Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.422
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(22): e2122506119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35622893

RESUMO

BRDT, BRD2, BRD3, and BRD4 comprise the bromodomain and extraterminal (BET) subfamily which contain two similar tandem bromodomains (BD1 and BD2). Selective BD1 inhibition phenocopies effects of tandem BET BD inhibition both in cancer models and, as we and others have reported of BRDT, in the testes. To find novel BET BD1 binders, we screened >4.5 billion molecules from our DNA-encoded chemical libraries with BRDT-BD1 or BRDT-BD2 proteins in parallel. A compound series enriched only by BRDT-BD1 was resynthesized off-DNA, uncovering a potent chiral compound, CDD-724, with >2,000-fold selectivity for inhibiting BRDT-BD1 over BRDT-BD2. CDD-724 stereoisomers exhibited remarkable differences in inhibiting BRDT-BD1, with the R-enantiomer (CDD-787) being 50-fold more potent than the S-enantiomer (CDD-786). From structure­activity relationship studies, we produced CDD-956, which maintained picomolar BET BD1 binding potency and high selectivity over BET BD2 proteins and had improved stability in human liver microsomes over CDD-787. BROMOscan profiling confirmed the excellent pan-BET BD1 affinity and selectivity of CDD-787 and CDD-956 on BD1 versus BD2 and all other BD-containing proteins. A cocrystal structure of BRDT-BD1 bound with CDD-956 was determined at 1.82 Å and revealed BRDT-BD1­specific contacts with the αZ and αC helices that explain the high affinity and selectivity for BET BD1 versus BD2. CDD-787 and CDD-956 maintain cellular BD1-selectivity in NanoBRET assays and show potent antileukemic activity in acute myeloid leukemia cell lines. These BET BD1-specific and highly potent compounds are structurally unique and provide insight into the importance of chirality to achieve BET specificity.


Assuntos
Anti-Inflamatórios não Esteroides , Antineoplásicos , Anticoncepcionais Masculinos , Descoberta de Drogas , Proteínas Nucleares , Bibliotecas de Moléculas Pequenas , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação , Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Anticoncepcionais Masculinos/química , Anticoncepcionais Masculinos/isolamento & purificação , Anticoncepcionais Masculinos/farmacologia , DNA/genética , Humanos , Masculino , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/química , Domínios Proteicos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/isolamento & purificação , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
2.
J Am Chem Soc ; 146(17): 11811-11822, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38635880

RESUMO

The development of novel agents with immunoregulatory effects is a keen way to combat the growing threat of inflammatory storms to global health. To synthesize pseudo-steroidal glycosides tethered by ether bonds with promising immunomodulatory potential, we develop herein a highly effective deoxygenative functionalization of a novel steroidal donor (steroidation) facilitated by strain-release, leveraging cost-effective and readily available Sc(OTf)3 catalysis. This transformation produces a transient steroid-3-yl carbocation which readily reacts with O-, C-, N-, S-, and P-nucleophiles to generate structurally diverse steroid derivatives. DFT calculations were performed to shed light on the mechanistic details of the regioselectivity, underlying an acceptor-dependent steroidation mode. This approach can be readily extended to the etherification of sugar alcohols to enable the achievement of a diversity-oriented, pipeline-like synthesis of pseudo-steroidal glycosides in good to excellent yields with complete stereo- and regiospecific control for anti-inflammatory agent discovery. Immunological studies have demonstrated that a meticulously designed cholesteryl disaccharide can significantly suppress interleukin-6 secretion in macrophages, exhibiting up to 99% inhibition rates compared to the negative control. These findings affirm the potential of pseudo-steroidal glycosides as a prospective category of lead agents for the development of novel anti-inflammatory drugs.


Assuntos
Anti-Inflamatórios , Glicosídeos , Esteroides , Glicosídeos/química , Glicosídeos/síntese química , Glicosídeos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/síntese química , Esteroides/química , Esteroides/farmacologia , Esteroides/síntese química , Camundongos , Animais , Humanos , Teoria da Densidade Funcional , Estrutura Molecular , Interleucina-6/antagonistas & inibidores , Interleucina-6/metabolismo , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/síntese química , Macrófagos/efeitos dos fármacos
3.
BMC Biotechnol ; 24(1): 26, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724967

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease, and it leads to irreversible inflammation in intra-articular joints. Current treatment approaches for RA include non-steroidal anti-inflammatory drugs (NSAIDs), disease-modifying anti-rheumatic drugs (DMARDs), corticosteroids, and biological agents. To overcome the drug-associated toxicity of conventional therapy and transdermal tissue barrier, an injectable NSAID-loaded hydrogel system was developed and explored its efficacy. RESULTS: The surface morphology and porosity of the hydrogels indicate that they mimic the natural ECM, which is greatly beneficial for tissue healing. Further, NSAIDs, i.e., diclofenac sodium, were loaded into the hydrogel, and the in vitro drug release pattern was found to be burst release for 24 h and subsequently sustainable release of 50% drug up to 10 days. The DPPH assay revealed that the hydrogels have good radical scavenging activity. The biocompatibility study carried out by MTT assay proved good biocompatibility and anti-inflammatory activity of the hydrogels was carried out by gene expression study in RAW 264.7 cells, which indicate the downregulation of several key inflammatory genes such as COX-2, TNF-α & 18s. CONCLUSION: In summary, the proposed ECM-mimetic, thermo-sensitive in situ hydrogels may be utilized for intra-articular inflammation modulation and can be beneficial by reducing the frequency of medication and providing optimum lubrication at intra-articular joints.


Assuntos
Anti-Inflamatórios não Esteroides , Artrite Reumatoide , Hidrogéis , Hidrogéis/química , Animais , Camundongos , Artrite Reumatoide/tratamento farmacológico , Células RAW 264.7 , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Anti-Inflamatórios não Esteroides/química , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Diclofenaco/farmacologia , Diclofenaco/uso terapêutico , Liberação Controlada de Fármacos
4.
Chemphyschem ; 25(11): e202400066, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38470129

RESUMO

The thermodynamic data on ibuprofen available in the literature shows that the disarray of experimental results is unacceptable for this very important drug. The data on ibuprofens available in the literature were collected, combined with our complementary experimental results and evaluated. The enthalpies of combustion and formation of the crystalline RS-(±)- and S-(+)-ibuprofens were measured using high-precision combustion calorimetry. The temperature dependence of the vapour pressure of S-(+)-ibuprofen was measured using the transpiration method and the enthalpy of vaporization was derived from this measurement. The enthalpies of fusion of both compounds were measured using DSC. The G4 calculations have been carried out to determine the enthalpy of formation in the gaseous state of the most stable conformer. Thermochemical properties of the compounds studied were evaluated and tested for consistency with the "centerpiece approach". A set of reliable and consistent values of thermodynamic properties of ibuprofens at 298.15 K is recommended for thermochemical calculations of the pharmaceutical processes. The diagnostic protocol was developed to distinguish between the "sick" or "healthy" thermodynamic data. This diagnostic is also applicable to other drugs with a different structure than ibuprofen.


Assuntos
Ibuprofeno , Teoria Quântica , Termodinâmica , Ibuprofeno/química , Temperatura , Anti-Inflamatórios não Esteroides/química
5.
Mol Pharm ; 21(5): 2501-2511, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38574292

RESUMO

The molecular structures of nonsteroidal anti-inflammatory drugs (NSAIDs) vary, but most contain a carboxylic acid functional group (RCOOH). This functional group is known to be related to the mechanism of cyclooxygenase inhibition and also causes side effects, such as gastrointestinal bleeding. This study proposes a new role for RCOOH in NSAIDs: facilitating the interaction at the binding site II of serum albumins. We used bovine serum albumin (BSA) as a model to investigate the interactions with ligands at site II. Using dansyl-proline (DP) as a fluorescent site II marker, we demonstrated that only negatively charged NSAIDs such as ibuprofen (IBP), naproxen (NPX), diflunisal (DFS), and ketoprofen (KTP) can efficiently displace DP from the albumin binding site. We confirmed the importance of RCOO by neutralizing IBP and NPX through esterification, which reduced the displacement of DP. The competition was also monitored by stopped-flow experiments. While IBP and NPX displaced DP in less than 1 s, the ester derivatives were ineffective. We also observed a higher affinity of negatively charged NSAIDs using DFS as a probe and ultrafiltration experiments. Molecular docking simulations showed an essential salt bridge between the positively charged residues Arg409 and Lys413 with RCOO-, consistent with the experimental findings. We performed a ligand dissociation pathway and corresponding energy analysis by applying molecular dynamics. The dissociation of NPX showed a higher free energy barrier than its ester. Apart from BSA, we conducted some experimental studies with human serum albumin, and similar results were obtained, suggesting a general effect for other mammalian serum albumins. Our findings support that the RCOOH moiety affects not only the mechanism of action and side effects but also the pharmacokinetics of NSAIDs.


Assuntos
Anti-Inflamatórios não Esteroides , Ácidos Carboxílicos , Simulação de Acoplamento Molecular , Soroalbumina Bovina , Animais , Bovinos , Humanos , Anti-Inflamatórios não Esteroides/química , Sítios de Ligação , Ácidos Carboxílicos/química , Diflunisal/química , Ibuprofeno/química , Cetoprofeno/química , Ligantes , Naproxeno/química , Ligação Proteica , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo
6.
Biomacromolecules ; 25(6): 3288-3301, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38805352

RESUMO

Poly(2-isopropenyl-2-oxazoline) (PIPOx) represents a universal polymer platform with pendant 2-oxazoline groups, allowing the preparation of biomaterials for various biomedical applications. However, there is a lack of information on PIPOx concerning the effect of molar mass (Mn) on cytotoxicity and bioimmunological properties. Here, aqueous copper(0)-mediated reversible-deactivation radical polymerization (Cu0-RDPR) was used for the preparation of PIPOx with defined Mn and low dispersity. PIPOx of different Mn are used for the synthesis of conjugates with ibuprofen (5 mol %), the nonsteroidal anti-inflammatory drug. The release of ibuprofen at 37 °C and different pH values is monitored using high-performance liquid chromatography, where the rate of drug release increases with increasing pH and lower Mn. In vitro cytotoxicity and bioimmunological properties of PIPOx and drug conjugates are studied using 3D reconstructed tissue models of the human epidermis and intestinal epithelium. We demonstrate low cytotoxicity of PIPOx and conjugates with different Mn values on both 3D tissue models.


Assuntos
Ibuprofeno , Ibuprofeno/química , Ibuprofeno/farmacologia , Humanos , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Oxazóis/química , Oxazóis/farmacologia , Polímeros/química , Polímeros/farmacologia , Polimerização , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia
7.
Bioorg Med Chem Lett ; 104: 129714, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38522589

RESUMO

A series of new fluorinated dihydrofurano-napthoquinone compounds were sucessfully synthesized in good yields using microwave-assisted multi-component reactions of 2-hydroxy-1,4-naphthoquinone, fluorinated aromatic aldehydes, and pyridinium bromide. The products were fully characterized using spectroscopic techniques and evaluated for their anti-inflammatory activity using lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. Among 12 new compounds, compounds 8b, 8d, and 8e showed high potent NO inhibitory activity in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells with IC50 values ranging from 1.54 to 3.92 µM. The levels of pro-inflammatory cytokines IL-1ß and IL-6 in LPS-stimulated RAW264.7 macrophages were remarkably decreased after the application of 8b, 8d, 8e and 8k. Molecular docking simulations revealed structure-activity relationships of 8b, 8d, and 8e toward NO synthase, cyclooxygenase (COX-2 over COX-1), and prostaglandin E synthase-1 (mPGES-1). Further physicochemical and pharmacokinetic computations also demonstrated the drug-like characteristics of synthesized compounds. These findings demonstrated the importance of fluorinated dihydrofurano-napthoquinone moieties in the development of potential anti-inflammatory agents.


Assuntos
Anti-Inflamatórios não Esteroides , Naftoquinonas , Animais , Camundongos , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Lipopolissacarídeos/farmacologia , Simulação de Acoplamento Molecular , Naftoquinonas/síntese química , Naftoquinonas/química , Naftoquinonas/farmacologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II , Células RAW 264.7 , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Macrófagos/efeitos dos fármacos
8.
Inorg Chem ; 63(17): 7613-7618, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38632683

RESUMO

Meloxicam (MLX) is a novel nonsteroidal anti-inflammatory drug, but on the other hand, it has become one of the common microcontaminants in surface waters and sewage. Herein, we report the preparation of a ternary-metal Zn(II)-Cd(II)-Eu(III) nanocluster 1 for the response of MLX through the enhancement of lanthanide luminescence. The luminescence sensing behavior of 1 is expressed by the equation I615nm = 3060 × [MLX] + 46,604, which can be used in the quantitative analysis of MLX concentrations in meloxicam dispersible tablets. Filter paper strips bearing 1 can be used to qualitatively detect MLX by a color change to red under a UV lamp. The luminescence response time is no more than five s, and the detection limit is as low as 2.31 × 10-2 nM.


Assuntos
Anti-Inflamatórios não Esteroides , Európio , Meloxicam , Zinco , Meloxicam/análise , Zinco/química , Zinco/análise , Európio/química , Anti-Inflamatórios não Esteroides/análise , Anti-Inflamatórios não Esteroides/química , Medições Luminescentes , Luminescência , Nanoestruturas/química , Limite de Detecção
9.
Org Biomol Chem ; 22(18): 3708-3724, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38639206

RESUMO

Despite the high global prevalence, rheumatoid arthritis lacks a satisfactory treatment. Hence, the present study is undertaken to design and synthesize novel anti-inflammatory compounds. For this, quinoline and anthranilic acid, two medicinally-privileged moieties, were linked by pharmacophore hybridization, and following their computational assessments, three hybrids 5a-c were synthesized in good over all yields. The in vitro and in vivo anti-inflammatory potential of these hybrids was determined by anti-denaturation and anti-proteinase, and carrageenan-induced paw edema models. The computational studies of these hybrids revealed their drug-likeness, optimum pharmacokinetics, and less toxicity. Moreover, they demonstrated high binding affinity (-9.4 to -10.6 kcal mol-1) and suitable binding interactions for TNF-α, FLAP, and COX-II. A three-step synthetic route resulted in the hybrids 5a-c with 83-86% yield of final step. At 50 µg mL-1, the antiprotease and anti-denaturation activity of compound 5b was significantly higher than 5a and 5c. Furthermore, 5b significantly reduced the edema in the right paw of the rats that received carrageenan. The results of this study indicate the medicinal worth of the novel hybrids in treating inflammatory disorders such as rheumatoid arthritis.


Assuntos
Desenho de Fármacos , Edema , Simulação de Acoplamento Molecular , Quinolinas , ortoaminobenzoatos , Quinolinas/química , Quinolinas/farmacologia , Quinolinas/síntese química , Animais , Edema/tratamento farmacológico , Edema/induzido quimicamente , ortoaminobenzoatos/química , ortoaminobenzoatos/farmacologia , ortoaminobenzoatos/síntese química , Ratos , Carragenina , Masculino , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/síntese química , Estrutura Molecular , Ratos Wistar , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/síntese química , Relação Dose-Resposta a Droga , Relação Estrutura-Atividade , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/química
10.
J Fluoresc ; 34(3): 1441-1451, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38530561

RESUMO

Aspirin is a commonly used nonsteroidal anti-inflammatory drug, associated with many adverse effects. The adverse effects of aspirin such as tinnitus, Reye's syndrome and gastrointestinal bleeding are caused due to conversion of aspirin into its active metabolite salicylic acid after oral intake. Glutathione is a naturally occurring antioxidant produced by the liver and nerve cells in the central nervous system. It helps to metabolize toxins, break down free radicles, and support immune function. This study aims to investigate and explore the possibility of inhibiting aspirin to salicylic acid conversion in presence of glutathione at a molecular level using spectroscopic techniques such as UV-Visible absorption, time-Resolved and time-dependent fluorescence and theoretical DFT/ TD-DFT calculations. The results of steady state fluorescence spectroscopy and time-dependent fluorescence indicated that the aspirin to salicylic acid conversion is considerably inhibited in presence of glutathione. Further, the results presented here might have significant clinical implications for individuals with variations in glutathione level.


Assuntos
Aspirina , Teoria da Densidade Funcional , Glutationa , Ácido Salicílico , Espectrometria de Fluorescência , Aspirina/farmacologia , Aspirina/química , Aspirina/metabolismo , Glutationa/metabolismo , Glutationa/química , Ácido Salicílico/metabolismo , Ácido Salicílico/química , Ácido Salicílico/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/metabolismo , Fluorescência , Estrutura Molecular
11.
Bioorg Chem ; 144: 107136, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38271823

RESUMO

Two innovative series derived from nicotinic acid scaffold were synthesized and evaluated for their anti-inflammatory activity. Ibuprofen, celecoxib and indomethacin were used as standard drugs. All the newly synthesized compounds were in vitro screened for their anti-inflammatory activity adopting 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide dye (MTT), as well as Griess assays. The results showed that all compounds exhibited significant anti-inflammatory activity without affecting the viability of the macrophages compared to ibuprofen. In addition, compounds 4d, 4f, 4g, 4h and 5b exhibited the most potent nitrite inhibition activity and consequently superior anti-inflammatory activity with MTT results ranging between values 86.109 ± 0.51 to 119.084 ± 0.09. The most active compounds were subjected to evaluation of TNF-α, IL-6, iNOS and COX-2 levels in LPS/INF γ-stimulated RAW 264.7 macrophage cells in comparison to ibuprofen as a reference compound. The five compounds showed comparable inhibition potency of these inflammatory cytokines compared to ibuprofen. Same compounds were further in vivo evaluated for their anti-inflammatory activity via carrageenan induced arthritis in rats. Regarding the ulcerogenic profile, compound 4h showed mild infiltration of gastric mucosa superb to compound 5b displayed severe gastritis. Molecular docking of 4h and 5b in the COX-2 active site was performed to evaluate their preferential COX-2 inhibitory potency. The docking results were in accordance with the biological findings.


Assuntos
Ibuprofeno , Niacina , Ratos , Animais , Ibuprofeno/farmacologia , Ibuprofeno/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Simulação de Acoplamento Molecular , Inibidores de Ciclo-Oxigenase 2 , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Edema/induzido quimicamente , Edema/tratamento farmacológico , Anti-Inflamatórios não Esteroides/química , Relação Estrutura-Atividade
12.
Bioorg Chem ; 147: 107362, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615474

RESUMO

Excessive peroxynitrite (ONOO-) is closely related to the occurrence and progression of inflammation. Therefore, the development of an efficacious ONOO- activatable probe holds great potential for the early diagnosis of pathological inflammation, and the direct evaluation of the therapeutic efficacy of active protectants. In this work, a new ONOO--activated fluorescent probe (SZP) which greatly improved the specificity and sensitivity (LOD = 8.03 nM) with large Stokes shift (150 nm) through introducing two reaction triggers (diphenyl phosphinate moiety, CC unsaturated bond) was rationally designed for rapid detecting ONOO- (within 2 min). The excellent properties of probe SZP enable it to realize the fluorescence-guided diagnosis of inflammation. More importantly, probe SZP has also been utilized to assess the anti-inflammatory efficacy of traditional Chinese medicines (TCMs) active ingredients for the remediation of inflammation by monitoring ONOO- fluctuation for the first time.


Assuntos
Corantes Fluorescentes , Inflamação , Ácido Peroxinitroso , Ácido Peroxinitroso/análise , Ácido Peroxinitroso/antagonistas & inibidores , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/farmacologia , Inflamação/tratamento farmacológico , Animais , Estrutura Molecular , Camundongos , Humanos , Células RAW 264.7 , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/uso terapêutico , Imagem Óptica , Relação Dose-Resposta a Droga , Relação Estrutura-Atividade , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/síntese química , Masculino
13.
Bioorg Chem ; 147: 107383, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653151

RESUMO

Selective inhibition of microsomal prostaglandin E2 synthase-1 (mPGES-1) is implicated as a new therapeutic modality for the development of new-generation anti-inflammatory drugs. Here, we present the discovery of new and potent inhibitors of human mPGES-1, i.e., compounds 13, 15-25, 29-30 with IC50 values in the range of 5.6-82.3 nM in a cell-free assay of prostaglandin (PG)E2 formation. We also demonstrate that 20 (TG554, IC50 = 5.6 nM) suppresses leukotriene (LT) biosynthesis at low µM concentrations, providing a benchmark compound that dually intervenes with inflammatory PGE2 and LT biosynthesis. Comprehensive lipid mediator (LM) metabololipidomics with activated human monocyte-derived macrophages showed that TG554 selectively inhibits inflammatory PGE2 formation over all cyclooxygenase (COX)-derived prostanoids, does not cause substrate shunting towards 5-lipoxygenase (5-LOX) pathway, and does not interfere with the biosynthesis of the specialized pro-resolving mediators as observed with COX inhibitors, providing a new chemotype for effective and safer anti-inflammatory drug development.


Assuntos
Relação Dose-Resposta a Droga , Oxidiazóis , Prostaglandina-E Sintases , Prostaglandina-E Sintases/antagonistas & inibidores , Prostaglandina-E Sintases/metabolismo , Humanos , Relação Estrutura-Atividade , Estrutura Molecular , Oxidiazóis/química , Oxidiazóis/farmacologia , Oxidiazóis/síntese química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Microssomos/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/síntese química
14.
Bioorg Chem ; 147: 107335, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583250

RESUMO

Fifty compounds including seven undescribed (1, 13, 18-20, 30, 31) and forty-three known (2-12, 14-17, 21-29, 32-50) ones were isolated from the extract of the twigs and leaves of Aglaia odorata with anti-neuroinflammatory activities. Their structures were determined by a combination of spectral analysis and calculated spectra (ECD and NMR). Among them, compounds 13-25 were found to possess tertiary amide bonds, with compounds 16, 17, and 19-21 existing detectable cis/trans mixtures in 1H NMR spectrum measured in CDCl3. Specifically, the analysis of the cis-trans isomerization equilibrium of tertiary amides in compounds 19-24 was conducted using NMR spectroscopy and quantum chemical calculations. Bioactivity evaluation showed that the cyclopenta[b]benzofuran derivatives (2-6, 8, 10, 12) could inhibit nitric oxide production at the nanomolar concentration (IC50 values ranging from 2 to 100 nM) in lipopolysaccharide-induced BV-2 cells, which were 413-20670 times greater than that of the positive drug (minocycline, IC50 = 41.34 µM). The cyclopenta[bc]benzopyran derivatives (13-16), diterpenoids (30-35), lignan (40), and flavonoids (45, 47, 49, 50) also demonstrated significant inhibitory activities with IC50 values ranging from 1.74 to 38.44 µM. Furthermore, the in vivo anti-neuroinflammatory effect of rocaglaol (12) was evaluated via immunofluorescence, qRT-PCR, and western blot assays in the LPS-treated mice model. The results showed that rocaglaol (12) attenuated the activation of microglia and decreased the mRNA expression of iNOS, TNF-α, IL-1ß, and IL-6 in the cortex and hippocampus of mice. The mechanistic study suggested that rocaglaol might inhibit the activation of the NF-κB signaling pathway to relieve the neuroinflammatory response.


Assuntos
Aglaia , Lipopolissacarídeos , Óxido Nítrico , Animais , Camundongos , Aglaia/química , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Óxido Nítrico/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Masculino , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação , Benzofuranos/farmacologia , Benzofuranos/química , Benzofuranos/isolamento & purificação , Linhagem Celular , Folhas de Planta/química
15.
Bioorg Chem ; 148: 107453, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761708

RESUMO

Thirty-five trifluoromethyl hydrazones and seventeen trifluoromethyl oxime esters were designed and synthesized via molecular hybridization. All the target compounds were initially screened for in vitro anti-inflammatory activity by assessing their inhibitory effect on NO release in LPS-stimulated RAW264.7 cells, and the optimal compound was finally identified as 2-(3-Methoxyphenyl)-N'-((6Z,9Z,12Z,15Z)-1,1,1-trifluorohenicosa-6,9,12,15-tetraen-2-ylidene)acetohydrazide (F26, IC50 = 4.55 ± 0.92 µM) with no cytotoxicity. Moreover, F26 potently reduced the production of PGE2 in LPS-stimulated RAW264.7 cells compared to indomethacin. The interaction of F26 with COX-2 and cPLA2 was directly verified by the CETSA technique. F26 was found to modulate the phosphorylation levels of p38 MAPK and NF-κB p65, as well as the protein expression of IκB, cPLA2, COX-2, and iNOS in LPS-stimulated rat peritoneal macrophages. Additionally, F26 was observed to prevent the nuclear translocation of NF-κB p65 in LPS-stimulated rat peritoneal macrophages by immunofluorescence localization. Therefore, the aforementioned in vitro experiments demonstrated that F26 blocked the p38 MAPK and NF-κB pathways by binding to COX-2 and cPLA2. In the adjuvant-induced arthritis model, F26 demonstrated a significant effect in preventing arthritis symptoms and inflammatory status in rats, exerting an immunomodulatory role by regulating the homeostasis between Th17 and Treg through inhibition of the p38 MAPK/cPLA2/COX-2/PGE2 and NF-κB pathways. Encouragingly, F26 caused less acute ulcerogenicity in rats at a dose of 50 mg/kg compared to indomethacin. Overall, F26 is a promising candidate worthy of further investigation for treating inflammation and associated pain with lesser gastrointestinal irritation, as well as other symptoms in which cPLA2 and COX-2 are implicated in the pathophysiology.


Assuntos
Artrite Reumatoide , Inibidores de Ciclo-Oxigenase 2 , Ciclo-Oxigenase 2 , Animais , Camundongos , Ciclo-Oxigenase 2/metabolismo , Artrite Reumatoide/tratamento farmacológico , Células RAW 264.7 , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/síntese química , Ratos , Relação Estrutura-Atividade , Estrutura Molecular , Inflamação/tratamento farmacológico , Masculino , Relação Dose-Resposta a Droga , Cetonas/química , Cetonas/farmacologia , Cetonas/síntese química , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/síntese química , Fosfolipases A2/metabolismo , Administração Oral , Ratos Sprague-Dawley
16.
Bioorg Chem ; 147: 107393, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38691908

RESUMO

Cyclooxygenase-2 plays a vital role in inflammation by catalyzing arachidonic acid conversion toward prostaglandins, making it a prime therapeutic objective. Selective COX-2 inhibitors represent significant progress in anti-inflammatory therapy, offering improved efficacy and fewer side effects. This study describes the synthesis of novel anti-inflammatory compounds from established pharmaceutically marketed agents like fenamates III-V and ibuprofen VI. Through rigorous in vitro testing, compounds 7b-c, and 12a-b demonstrated substantial in vitro selective inhibition, with IC50 values of 0.07 to 0.09 µM, indicating potent pharmacological activity. In vivo assessment, particularly focusing on compound 7c, revealed significant anti-inflammatory effects. Markedly, it demonstrated the highest inhibition of paw thickness (58.62 %) at the 5-hr mark compared to the carrageenan group, indicating its potency in mitigating inflammation. Furthermore, it exhibited a rapid onset of action, with a 54.88 % inhibition observed at the 1-hr mark. Subsequent comprehensive evaluations encompassing analgesic efficacy, histological characteristics, and toxicological properties indicated that compound 7c did not induce gastric ulcers, in contrast to the ulcerogenic tendency associated with mefenamic acid. Moreover, compound 7c underwent additional investigations through in silico methodologies such as molecular modelling, field alignment, and density functional theory. These analyses underscored the therapeutic potential and safety profile of this novel compound, warranting further exploration and development in the realm of pharmaceutical research.


Assuntos
Anti-Inflamatórios não Esteroides , Carragenina , Inibidores de Ciclo-Oxigenase 2 , Ciclo-Oxigenase 2 , Fenamatos , Ibuprofeno , Ibuprofeno/farmacologia , Ibuprofeno/química , Ibuprofeno/síntese química , Ciclo-Oxigenase 2/metabolismo , Animais , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Estrutura Molecular , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/síntese química , Relação Estrutura-Atividade , Fenamatos/farmacologia , Fenamatos/química , Fenamatos/síntese química , Relação Dose-Resposta a Droga , Humanos , Camundongos , Edema/tratamento farmacológico , Edema/induzido quimicamente , Simulação de Acoplamento Molecular , Ratos , Masculino
17.
Bioorg Chem ; 147: 107420, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718461

RESUMO

Phytochemical analysis of Chloranthus henryi var. hupehensis roots led to the identification of a new eudesmane sesquiterpenoid dimer, 18 new sesquiterpenoids, and three known sesquiterpenoids. Among the isolates, 1 was a rare sesquiterpenoid dimer that is assembled by a unique oxygen bridge (C11-O-C8') of two highly rearranged eudesmane-type sesquiterpenes with the undescribed C16 carbon framework. (+)-2 and (-)-2 were a pair of new skeleton dinorsesquiterpenoids with a remarkable 6/6/5 tricyclic ring framework including one γ-lactone ring and the bicyclo[3.3.1]nonane core. Their structures were elucidated using spectroscopic data, single-crystal X-ray diffraction analysis, and quantum chemical computations. In the LPS-induced BV-2 microglial cell model, 17 suppressed IL-1ß and TNF-α expression with EC50 values of 6.81 and 2.76 µM, respectively, indicating its excellent efficacy in inhibiting inflammatory factors production in a dose dependent manner and without cytotoxicity. In subsequent mechanism studies, compounds 3, 16, and 17 could reduce IL-1ß and TNF-α production by inhibiting IKBα/p65 pathway activation.


Assuntos
Relação Dose-Resposta a Droga , Raízes de Plantas , Sesquiterpenos , Transdução de Sinais , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Raízes de Plantas/química , Transdução de Sinais/efeitos dos fármacos , Estrutura Molecular , Camundongos , Animais , Relação Estrutura-Atividade , Fator de Transcrição RelA/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Descoberta de Drogas , Inibidor de NF-kappaB alfa/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação
18.
Bioorg Chem ; 147: 107312, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599053

RESUMO

A series of water-soluble PEGylated 1,2,4-triazoles 5-8 were successfully synthesized from methyl 5-(chloromethyl)-1-aryl-1H-1,2,4-triazole-3-carboxylates 1. All of the water-soluble PEGylated 1,2,4-triazoles were characterized by FT-IR and 1H NMR spectroscopy. The solubility, in vitro plasma stability, and anti-inflammatory activity were also determined and compared to original methyl 5-(halomethyl)-1-aryl-1H-1,2,4-triazole-3-carboxylates. For SAR study, all PEGylated 1,2,4-triazoles 5-8 performed potential anti-inflammatory activity on LPS-induced RAW 264.7 cells (IC50 = 3.42-7.81 µM). Moreover, the western blot result showed PEGylated 1,2,4-triazole 7d performed 5.43 and 2.37 folds inhibitory activity over iNOS and COX-2 expressions. On the other hand, the cell viability study revealed PEGylated 1,2,4-triazoles 7 and 8 with PEG molecular weight more than 600 presented better cell safety (cell viability > 95 %). Through the solubility and in vitro plasma stability studies, PEGylated 1,2,4-triazoles 7a-d exhibited higher hydrophilicity and prolonged 2.01 folds of half-life in compound 7d. Furthermore, the in vivo anti-inflammatory and gastric safety results indicated PEGylated 1,2,4-triazole 7d more effectively decreased the inflammatory response in edema and COX-2 expression and exhibited higher gastric safety than Indomethacin. Following the in vitro and in vivo study results, PEGylated 1,2,4-triazole 7d possessed favorable solubility, plasma stability features, safety, and significant anti-inflammatory activity to become the potential water-soluble anti-inflammatory candidate.


Assuntos
Polietilenoglicóis , Solubilidade , Triazóis , Água , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Animais , Camundongos , Água/química , Polietilenoglicóis/química , Relação Estrutura-Atividade , Edema/tratamento farmacológico , Edema/induzido quimicamente , Ciclo-Oxigenase 2/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células RAW 264.7 , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Estrutura Molecular , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Ratos , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Masculino , Relação Dose-Resposta a Droga , Carragenina
19.
Bioorg Chem ; 147: 107372, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653152

RESUMO

Joining the global demand for the discovery of potent NSAIDs with minimized ulcerogenic effect, new pyrazole clubbed thiazole derivatives 5a-o were designed and synthesized. The new derivatives were initially evaluated for their analgesic activity. Eight compounds 5a, 5c, 5d, 5e, 5f, 5h, 5m, and 5o showed higher activity than Indomethacin (potency = 105-130 % vs. 100 %). Subsequently, they were picked for further evaluation of their anti-inflammatory activity, ulcerogenic liability as well as toxicological studies. Derivatives 5h and 5m showed a potential % edema inhibition after 3 h (79.39 % and 72.12 %, respectively), with a promising safety profile and low ulcer indices (3.80 and 3.20, respectively). The two compounds 5h and 5m were subjected to in vitro COX-1 and COX-2 inhibition assay. The candidate 5h showed nearly equipotent COX-1 inhibition (IC50 = 38.76 nM) compared to the non-selective reference drug Indomethacin (IC50 = 35.72 nM). Compound 5m expressed significant inhibitory activities and a higher COX-2 selectivity index (IC50 = 87.74 nM, SI = 2.05) in comparison with Indomethacin (SI = 0.52), with less selectivity than Celecoxib (SI = 8.31). Simulation docking studies were carried out to gain insights into the binding interaction of compounds 5h and 5m in the vicinity of COX-1 and COX-2 enzymes that illustrated the importance of pyrazole clubbed thiazole core in hydrogen bonding interactions. The thiazole motif of compounds 5h and 5m exhibited a well orientation toward COX-1 Arg120 key residue by hydrogen bonding interactions. Compound 5h revealed an additional arene-cation interaction with Arg120 that could rationalize its superior COX-1 inhibitory activity. Compounds 5h and 5m overlaid the co-crystallized ligand Celecoxib I differently in the active site of COX-2. Compound 5m showed an enhanced accommodation with binding energy of - 6.13 vs. - 1.70 kcal/mol of compounds 5h. The naphthalene ring of compound 5m adopted the Celecoxib I benzene sulfonamide region that is stabilized by hydrogen-arene interactions with the hydrophobic sidechains of the key residues Ser339 and Phe504. Further, the core structure of compound 5m, pyrazole clubbed thiazole, revealed deeper hydrophobic interactions with Ala513, Leu517 and Val509 residues. Finally, a sensitive and accurate UPLC-MS/MS method was developed for the simultaneous estimation of some selected promising pyrazole derivatives in rat plasma. Accordingly, compounds 5h and 5m were suggested to be promising potent analgesic and anti-inflammatory agents with improved safety profiles and a novel COX isozyme modulation activity.


Assuntos
Analgésicos , Anti-Inflamatórios não Esteroides , Ciclo-Oxigenase 2 , Edema , Simulação de Acoplamento Molecular , Tiazóis , Animais , Masculino , Camundongos , Ratos , Analgésicos/farmacologia , Analgésicos/química , Analgésicos/síntese química , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/síntese química , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/síntese química , Relação Dose-Resposta a Droga , Descoberta de Drogas , Edema/tratamento farmacológico , Edema/induzido quimicamente , Estrutura Molecular , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Relação Estrutura-Atividade , Tiazóis/química , Tiazóis/farmacologia , Tiazóis/síntese química
20.
Bioorg Chem ; 147: 107315, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604017

RESUMO

Seven new meroterpenoids, paraphaeones A-G (1-7), and two new polyketides, paraphaeones H-I (8-9), along with eight known compounds (10-17), were isolated from the endophytic fungus Paraphaeosphaeria sp. C-XB-J-1. The structures of 1-9 were identified through the analysis of 1H, 13C, and 2D NMR spectra, assisted by HR-ESI-MS data. Compounds 1 and 7 exhibited a dose-dependent decrease in lactate dehydrogenase levels, with IC50 values of 1.78 µM and 1.54 µM, respectively. Moreover, they inhibited the secretion of IL-1ß and CASP-1, resulting in a reduction in the activity levels of NLRP3 inflammasomes. Fluorescence microscopy results indicated that compound 7 concentration-dependently attenuated cell pyroptosis. Additionally, compounds 4 and 7 showed potential inhibitory effects on the severe acute respiratory syndrome coronavirus-2 main protease (SARS-CoV-2 Mpro), with IC50 values of 10.8 ± 0.9 µM and 12.9 ± 0.7 µM, respectively.


Assuntos
Ascomicetos , Proteases 3C de Coronavírus , Policetídeos , SARS-CoV-2 , Terpenos , Policetídeos/química , Policetídeos/farmacologia , Policetídeos/isolamento & purificação , Ascomicetos/química , Humanos , Terpenos/química , Terpenos/farmacologia , Terpenos/isolamento & purificação , SARS-CoV-2/efeitos dos fármacos , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/química , Estrutura Molecular , Antivirais/farmacologia , Antivirais/química , Antivirais/isolamento & purificação , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Relação Dose-Resposta a Droga , Relação Estrutura-Atividade , Tratamento Farmacológico da COVID-19 , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa