , Alérgenos/química , Alérgenos/imunologia , Imunoglobulina E/imunologia , Humanos , Fermentação , Conformação Proteica , Antígenos de Plantas/química , Antígenos de Plantas/imunologia , Globulinas/química , Globulinas/imunologia , Lactobacillales/química , Lactobacillales/metabolismo , Glycine max/química , Glycine max/imunologia , Proteínas de Armazenamento de Sementes/química , Proteínas de Armazenamento de Sementes/imunologia
6.
J Sci Food Agric ; 104(11): 6531-6540, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38517196

RESUMO

BACKGROUND: With the increasing popularity of plant protein-based diets, soy proteins are favored as the most important source of plant protein worldwide. However, potential food allergy risks limit their use in the food industry. This work aims to reveal the mechanism of ß-conglycinin-induced food allergy, and to explore the regulatory mechanism of heat treatment and high hydrostatic pressure (HHP) treatment in a BALB/c mouse model. RESULTS: Our results showed that oral administration of ß-conglycinin induced severe allergic symptoms in BALB/c mice, but these symptoms were effectively alleviated through heat treatment and HHP treatment. Moreover, ß-conglycinin stimulated lymphocyte proliferation and differentiation; a large number of cytokines interleukin (IL)-4, IL-5, IL-10, IL-12 and IL-13 were released and interferon γ secretion was inhibited, which disrupted the Th1/Th2 immune balance and promoted the differentiation and proliferation of naive T cells into Th2-type cells. CONCLUSION: Heat/non-heat treatment altered the conformation of soybean protein, which significantly reduced allergic reactions in mice. This regulatory mechanism may be associated with Th1/Th2 immune balance. Our results provide data support for understanding the changes in allergenicity of soybean protein within the food industry. © 2024 Society of Chemical Industry.


Assuntos
Antígenos de Plantas , Modelos Animais de Doenças , Hipersensibilidade Alimentar , Globulinas , Temperatura Alta , Camundongos Endogâmicos BALB C , Proteínas de Armazenamento de Sementes , Proteínas de Soja , Células Th1 , Células Th2 , Animais , Hipersensibilidade Alimentar/imunologia , Globulinas/química , Globulinas/imunologia , Globulinas/administração & dosagem , Proteínas de Soja/química , Proteínas de Soja/imunologia , Proteínas de Armazenamento de Sementes/química , Proteínas de Armazenamento de Sementes/imunologia , Proteínas de Armazenamento de Sementes/administração & dosagem , Camundongos , Antígenos de Plantas/imunologia , Antígenos de Plantas/química , Células Th1/imunologia , Células Th1/efeitos dos fármacos , Células Th2/imunologia , Feminino , Humanos , Equilíbrio Th1-Th2/efeitos dos fármacos , Citocinas/imunologia , Citocinas/metabolismo , Glycine max/química
7.
Protein Expr Purif ; 203: 106211, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36462715

RESUMO

Structural and functional information about food allergens is essential for understanding the allergenicity of food proteins. All allergens belong to a small number of protein families. Various allergens from different families have been successfully produced recombinantly in E. coli for their characterization and applications in allergy diagnosis and treatment. However, recombinant hexameric 11S seed storage protein has not been reported, although numerous 11S legumins are known to be food allergens, including the recently identified macadamia nut allergen Mac i 2. Here we report the production of a macadamia nut legumin by expressing it in E. coli with a substrate site of HRV 3C protease and cleaving the purified protein with HRV 3C protease. The protease divided the protein into two chains and left a native terminus for the C-terminal chain, resulting in a recombinant hexameric 11S allergen for the first time after the residues upstream to the cleavage site flipped out of the way of the trimer-trimer interaction. The 11S allergens are known to have multiple isoforms in many species. The present study removed an obstacle in obtaining homogeneous allergens needed for studying allergens and mitigating allergenicity. Immunoreactivity of the protein with serum IgE confirmed it to be a new isoform of Mac i 2.


Assuntos
Alérgenos , Antígenos de Plantas , Hipersensibilidade a Noz , Humanos , Alérgenos/química , Antígenos de Plantas/química , Antígenos de Plantas/genética , Escherichia coli/genética , Imunoglobulina E/química , Macadamia/genética , Hipersensibilidade a Noz/diagnóstico , Hipersensibilidade a Noz/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Isoformas de Proteínas , Leguminas
8.
Protein Expr Purif ; 210: 106296, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37192728

RESUMO

Raw strawberries contain allergens that cause oral allergic syndrome. Fra a 1 is one of the major allergens in strawberries and might decrease their allergenicity by heating, likely due to structural changes in the allergen leading to decreased recognition of the allergens in the oral cavity. In the present study, to understand the relationship between allergen structure and allergenicity, the expression and purification of 15N-labeled Fra a 1 were examined and the sample was used for NMR analysis. Two isoforms, Fra a 1.01 and Fra a 1.02, were used and expressed in E. coli BL21(DE3) in M9 minimal medium. Fra a 1.02 was purified as a single protein by using the GST tag approach, whereas histidine × 6-tag (his6-tag) Fra a 1.02 was obtained both as the full-length (∼20 kDa) and a truncated (∼18 kDa) form. On the other hand, his6-tag Fra a 1.01 was purified as a homogeneous protein. 15N-labeled HSQC NMR spectra suggested that Fra a 1.02 was thermally denatured at lower temperatures than Fra a 1.01, despite the high amino acid sequence homology (79.4%) of these isoforms. Furthermore, the samples in the present study allowed us to analyze ligand binding that probably affects structural stability. In conclusion, GST tag was effective for obtaining a homogeneous protein when his6-tag failed to give a single form, and the present study provided a sample that could be used for NMR studies of the details of the allergenicity and structure of Fra a 1.


Assuntos
Alérgenos , Fragaria , Alérgenos/genética , Alérgenos/química , Proteínas de Plantas/química , Antígenos de Plantas/genética , Antígenos de Plantas/química , Antígenos de Plantas/metabolismo , Fragaria/genética , Fragaria/química , Escherichia coli/genética , Escherichia coli/metabolismo , Isoformas de Proteínas
9.
J Sci Food Agric ; 103(6): 3017-3027, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36646652

RESUMO

BACKGROUND: Peanut allergy is recognized as a major food allergy that triggers severe and even fatal symptoms. Avoidance of peanuts in the diet is the main option for current safety management. Processing techniques reducing peanut allergenicity are required to develop other options. Cold plasma is currently considered as a novel non-thermal approach to alter protein structure and has the potential to alleviate immunoreactivity of protein allergen. RESULTS: The application of a cold argon plasma jet to peanut protein extract could reduce the amount of a 64 kDa protein band corresponding to a major peanut allergen Ara h 1 using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but the overall protein size distribution did not change significantly. A decrease in peanut protein solubility was a possible cause that led to the loss of protein content in the soluble fraction. Immunoblotting and enzyme-linked immunosorbent assay elucidated that the immunoreactivity of Ara h 1 was significantly decreased with the time treated with plasma. Ara h 1 antigenicity reduced by 38% after five scans (approximately 3 min) of cold argon plasma jet treatment, and the reduction was up to 66% after approximately 15 min of treatment. CONCLUSION: The results indicate that cold argon plasma jet treatment could be a suitable platform for alleviating the immunoreactivity of peanut protein. This work demonstrates an efficient, compact, and rapid platform for mitigating the allergenicity of peanuts, and shows great potential for the plasma platform as a non-thermal technique in the food industry. © 2023 Society of Chemical Industry.


Assuntos
Hipersensibilidade a Amendoim , Gases em Plasma , Arachis/química , Antígenos de Plantas/química , Alérgenos/química , Proteínas de Plantas/metabolismo , Pressão Atmosférica
10.
Proteins ; 90(2): 418-434, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34486167

RESUMO

Protein allergens is a health risk for consumption of soybeans. To understand allerginicity mechanism, T cell epitopes of 7 soybean allergens were predicted and screened by abilities to induce cytokine interleukin (IL) 4. The relationships among amino acid composition, properties, allergenicity, and pepsin hydrolysis sites were analyzed. Among the 138 T cell epitopes identified, YIKDVFRVIPSEVLS, KDVFRVIPSEVLSNS, DVFRVIPSEVLSNSY of Gly m 6.0501 (P04347), and AKADALFKAIEAYLL, ADALFKAIEAYLLAH of Gly m 4.0101 (P26987) were the most possible epitope candidates. In T cell epitopes pattern, the frequencies of amino acids Q, D, E, P, and G decreased, while F, I, N, V, K, H, A, L, and S increased. Hydrophobic residues at positions p1 and p2 and positively charged residues in positions p13 might contribute to allergenicity. Most of epitopes could be hydrolyzed by pepsin into small polypeptides within 12 residues length, and the anti-digestive epitope regions contained I, V, S, N, and Q residues. T cell epitopes EEQRQQEGVIVELSK from Gly m 5.03 (P25974) showed resistance to pepsin hydrolysis and would cause a higher Th2 cell response. This research provides basis for the development of hypoallergenic soybean products in the soybean industry as well as for the immunotherapy design for protein allergy.


Assuntos
Antígenos de Plantas/química , Epitopos de Linfócito T/química , Glycine max/metabolismo , Peptídeos/química , Proteínas de Soja/química , Biologia Computacional , Mapeamento de Epitopos
11.
Molecules ; 27(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36364477

RESUMO

This study investigated the effect of lactic-acid-bacteria fermentation on the microstructure and gastrointestinal digestibility of soy proteins using a digestomics approach. Fermented soy protein isolates (FSPIs) under varied fermentation-terminal pH demonstrated a colloidal solution (FSPI-7.0/6.0) or yogurt-like curd (FSPI-5.0/4.0) state. Cryo-electron microscopy figures demonstrated the loosely stacked layer of FSPI-7.0/6.0 samples, whereas a denser gel network was observed for FSPI-5.0/4.0 samples. Molecular interactions shifted from dominant ionic bonds to hydrophobic forces and disulfide bonds. The gastric/intestinal digestion demonstrated that the curd samples afforded a significantly low particle size and high-soluble protein and peptide contents in the medium and late digestive phases. A peptidomics study showed that the FSPI-6.0 digestate at early intestinal digestion had a high peptidome abundance, whereas FSPI curd digestates (FSPI-5.0/4.0) elicited a postponed but more extensive promotion during medium and late digestion. Glycinin G2/G4 and ß-conglycinin α/α' subunits were the major subunits promoted by FSPI-curds. The spatial structures of glycinin G2 and ß-conglycinin α subunits demonstrated variations located in seven regions. Glycinin G2 region 6 (A349-K356) and ß-conglycinin α subunit region 7 (E556-E575), which were located at the interior of the 3D structure, were the key regions contributing to discrepancies at the late stage.


Assuntos
Globulinas , Lactobacillales , Proteínas de Soja/química , Lactobacillales/metabolismo , Microscopia Crioeletrônica , Globulinas/química , Proteínas de Armazenamento de Sementes/química , Antígenos de Plantas/química , Suplementos Nutricionais , Trato Gastrointestinal/metabolismo , Glycine max/metabolismo
12.
Molecules ; 27(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35163859

RESUMO

Ambrosia artemisiifolia (Amb a) contains many allergens. Allergic conjunctivitis caused by Ambrosia artemisiifolia and its related allergen-specific immunotherapy (AIT) are seldom studied at present. poly(DL-lactide-co-glycolide)-polyethylene glycol (PLGA-PEG) is a very good nano-carrier, which has been applied in the medical field. In this context, we studied the immunotherapy effect and potential mechanism of recombinant Amb a 1 (rAmb a 1)-loaded PLGA-PEG nanoparticles. A mouse allergic conjunctivitis model was established with Ambrosia artemisiifolia crude extract, and the nanoparticles were used for AIT through direct observation of conjunctival tissue, degranulation of mast cells in conjunctival tissue, serum-specific antibodies, cytokines and other assessment models. The treatment of nanoparticles enhanced the secretion of T-helper 1 (Th1) cytokine Interferon-gama (IFN-γ) and the production of immunoglobulin G (IgG)2a (IgG2a), inhibited the secretion of T-helper 2 (Th2) cytokine Interleukin (IL)-13 and IL-4 and the level of IgE. Especially, degranulation of mast cells and expression of mast cell protease-1 (MCP-1) in conjunctival tissue was reduced significantly. In this study, we proved that the nanoparticles prepared by rAmb a 1 and PLGA-PEG have an immunotherapy effect on allergic conjunctivitis in mice.


Assuntos
Antígenos de Plantas/administração & dosagem , Conjuntivite Alérgica/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Nanopartículas/administração & dosagem , Proteínas de Plantas/administração & dosagem , Poliésteres/química , Polietilenoglicóis/química , Células Th1/imunologia , Alérgenos/efeitos adversos , Ambrosia/química , Animais , Antígenos de Plantas/química , Conjuntivite Alérgica/etiologia , Conjuntivite Alérgica/patologia , Citocinas/metabolismo , Imunoglobulina E/análise , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Proteínas de Plantas/química , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/química
13.
J Sci Food Agric ; 102(13): 6062-6070, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35462432

RESUMO

BACKGROUND: To clarify the role of the extension region on the structure-functional relationship of the α-subunit of ß-conglycinin, α-subunit and its segment of the core region (αc-subunit) were expressed via an Escherichia coli system. Their physicochemical properties were compared under acid, neutral or alkaline conditions (pH 4.0, 7.0, and 8.0) and high or low ionic strength (µ = 0.05 and 0.5), respectively. RESULTS: The results showed that the extension region contributed to increasing thermal stability, especially at low ionic strength under acidic and neutral conditions. The extension region stabilized the α-subunit with high solubility, low turbidity, and small particle size under neutral and alkaline conditions, whereas these impacts were suppressed at a high ionic strength and acidic conditions. Surface hydrophobicity of the α-subunit decreased under acidic and alkaline conditions without being interfered with by ionic strength. CONCLUSION: It can be concluded that the extension region played different roles under different pH and ionic strength conditions. These factors should be specified carefully and speculated individually to explore the more detailed and profound nature of ß-conglycinin at the submolecular level. The results could benefit a better understanding of the relationship between domain structure and functions of soybean protein. © 2022 Society of Chemical Industry.


Assuntos
Globulinas , Proteínas de Soja , Antígenos de Plantas/química , Globulinas/química , Concentração de Íons de Hidrogênio , Concentração Osmolar , Proteínas de Armazenamento de Sementes/química , Proteínas de Soja/química , Glycine max/química
14.
Glycoconj J ; 38(1): 67-76, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33439436

RESUMO

Peanut allergies are among the most severe food allergies, and several allergenic proteins referred to as Ara h 1-Ara h 17 have been identified from peanut seeds. The molecular characterization of Ara h 1 (63 kDa), a glycosylated allergen, has almost been completed, and the occurrence of two homologous genes (clone 41B and clone P17) has been identified. In this study, we found a new variant of Ara h 1 i.e. 54 kDa, in which the N-terminal amino acid sequence was EGREGEQ-, indicating that the N-terminal domain of 63 kDa Ara h 1 had been removed. This new isoform was obtained from the run-through fraction of hydrophobic interaction chromatography while 63 kDa Ara h 1 was tightly bound to the hydrophobic resins, suggesting that the removal of the N-terminal domain resulted in extreme hydrophilic properties. We found that 63 kDa Ara h 1 occurs as higher order homo-oligomeric conformations such as decamer or nonamer, while 54 kDa Ara h 1 occurs exclusively as a homotrimer, indicating that the N-terminal domain of the 63 kDa molecule may be involved in higher order oligomerization. When antisera from peanut-allergic patients were treated with both the Ara h 1 molecules, the immunoglobulin E (IgE) antibodies in these sera reacted with each Ara h 1 molecule, suggesting that the C-terminal as well as the N-terminal domains of Ara h 1 contribute significantly to the epitope formations of this peanut glycoallergen. Furthermore, the glycoform analyses of N-glycans linked to 63 kDa and 54 kDa Ara h 1 subunits revealed that both typical high-mannose type and ß-xylosylated type N-glycans are linked to the molecules. The cross-reactivity of IgE against Ara h 1 in the serum of one peanut allergy patient was completely lost by de-N-glycosylation, indicating the N-glycan of Ara h 1 was the sole epitope for the Ara h 1- specific IgE in the patient.


Assuntos
Antígenos de Plantas/química , Antígenos de Plantas/imunologia , Proteínas de Membrana/química , Proteínas de Membrana/imunologia , Hipersensibilidade a Amendoim/imunologia , Proteínas de Plantas/química , Proteínas de Plantas/imunologia , Antígenos de Plantas/isolamento & purificação , Antígenos de Plantas/metabolismo , Arachis/química , Reações Cruzadas , Epitopos/imunologia , Epitopos/metabolismo , Complexo de Golgi/metabolismo , Immunoblotting , Imunoglobulina E/imunologia , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana/metabolismo , Peso Molecular , Hipersensibilidade a Amendoim/sangue , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Subunidades Proteicas
15.
Proc Natl Acad Sci U S A ; 115(37): E8707-E8716, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150373

RESUMO

Antibodies classically bind antigens via their complementarity-determining regions, but an alternative mode of interaction involving V-domain framework regions has been observed for some B cell "superantigens." We report the crystal structure of an antibody employing both modes of interaction simultaneously and binding two antigen molecules. This human antibody from an allergic individual binds to the grass pollen allergen Phl p 7. Not only are two allergen molecules bound to each antibody fragment (Fab) but also each allergen molecule is bound by two Fabs: One epitope is recognized classically, the other in a superantigen-like manner. A single allergen molecule thus cross-links two identical Fabs, contrary to the one-antibody-one-epitope dogma, which dictates that a dimeric allergen at least is required for this to occur. Allergens trigger immediate hypersensitivity reactions by cross-linking receptor-bound IgE molecules on effector cells. We found that monomeric Phl p 7 induced degranulation of basophils sensitized solely with this monoclonal antibody expressed as an IgE, demonstrating that the dual specificity has functional consequences. The monomeric state of Phl p 7 and two structurally related allergens was confirmed by size-exclusion chromatography and multiangle laser light scattering, and the results were supported by degranulation studies with the related allergens, a second patient-derived allergen-specific antibody lacking the nonclassical binding site, and mutagenesis of the nonclassically recognized allergen epitope. The antibody dual reactivity and cross-linking mechanism not only have implications for understanding allergenicity and allergen potency but, importantly, also have broader relevance to antigen recognition by membrane Ig and cross-linking of the B cell receptor.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos de Plantas/imunologia , Proteínas de Ligação ao Cálcio/imunologia , Epitopos/imunologia , Superantígenos/imunologia , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Especificidade de Anticorpos/imunologia , Antígenos de Plantas/química , Antígenos de Plantas/metabolismo , Basófilos/imunologia , Basófilos/fisiologia , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Degranulação Celular/imunologia , Reações Cruzadas/imunologia , Cristalografia por Raios X , Epitopos/química , Epitopos/metabolismo , Humanos , Imunoglobulina E/química , Imunoglobulina E/imunologia , Imunoglobulina E/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Superantígenos/química , Superantígenos/metabolismo
16.
Int J Mol Sci ; 22(3)2021 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-33498970

RESUMO

In previous work, a 93-mer aptamer was selected against the anaphylactic allergen, ß-conglutin and truncated to an 11-mer, improving the affinity by two orders of magnitude, whilst maintaining the specificity. This 11-mer was observed to fold in a G-quadruplex, and preliminary results indicated the existence of a combination of monomeric and higher-order structures. Building on this previous work, in the current study, we aimed to elucidate a deeper understanding of the structural forms of this 11-mer and the effect of the structure on its binding ability. A battery of techniques including polyacrylamide gel electrophoresis, high-performance liquid chromatography in combination with electrospray ionization time-of-flight mass spectrometry, matrix-assisted laser desorption/ionization time-of-flight, thermal binding analysis, circular dichroism and nuclear magnetic resonance were used to probe the structure of both the 11-mer and the 11-mer flanked with TT- at either the 5' or 3' end or at both ends. The TT-tail at the 5' end hinders stacking effects and effectively enforces the 11-mer to maintain a monomeric form. The 11-mer and the TT- derivatives of the 11-mer were also evaluated for their ability to bind its cognate target using microscale thermophoresis and surface plasmon resonance, and biolayer interferometry confirmed the nanomolar affinity of the 11-mer. All the techniques utilized confirmed that the 11-mer was found to exist in a combination of monomeric and higher-order structures, and that independent of the structural form present, nanomolar affinity was observed.


Assuntos
Alérgenos , Antígenos de Plantas/química , Aptâmeros de Nucleotídeos/química , Quadruplex G , Globulinas/química , Proteínas de Armazenamento de Sementes/química , Proteínas de Soja/química , Antígenos de Plantas/imunologia , Aptâmeros de Nucleotídeos/metabolismo , Globulinas/imunologia , Estrutura Molecular , Conformação de Ácido Nucleico , Proteínas de Armazenamento de Sementes/imunologia , Proteínas de Soja/imunologia
17.
Molecules ; 26(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33419110

RESUMO

(1) Background: Non-specific lipid transfer proteins (nsLTPs), which belong to the prolamin superfamily, are potent allergens. While the biological role of LTPs is still not well understood, it is known that these proteins bind lipids. Allergen nsLTPs are characterized by significant stability and resistance to digestion. (2) Methods: nsLTPs from gold kiwifruit (Act c 10.0101) and pomegranate (Pun g 1.0101) were isolated from their natural sources and structurally characterized using X-ray crystallography (3) Results: Both proteins crystallized and their crystal structures were determined. The proteins have a very similar overall fold with characteristic compact, mainly α-helical structures. The C-terminal sequence of Act c 10.0101 was updated based on our structural and mass spectrometry analysis. Information on proteins' sequences and structures was used to estimate the risk of cross-reactive reactions between Act c 10.0101 or Pun g 1.0101 and other allergens from this family of proteins. (4) Conclusions: Structural studies indicate a conformational flexibility of allergens from the nsLTP family and suggest that immunoglobulin E binding to some surface regions of these allergens may depend on ligand binding. Both Act c 10.0101 and Pun g 1.0101 are likely to be involved in cross-reactive reactions involving other proteins from the nsLTP family.


Assuntos
Actinidia/química , Alérgenos/química , Antígenos de Plantas/química , Proteínas de Transporte/química , Proteínas de Plantas/química , Punica granatum/química , Sementes/química , Alérgenos/isolamento & purificação , Antígenos de Plantas/isolamento & purificação , Proteínas de Transporte/isolamento & purificação , Cristalografia por Raios X , Proteínas de Plantas/isolamento & purificação , Conformação Proteica em alfa-Hélice
18.
Molecules ; 26(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946582

RESUMO

Notable parts of the population in Europe suffer from allergies towards apples. To address this health problem, the analysis of the interactions of relevant allergens with other substances such as phenolic compounds is of particular importance. The aim of this study was to evaluate the correlations between the total phenolic content (TPC), polyphenol oxidase (PPO) activity, antioxidant activity (AOA), and the phenolic compound profile and the content of the allergenic protein Mal d 1 in six apple cultivars. It was found that the PPO activity and the content of individual phenolic compounds had an influence on the Mal d 1 content. With regard to the important constituents, flavan-3-ols and phenolic acids, it was found that apples with a higher content of chlorogenic acid and a low content of procyanidin trimers and/or epicatechin had a lower allergenic potential. This is probably based on the reaction of phenolic compounds (when oxidized by the endogenous PPO) with proteins, thus being able to change the conformation of the (allergenic) proteins, which further corresponds to a loss of antibody recognition. When apples were additionally biofortified with selenium, the composition of the apples, with regard to TPC, phenolic profile, AOA, and PPO, was significantly affected. Consequently, this innovative agronomic practice seems to be promising for reducing the allergenic potential of apples.


Assuntos
Antígenos de Plantas/química , Antioxidantes/química , Antioxidantes/farmacologia , Malus/efeitos adversos , Malus/química , Fenóis/química , Fenóis/farmacologia , Proteínas de Plantas/química , Selênio/química , Antígenos de Plantas/imunologia , Catecol Oxidase/química , Estrutura Molecular , Proteínas de Plantas/imunologia , Polifenóis/análise , Selênio/análise
19.
J Sci Food Agric ; 101(4): 1396-1402, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32835413

RESUMO

BACKGROUND: Soybean is among the 'big eight' allergenic foods, and ß-conglycinin, the main antigenic protein of soybean, has high levels of antigenic activity. Why the antigenic activity of soybean ß-conglycinin is not eliminated by enzymatic hydrolysis is not clear. In this study, changes in the molecular composition and antigenicity of ß-conglycinin hydrolyzed by pepsin were analyzed and it was determined whether complete sequential epitopes exist in the resulting hydrolysates. The nature and antigenic activity of protein subunits obtained after ß-conglycinin hydrolysis were also assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and competitive enzyme-linked immunosorbent assay, respectively. RESULTS: The residual antigenic activity of ß-conglycinin was 52%, α'- and α-subunits completely disappeared, the 49 kDa fraction partially disappeared, and peptides measuring 27 and 23 kDa were newly formed after 60 min of enzymatic hydrolysis. Prolonged enzymatic hydrolysis did not result in remarkable changes in these peptides; thus, the peptides show some resistance to enzymatic hydrolysis. The amino acid sequences of the peptide chains were analyzed by matrix-assisted laser desorption / ionization-time of flight mass spectrometry and aligned with the related sequences in the corresponding protein and antigen databases. Ten complete sequential epitopes were identified in the residual 49 kDa fraction, of these epitopes, two were from α-subunits and eight were from ß-subunits. CONCLUSION: The presence of complete sequential epitopes in hydrolysates obtained from the enzymatic hydrolysis of soybean is an important reason for the incomplete disappearance of the antigenic activity of ß-conglycinin. © 2020 Society of Chemical Industry.


Assuntos
Alérgenos/química , Antígenos de Plantas/química , Antígenos de Plantas/imunologia , Globulinas/química , Globulinas/imunologia , Pepsina A/química , Proteínas de Armazenamento de Sementes/química , Proteínas de Armazenamento de Sementes/imunologia , Proteínas de Soja/química , Proteínas de Soja/imunologia , Alérgenos/imunologia , Epitopos/química , Epitopos/imunologia , Manipulação de Alimentos , Hidrólise
20.
J Sci Food Agric ; 101(13): 5325-5336, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33650104

RESUMO

BACKGROUND: Roasted peanut is widely loved as a kind of food with rich taste. However, peanut allergy is one of the major threats to human health, which affects about 5% of children and 1.4-2% of adults in the world. RESULTS: To evaluate the sensitization mechanism of peanut allergen Ara h 3, Caco-2 cells as the model, which has the similar structure and function to differentiated small intestinal epithelial cells. Compared with Ara h 3-raw (purified from raw peanut) group, more significant results such as the inhibited Caco-2 cell viability and proliferation, the increased secretion of reactive oxygen species (ROS) and the decreased transepithelial electrical resistance were obtained in Ara h 3-roasted (purified from roasted peanut) group. Accordingly, oxidative stress and NF-κB signaling pathway were more imbalanced, which lead to the increased of thymic stromal lymphopoietin (TSLP), interleukin 6 (IL-6), IL-8 and monocyte chemotactic protein 1 (MCP-1). Then, the gene expression of tight junction proteins ZO-1, occludin and JAM-1 were reduced, which proved that the integrity of the Caco-2 monolayer barrier is severely damaged. CONCLUSION: These finding identify the mechanisms of the allergenicity of roasted peanut allergy proteins are probably associated with intestinal uptake and cytokine dependent allergies. The aggravated allergic reaction might be caused by the increment of TSLP, IL-6, IL-8 and MCP-1 due to the activated NF-κB signaling pathway, and the enhanced transport of Ara h 3-roasted protein by Caco-2 monolayer. © 2021 Society of Chemical Industry.


Assuntos
Antígenos de Plantas/imunologia , Arachis/imunologia , Células Epiteliais/imunologia , Hipersensibilidade a Amendoim/imunologia , Proteínas de Plantas/imunologia , Alérgenos/química , Alérgenos/imunologia , Antígenos de Plantas/química , Arachis/química , Células CACO-2 , Moléculas de Adesão Celular/imunologia , Quimiocina CCL2/imunologia , Humanos , Interleucina-6/imunologia , Interleucina-8/imunologia , Intestino Delgado/imunologia , NF-kappa B/imunologia , Proteínas de Plantas/química , Receptores de Superfície Celular/imunologia , Sementes/química , Sementes/imunologia , Proteína da Zônula de Oclusão-1/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa