Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.977
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 81(2): 340-354.e5, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33450210

RESUMO

In addition to its role as an electron transporter, mitochondrial nicotinamide adenine dinucleotide (NAD+) is an important co-factor for enzymatic reactions, including ADP-ribosylation. Although mitochondria harbor the most intra-cellular NAD+, mitochondrial ADP-ribosylation remains poorly understood. Here we provide evidence for mitochondrial ADP-ribosylation, which was identified using various methodologies including immunofluorescence, western blot, and mass spectrometry. We show that mitochondrial ADP-ribosylation reversibly increases in response to respiratory chain inhibition. Conversely, H2O2-induced oxidative stress reciprocally induces nuclear and reduces mitochondrial ADP-ribosylation. Elevated mitochondrial ADP-ribosylation, in turn, dampens H2O2-triggered nuclear ADP-ribosylation and increases MMS-induced ARTD1 chromatin retention. Interestingly, co-treatment of cells with the mitochondrial uncoupler FCCP decreases PARP inhibitor efficacy. Together, our results suggest that mitochondrial ADP-ribosylation is a dynamic cellular process that impacts nuclear ADP-ribosylation and provide evidence for a NAD+-mediated mitochondrial-nuclear crosstalk.


Assuntos
ADP-Ribosilação , Núcleo Celular/enzimologia , Mitocôndrias/enzimologia , NAD/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , ADP-Ribosilação/efeitos dos fármacos , Animais , Antimicina A/análogos & derivados , Antimicina A/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/genética , Cromatina/química , Cromatina/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Células HeLa , Humanos , Peróxido de Hidrogênio/farmacologia , Metacrilatos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Mioblastos/enzimologia , Oligomicinas/farmacologia , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/enzimologia , Poli(ADP-Ribose) Polimerase-1/genética , Rotenona/farmacologia , Tiazóis/farmacologia
2.
Am J Physiol Cell Physiol ; 326(6): C1776-C1788, 2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38738304

RESUMO

Circulating cell-free mitochondrial DNA (ccf-mtDNA) is an indicator of cell death, inflammation, and oxidative stress. ccf-mtDNA in pregnancies with placental dysfunction differs from that in healthy pregnancies, and the direction of this difference depends on gestational age and method of mtDNA quantification. Reactive oxygen species (ROS) trigger release of mtDNA, yet it is unknown whether trophoblast cells release mtDNA in response to oxidative stress, a common feature of pregnancies with placental pathology. We hypothesized that oxidative stress would induce cell death and release of mtDNA from trophoblast cells. BeWo cells were treated with antimycin A (10-320 µM) or rotenone (0.2-50 µM) to induce oxidative stress. A multiplex real-time quantitative PCR (qPCR) assay was used to quantify mtDNA and nuclear DNA in membrane-bound, non-membrane-bound, and vesicle-bound forms in cell culture supernatants and cell lysates. Treatment with antimycin A increased ROS (P < 0.0001), induced cell necrosis (P = 0.0004) but not apoptosis (P = 0.6471), and was positively associated with release of membrane-bound and non-membrane-bound mtDNA (P < 0.0001). Antimycin A increased mtDNA content in exosome-like extracellular vesicles (vesicle-bound form; P = 0.0019) and reduced autophagy marker expression (LC3A/B, P = 0.0002; p62, P < 0.001). Rotenone treatment did not influence mtDNA release or cell death (P > 0.05). Oxidative stress induces release of mtDNA into the extracellular space and causes nonapoptotic cell death and a reduction in autophagy markers in BeWo cells, an established in vitro model of human trophoblast cells. Intersection between autophagy and necrosis may mediate the release of mtDNA from the placenta in pregnancies exposed to oxidative stress.NEW & NOTEWORTHY This is the first study to test whether trophoblast cells release mitochondrial (mt)DNA in response to oxidative stress and to identify mechanisms of release and biological forms of mtDNA from this cellular type. This research identifies potential cellular mechanisms that can be used in future investigations to establish the source and biomarker potential of circulating mtDNA in preclinical experimental models and humans.


Assuntos
Antimicina A , DNA Mitocondrial , Espaço Extracelular , Estresse Oxidativo , Espécies Reativas de Oxigênio , Trofoblastos , Humanos , Trofoblastos/metabolismo , Trofoblastos/efeitos dos fármacos , Trofoblastos/patologia , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Feminino , Gravidez , Espécies Reativas de Oxigênio/metabolismo , Espaço Extracelular/metabolismo , Antimicina A/farmacologia , Rotenona/farmacologia , Placenta/metabolismo , Placenta/efeitos dos fármacos , Placenta/patologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Necrose , Linhagem Celular , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos
3.
J Biol Chem ; 299(9): 105083, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37495110

RESUMO

c-Myc is a critical regulator of cell proliferation and growth. Elevated levels of c-Myc cause transcriptional amplification, leading to various types of cancers. Small molecules that specifically inhibit c-Myc-dependent regulation are potentially invaluable for anticancer therapy. Because c-Myc does not have enzymatic activity or targetable pockets, researchers have attempted to obtain small molecules that inhibit c-Myc cofactors, activate c-Myc repressors, or target epigenetic modifications to regulate the chromatin of c-Myc-addicted cancer without any clinical success. In this study, we screened for c-Myc inhibitors using a cell-dependent assay system in which the expression of c-Myc and its transcriptional activity can be inferred from monomeric Keima and enhanced GFP fluorescence, respectively. We identified one mitochondrial inhibitor, antimycin A, as a hit compound. The compound enhanced the c-Myc phosphorylation of threonine-58, consequently increasing the proteasome-mediated c-Myc degradation. The mechanistic analysis of antimycin A revealed that it enhanced the degradation of c-Myc protein through the activation of glycogen synthetic kinase 3 by reactive oxygen species (ROS) from damaged mitochondria. Furthermore, we found that the inhibition of cell growth by antimycin A was caused by both ROS-dependent and ROS-independent pathways. Interestingly, ROS-dependent growth inhibition occurred only in the presence of c-Myc, which may reflect the representative features of cancer cells. Consistently, the antimycin A sensitivity of cells was correlated to the endogenous c-Myc levels in various cancer cells. Overall, our study provides an effective strategy for identifying c-Myc inhibitors and proposes a novel concept for utilizing ROS inducers for cancer therapy.


Assuntos
Antimicina A , Proteólise , Proteínas Proto-Oncogênicas c-myc , Antimicina A/farmacologia , Linhagem Celular Tumoral , Ensaios de Triagem em Larga Escala , Fosforilação , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Treonina/metabolismo , Proteólise/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Antineoplásicos/farmacologia , Células HCT116 , Células HeLa , Sobrevivência Celular/efeitos dos fármacos , Humanos
4.
Neurochem Res ; 49(2): 402-414, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37855866

RESUMO

Adenosine triphosphate (ATP) is the main energy currency of all cells, while creatine phosphate (CrP) is considered as a buffer of high energy-bond phosphate that facilitates rapid regeneration of ATP from adenosine diphosphate (ADP). Astrocyte-rich primary cultures contain ATP, ADP and adenosine monophosphate (AMP) in average specific contents of 36.0 ± 6.4 nmol/mg, 2.9 ± 2.1 nmol/mg and 1.7 ± 2.1 nmol/mg, respectively, which establish an adenylate energy charge of 0.92 ± 0.04. The average specific cellular CrP level was found to be 25.9 ± 10.8 nmol/mg and the CrP/ATP ratio was 0.74 ± 0.28. The specific cellular CrP content, but not the ATP content, declined with the age of the culture. Absence of fetal calf serum for 24 h caused a partial loss in the cellular contents of both CrP and ATP, while application of creatine for 24 h doubled the cellular CrP content and the CrP/ATP ratio, but did not affect ATP levels. In glucose-deprived astrocytes, the high cellular ATP and CrP contents were rapidly depleted within minutes after application of the glycolysis inhibitor 2-deoxyglucose and the respiratory chain inhibitor antimycin A. For those conditions, the decline in CrP levels always preceded that of ATP contents. In contrast, incubation of glucose-fed astrocytes for up to 30 min with antimycin A had little effect on the high cellular ATP content, while the CrP level was significantly lowered. These data demonstrate the importance of cellular CrP for maintaining a high cellular ATP content in astrocytes during episodes of impaired ATP regeneration.


Assuntos
Trifosfato de Adenosina , Astrócitos , Fosfocreatina/metabolismo , Astrócitos/metabolismo , Antimicina A/farmacologia , Trifosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Creatina/metabolismo , Glucose , Difosfato de Adenosina/metabolismo , Fosfatos , Metabolismo Energético
5.
Biol Pharm Bull ; 47(9): 1557-1564, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39313392

RESUMO

Oxidative stress plays a crucial role in the development and progression of various kidney diseases. Nuclear factor erythroid 2-related factor 2 (NRF2) is the primary transcription factor that protects cells from oxidative stress by regulating cytoprotective genes including those involved in the antioxidant glutathione (GSH) pathway. GSH maintains cellular redox status and affects redox signaling, cell proliferation, and cell death. Antimycin A, an inhibitor of complex III of the electron transport chain, causes oxidative stress and reduces GSH levels. In this study, we induced mitochondrial damage in rat renal proximal tubular cells using antimycin A and investigated cellular viability and levels of NRF2 and GSH. Treatment with antimycin A altered the expression of antioxidant genes, including reduction in the transcription of glutathione-cysteine ligase subunits (Gclc and Gclm) and glutathione reductase (Gsr1), followed by a reduction in total GSH content with a concomitant decrease in NRF2 protein expression. AR-20007, previously described as an NRF2 activator, stabilizes and increases NRF2 protein expression in cells. By stimulating NRF2, AR-20007 increased the expression of antioxidant and detoxifying enzymes, thereby enhancing protection against oxidative stress induced by antimycin A. These data suggest that NRF2 activation effectively inhibits antimycin A-induced oxidative stress and that NRF2 may be a promising therapeutic target for preventing cell death during acute kidney injury.


Assuntos
Antimicina A , Células Epiteliais , Glutationa , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Antimicina A/farmacologia , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Glutationa/metabolismo , Ratos , Estresse Oxidativo/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Morte Celular/efeitos dos fármacos , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Antioxidantes/farmacologia , Túbulos Renais/citologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo
6.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34389670

RESUMO

Hemes are common elements of biological redox cofactor chains involved in rapid electron transfer. While the redox properties of hemes and the stability of the spin state are recognized as key determinants of their function, understanding the molecular basis of control of these properties is challenging. Here, benefiting from the effects of one mitochondrial disease-related point mutation in cytochrome b, we identify a dual role of hydrogen bonding (H-bond) to the propionate group of heme bH of cytochrome bc1, a common component of energy-conserving systems. We found that replacing conserved glycine with serine in the vicinity of heme bH caused stabilization of this bond, which not only increased the redox potential of the heme but also induced structural and energetic changes in interactions between Fe ion and axial histidine ligands. The latter led to a reversible spin conversion of the oxidized Fe from 1/2 to 5/2, an effect that potentially reduces the electron transfer rate between the heme and its redox partners. We thus propose that H-bond to the propionate group and heme-protein packing contribute to the fine-tuning of the redox potential of heme and maintaining its proper spin state. A subtle balance is needed between these two contributions: While increasing the H-bond stability raises the heme potential, the extent of increase must be limited to maintain the low spin and diamagnetic form of heme. This principle might apply to other native heme proteins and can be exploited in engineering of artificial heme-containing protein maquettes.


Assuntos
Grupo dos Citocromos b/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Rhodobacter capsulatus/metabolismo , Antimicina A/análogos & derivados , Grupo dos Citocromos b/genética , Espectroscopia de Ressonância de Spin Eletrônica , Complexo III da Cadeia de Transporte de Elétrons/genética , Ligação de Hidrogênio , Modelos Moleculares , Mutação , Oxirredução , Conformação Proteica , Análise Espectral/métodos
7.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33483422

RESUMO

In mammalian cells, nutrients and growth factors signal through an array of upstream proteins to regulate the mTORC1 growth control pathway. Because the full complement of these proteins has not been systematically identified, we developed a FACS-based CRISPR-Cas9 genetic screening strategy to pinpoint genes that regulate mTORC1 activity. Along with almost all known positive components of the mTORC1 pathway, we identified many genes that impact mTORC1 activity, including DCAF7, CSNK2B, SRSF2, IRS4, CCDC43, and HSD17B10 Using the genome-wide screening data, we generated a focused sublibrary containing single guide RNAs (sgRNAs) targeting hundreds of genes and carried out epistasis screens in cells lacking nutrient- and stress-responsive mTORC1 modulators, including GATOR1, AMPK, GCN2, and ATF4. From these data, we pinpointed mitochondrial function as a particularly important input into mTORC1 signaling. While it is well appreciated that mitochondria signal to mTORC1, the mechanisms are not completely clear. We find that the kinases AMPK and HRI signal, with varying kinetics, mitochondrial distress to mTORC1, and that HRI acts through the ATF4-dependent up-regulation of both Sestrin2 and Redd1. Loss of both AMPK and HRI is sufficient to render mTORC1 signaling largely resistant to mitochondrial dysfunction induced by the ATP synthase inhibitor oligomycin as well as the electron transport chain inhibitors piericidin and antimycin. Taken together, our data reveal a catalog of genes that impact the mTORC1 pathway and clarify the multifaceted ways in which mTORC1 senses mitochondrial dysfunction.


Assuntos
Fator 4 Ativador da Transcrição/genética , Edição de Genes/métodos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Mitocôndrias/genética , Proteínas Serina-Treonina Quinases/genética , 3-Hidroxiacil-CoA Desidrogenases/genética , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Aminoácidos/deficiência , Aminoácidos/farmacologia , Antimicina A/análogos & derivados , Antimicina A/farmacologia , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Meios de Cultura/química , Meios de Cultura/farmacologia , Regulação da Expressão Gênica , Genoma Humano , Glucose/deficiência , Glucose/farmacologia , Células HEK293 , Humanos , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Oligomicinas/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Transdução de Sinais , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
8.
Reprod Domest Anim ; 59(7): e14664, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39010850

RESUMO

In several mammalian species, the measurement of mitochondrial oxygen consumption (MITOX) under different metabolic conditions has demonstrated a positive correlation with sperm motility and may be a sensitive indicator of mitochondrial health. In general, the maintenance of sperm motility and many key sperm functions and fertilizing events are heavily energy-dependent processes, and some species-specific substrate preferences exist. Although canine sperm have been known to undergo capacitation and maintain motility with supplementation of a wide range of energy substrates, the relationship between mitochondrial function, and the maintenance of oxidative metabolism and sperm motility remain unclear. The objective of this study was to explore the metabolic flexibility of canine sperm, and to investigate the relationship between mitochondrial function, and maintenance of motility under differing nutrient conditions. We explored substrate preferences and the bioenergetics underlying maintenance of canine sperm motility by monitoring mitochondrial oxidative function and sperm kinematics in the presence of mitochondrial effector drug treatments: FCCP, antimycin (ANTI), and oligomycin (OLIGO). We hypothesized that canine sperm possess the ability to use compensatory pathways and utilize diverse nutrient sources in the maintenance of motility. Oxygen consumption (change in pO2, oxygen partial pressure) and sperm kinematics (CASA) were measured concurrently (t0-t30) to assess the relationship between oxidative metabolism and maintenance of sperm motility in dogs. Four media were tested: containing glucose, lactate, and pyruvate (GLP), containing glucose (G), fructose (F), or lactate and pyruvate (LP). In the absence of pharmacological inhibition of the electron transport chain, energetic substrate had no effect on sperm kinematics in fertile dogs. Following mitochondrial disruption by ANTI and OLIGO, mitochondrial oxygen consumption was negatively correlated with several sperm motility parameters in GLP, G, F, and LP media. In every media, FCCP treatment quickly induced significantly higher oxygen consumption than in untreated sperm, and spare respiratory capacity, the maximal inducible oxidative metabolism, was high. With respiratory control ratios RCR >1 there was no indication of bioenergetic dysfunction in any media type, indicating that sperm mitochondria of fertile dogs have a high capacity for substrate oxidation and ATP turnover regardless of substrate. Our results suggest MITOX assessment is a valuable tool for assessing mitochondrial functionality, and that canine sperm employ flexible energy management systems which may be exploited to improve sperm handling and storage.


Assuntos
Mitocôndrias , Consumo de Oxigênio , Motilidade dos Espermatozoides , Espermatozoides , Animais , Masculino , Cães , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Espermatozoides/fisiologia , Espermatozoides/efeitos dos fármacos , Metabolismo Energético , Antimicina A/farmacologia , Antimicina A/análogos & derivados , Fertilidade/fisiologia
9.
Neurochem Res ; 48(7): 2241-2252, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36914795

RESUMO

Adenosine triphosphate (ATP) is the central energy currency of all cells. Cultured primary rat astrocytes contain a specific cellular ATP content of 27.9 ± 4.7 nmol/mg. During incubation in a glucose- and amino acid-free incubation buffer, this high cellular ATP content was maintained for at least 6 h, while within 24 h the levels of ATP declined to around 30% of the initial value without compromising cell viability. In contrast, cells exposed to 1 mM and 5 mM glucose maintained the initial high cellular ATP content for 24 and 72 h, respectively. The loss in cellular ATP content observed during a 24 h glucose-deprivation was fully prevented by the presence of glucose, fructose or mannose as well as by the mitochondrial substrates lactate, pyruvate, ß-hydroxybutyrate or acetate. The high initial specific ATP content in glucose-starved astrocytes, was almost completely abolished within 30 min after application of the respiratory chain inhibitor antimycin A or the mitochondrial uncoupler BAM-15, while these inhibitors lowered in glucose-fed cells the ATP content only to 60% (BAM-15) and 40% (antimycin A) within 5 h. Inhibition of the mitochondrial pyruvate carrier by UK5099 alone or of mitochondrial fatty acid uptake by etomoxir alone hardly affected the high ATP content of glucose-deprived astrocytes during an incubation for 8 h, while the co-application of both inhibitors depleted cellular ATP levels almost completely within 5 h. These data underline the importance of mitochondrial metabolism for the ATP regeneration of astrocytes and demonstrate that the mitochondrial oxidation of pyruvate and fatty acids strongly contributes to the maintenance of a high ATP concentration in glucose-deprived astrocytes.


Assuntos
Trifosfato de Adenosina , Astrócitos , Ratos , Animais , Trifosfato de Adenosina/metabolismo , Astrócitos/metabolismo , Antimicina A , Glucose/metabolismo , Células Cultivadas , Ácido Láctico/metabolismo , Piruvatos
10.
Org Biomol Chem ; 21(11): 2398-2404, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36857695

RESUMO

Antimycins are one of the well-known antifungal metabolites produced by Streptomyces bacteria. Neoantimycin and its analogues, the ring-expanded antimycins featuring a 15-membered tetraester ring, have been shown to be effective regulators of the oncogenic proteins GRP78/BiP and K-Ras. Isoneoantimycin was isolated from Streptomyces fradiae IFO12773 (ISP 5063) as a minor metabolite during the fermentation of neoantimycin and is the first reported antibiotic of the antimycin family without the macrolide core. In this study, we explored the total synthesis and stereochemical assignment of isoneoantimycin as an approach to perform structure-activity studies on neoantimycins. Taking the neoantimycin biosynthesis pathway into account, we presumed that the stereochemistry of isoneoantimycin is the same as that of neoantimycin. The synthesis of our target molecule with the (1S,2R,5S,6S,14R,15R,17S) configuration has been achieved by using chiral-pool building blocks. A comparison of the spectroscopic data between the synthetic and natural samples verified our presumption of the stereochemistry of natural isoneoantimycin.


Assuntos
Antibacterianos , Compostos Orgânicos , Antimicina A , Antibacterianos/química , Compostos Orgânicos/química
11.
Biochem J ; 479(1): 111-127, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-34981811

RESUMO

The cytochrome b6f complex (b6f) has been initially considered as the ferredoxin-plastoquinone reductase (FQR) during cyclic electron flow (CEF) with photosystem I that is inhibited by antimycin A (AA). The binding of AA to the b6f Qi-site is aggravated by heme-ci, which challenged the FQR function of b6f during CEF. Alternative models suggest that PROTON GRADIENT REGULATION5 (PGR5) is involved in a b6f-independent, AA-sensitive FQR. Here, we show in Chlamydomonas reinhardtii that the b6f is conditionally inhibited by AA in vivo and that the inhibition did not require PGR5. Instead, activation of the STT7 kinase upon anaerobic treatment induced the AA sensitivity of b6f which was absent from stt7-1. However, a lock in State 2 due to persisting phosphorylation in the phosphatase double mutant pph1;pbcp did not increase AA sensitivity of electron transfer. The latter required a redox poise, supporting the view that state transitions and CEF are not coercively coupled. This suggests that the b6f-interacting kinase is required for structure-function modulation of the Qi-site under CEF favoring conditions. We propose that PGR5 and STT7 independently sustain AA-sensitive FQR activity of the b6f. Accordingly, PGR5-mediated electron injection into an STT7-modulated Qi-site drives a Mitchellian Q cycle in CEF conditions.


Assuntos
Antimicina A/farmacologia , Chlamydomonas reinhardtii/enzimologia , Complexo Citocromos b6f/metabolismo , Elétrons , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tilacoides/enzimologia , Antimicina A/metabolismo , Complexo Citocromos b6f/antagonistas & inibidores , Transporte de Elétrons/efeitos dos fármacos , Ativação Enzimática , Ferredoxinas/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Fosforilação/efeitos dos fármacos , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I/metabolismo , Plastoquinona/metabolismo , Quinona Redutases/metabolismo
12.
Chem Biodivers ; 20(8): e202300715, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37357143

RESUMO

Polyphagous insects could affect agricultural production, which leads to serious economic losses. Due to the negative effects of synthesized insecticides, finding eco-friendly and new biopesticides is emergent. To develop natural origin insecticides, an integrative approach combining antifeedant activity screening, genome mining, and molecular networking has been applied to discover antifeedant secondary metabolites from Streptomyces sp. NA13, which leads to the isolation of a novel antimycin Q (1) and six known antimycin analogs (antimycins A1a, A2a, A3a, A4a, A7a, and N-formylantimycic acid methyl ester, 2-7). Their structures were identified by high-resolution mass spectrometry (HR-MS) and nuclear magnetic resonance (NMR) spectroscopic. The absolute configuration of 1 was elucidated by the comparison of coupling constant, electronic circular dichroism (ECD) analysis, and NMR calculations. 1-6 exhibited different levels of antifeedant activities against Helicoverpa armigera, especially 1-4. At the same time, the antifeedant activity of antimycin was reported firstly.


Assuntos
Inseticidas , Mariposas , Streptomyces , Animais , Streptomyces/química , Inseticidas/química , Antimicina A , Estrutura Molecular
13.
Mol Biol (Mosk) ; 57(4): 689-691, 2023.
Artigo em Russo | MEDLINE | ID: mdl-37528789

RESUMO

Ras proteins are small GTPases and function as molecular switches to regulate cellular homeostasis. Ras-dependent signalling pathways regulate several essential processes such as cell cycle progression, growth, migration, apoptosis, and senescence. The dysregulation of Ras signaling pathway has been linked to several pathological outcomes. A potential role of RAS in regulating the redox signalling pathway has been established that includes the manipulation of ROS levels to provide a redox milieu that might be conducive to carcinogenesis. Reactive oxygen species (ROS) and mitochondrial impairment have been proposed as major factors affecting the physiology of cells and implicated in several pathologies. The present study was conducted to evaluate the role of Ras1, tert Butyl hydroperoxide (tBHP), and antimycin A in oxidative stress response in Schizosaccharomyces pombe cells. We observed decreased cell survival, higher levels of ROS, and mitochondrial dysfunctionality in ras1Δ cells and tBHP as well as respiratory inhibitor, antimycin A treated wild type cells. Furthermore, these defects were more profound in ras1Δ cells treated with tBHP or antimycin A. Additionally, Ras1 also has been shown to regulate the expression and activity of several antioxidant enzymes like glutathione peroxidase (GSH-Px), glutathione-S-transferase (GST), and catalase. Together, these results suggest the potential role of S. pombe Ras1 in mitigating oxidative stress response.


Assuntos
Schizosaccharomyces , Espécies Reativas de Oxigênio/metabolismo , terc-Butil Hidroperóxido/toxicidade , terc-Butil Hidroperóxido/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Antimicina A/farmacologia , Antimicina A/metabolismo , Estresse Oxidativo , Oxirredução
14.
Arch Biochem Biophys ; 726: 109232, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35660297

RESUMO

Much evidence indicates that superoxide is generated from O2 in a cyanide-sensitive reaction involving a reduced component of complex III of the mitochondrial respiratory chain, particularly when antimycin A is present. Although it is generally believed that ubisemiquinone is the electron donor to O2, little experimental evidence supporting this view has been reported. Experiments with succinate as electron donor in the presence of antimycin A in intact rat heart mitochondria, which contain much superoxide dismutase but little catalase, showed that myxothiazol, which inhibits reduction of the Rieske iron-sulfur center, prevented formation of hydrogen peroxide, determined spectrophotometrically as the H2O2-peroxidase complex. Similarly, depletion of the mitochondria of their cytochrome c also inhibited formation of H2O2, which was restored by addition of cytochrome c. These observations indicate that factors preventing the formation of ubisemiquinone also prevent H2O2 formation. They also exclude ubiquinol, which remains reduced under these conditions, as the reductant of O2. Since cytochrome b also remains fully reduced when myxothiazol is added to succinate- and antimycin A-supplemented mitochondria, reduced cytochrome b may also be excluded as the reductant of O2. These observations, which are consistent with the Q-cycle reactions, by exclusion of other possibilities leave ubisemiquinone as the only reduced electron carrier in complex III capable of reducing O2 to O2-.


Assuntos
Mitocôndrias Cardíacas , Superóxidos , Animais , Antimicina A/metabolismo , Antimicina A/farmacologia , Citocromos b/metabolismo , Citocromos c/metabolismo , Transporte de Elétrons , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Elétrons , Peróxido de Hidrogênio/metabolismo , Mitocôndrias Cardíacas/metabolismo , Oxirredução , Ratos , Substâncias Redutoras/metabolismo , Succinatos/metabolismo , Succinatos/farmacologia , Ácido Succínico , Superóxidos/metabolismo , Ubiquinona/análogos & derivados
15.
Platelets ; 33(7): 1083-1089, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-35348041

RESUMO

Platelets have an active energy metabolism mediated by mitochondria. However, the role of mitochondria in platelet adhesion, activation, and thrombus formation under blood flow conditions remains to be elucidated. Blood specimens were obtained from healthy adult volunteers. The consumption of glucose molecules by platelets was measured after 24 hours. Platelet adhesion, activation, and thrombus formation on collagen fibrils and immobilized von Willebrand factor (VWF) at a wall shear rate of 1,500 s-1 were detected by fluorescence microscopy with an ultrafast laser confocal unit in the presence or absence of mitochondrial functional inhibitors of carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), antimycin A, and oligomycin. Consumption of glucose molecules within the first 24 h of 4.21 × 10-15 ± 4.46 x 10-15 (n = 6) increased to 13.82 × 10-15 ± 3.46 x 10-15 (n = 4) in the presence of FCCP, 12.11 × 10-15 ± 2.33 x 10-15 (n = 4) in the presence of antimycin A, and 11.87 × 10-15 ± 3.56 x 10-15 (n = 4) in the presence of oligomycin (p < .05). These mitochondrial functional blockers did not influence both surface area coverage by platelets and the 3-dimensional size of platelet thrombi formed on the collagen fibrils. However, a rapid increase in the intracellular calcium ion concentration ([Ca2+]i) upon adhering on immobilized VWF decreased significantly from 405.5 ± 86.2 nM in control to 198.0 ± 79.2 nM in the presence of FCCP (p < .005). A similar decrease in the rapid increase in ([Ca2+]i) was observed in the presence of antimycin A and oligomycin. Mitochondrial function is necessary for platelet activation represented by a rapid increase in [Ca2+]i after platelet adhesion on VWF. However, the influence could not be detected as changes in platelet adhesion or 3-dimensional growth of platelet thrombi on collagen fibrils.


Assuntos
Trombose , Fator de von Willebrand , Adulto , Antimicina A/metabolismo , Antimicina A/farmacologia , Plaquetas/metabolismo , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/metabolismo , Colágeno/metabolismo , Metabolismo Energético , Glucose/metabolismo , Humanos , Mitocôndrias/metabolismo , Oligomicinas/metabolismo , Oligomicinas/farmacologia , Adesividade Plaquetária , Trombose/metabolismo , Fator de von Willebrand/metabolismo
16.
Biochemistry (Mosc) ; 87(8): 720-730, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36171653

RESUMO

Cytochrome bd-II is one of the three terminal quinol oxidases of the aerobic respiratory chain of Escherichia coli. Preparations of the detergent-solubilized untagged bd-II oxidase isolated from the bacterium were shown to scavenge hydrogen peroxide (H2O2) with high rate producing molecular oxygen (O2). Addition of H2O2 to the same buffer that does not contain enzyme or contains thermally denatured cytochrome bd-II does not lead to any O2 production. The latter observation rules out involvement of adventitious transition metals bound to the protein. The H2O2-induced O2 production is not susceptible to inhibition by N-ethylmaleimide (the sulfhydryl binding compound), antimycin A (the compound that binds specifically to a quinol binding site), and CO (diatomic gas that binds specifically to the reduced heme d). However, O2 formation is inhibited by cyanide (IC50 = 4.5 ± 0.5 µM) and azide. Addition of H2O2 in the presence of dithiothreitol and ubiquinone-1 does not inactivate cytochrome bd-II and apparently does not affect the O2 reductase activity of the enzyme. The ability of cytochrome bd-II to detoxify H2O2 could play a role in bacterial physiology by conferring resistance to the peroxide-mediated stress.


Assuntos
Proteínas da Membrana Bacteriana Externa , Proteínas de Escherichia coli , Escherichia coli , Antimicina A/metabolismo , Azidas/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Cianetos/metabolismo , Grupo dos Citocromos b/metabolismo , Citocromos/metabolismo , Detergentes , Ditiotreitol/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Etilmaleimida/metabolismo , Peróxido de Hidrogênio/metabolismo , Hidroquinonas/metabolismo , Oxirredução , Oxirredutases/metabolismo , Oxigênio/metabolismo , Ubiquinona/metabolismo
17.
Int J Mol Sci ; 23(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36012337

RESUMO

Mitochondrial electron transport chain (ETC) inhibition is a phenomenon interesting in itself and serves as a tool for studying various cellular processes. Despite the fact that searching the term "rotenone" in PubMed returns more than 6900 results, there are many discrepancies regarding the directions of changes reported to be caused by this RTC inhibitor in the delicate redox balance of the cell. Here, we performed a multifaceted study of the popular ETC inhibitors rotenone and antimycin A, involving assessment of mitochondrial membrane potential and the production of hydrogen peroxide and superoxide anions at cellular and mitochondrial levels over a wide range of inhibitor concentrations (1 nmol/dm3-100 µmol/dm3). All measurements were performed with whole cells, with accompanying control of ATP levels. Antimycin A was more potent in hindering HepG2 cells' abilities to produce ATP, decreasing ATP levels even at a 1 nmol/dm3 concentration, while in the case of rotenone, a 10,000-times greater concentration was needed to produce a statistically significant decrease. The amount of hydrogen peroxide produced in the course of antimycin A biological activity increased rapidly at low concentrations and decreased below control level at a high concentration of 100 µmol/dm3. While both inhibitors influenced cellular superoxide anion production in a comparable manner, rotenone caused a greater increase in mitochondrial superoxide anions compared to a modest impact for antimycin A. IC50 values for rotenone and antimycin A with respect to HepG2 cell survival were of the same order of magnitude, but the survival curve of cells treated with rotenone was clearly biphasic, suggesting a concentration-dependent mode of biological action. We propose a clear experimental setup allowing for complete and credible analysis of the redox state of cells under stress conditions which allows for better understanding of the effects of ETC inhibition.


Assuntos
Peróxido de Hidrogênio , Superóxidos , Trifosfato de Adenosina/metabolismo , Antimicina A/farmacologia , Transporte de Elétrons , Peróxido de Hidrogênio/metabolismo , Rotenona/farmacologia , Superóxidos/metabolismo
18.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36293550

RESUMO

Trained immune responses, based on metabolic and epigenetic changes in innate immune cells, are de facto innate immune memory and, therefore, are of great interest in vaccine development. In previous studies, the recombinant fusion protein rFlaA:Betv1, combining the adjuvant and toll-like receptor (TLR)5-ligand flagellin (FlaA) and the major birch pollen allergen Bet v 1 into a single molecule, significantly suppressed allergic sensitization in vivo while also changing the metabolism of myeloid dendritic cells (mDCs). Within this study, the immune-metabolic effects of rFlaA:Betv1 during mDC activation were elucidated. In line with results for other well-characterized TLR-ligands, rFlaA:Betv1 increased glycolysis while suppressing oxidative phosphorylation to different extents, making rFlaA:Betv1 a suitable model to study the immune-metabolic effects of TLR-adjuvanted vaccines. In vitro pretreatment of mDCs with cerulenin (inhibitor of fatty acid biosynthesis) led to a decrease in both rFlaA:Betv1-induced anti-inflammatory cytokine Interleukin (IL) 10 and T helper cell type (TH) 1-related cytokine IL-12p70, while the pro-inflammatory cytokine IL 1ß was unaffected. Interestingly, pretreatment with the glutaminase inhibitor BPTES resulted in an increase in IL-1ß, but decreased IL-12p70 secretion while leaving IL-10 unchanged. Inhibition of the glycolytic enzyme hexokinase-2 by 2-deoxyglucose led to a decrease in all investigated cytokines (IL-10, IL-12p70, and IL-1ß). Inhibitors of mitochondrial respiration had no effect on rFlaA:Betv1-induced IL-10 level, but either enhanced the secretion of IL-1ß (oligomycin) or decreased IL-12p70 (antimycin A). In extracellular flux measurements, mDCs showed a strongly enhanced glycolysis after rFlaA:Betv1 stimulation, which was slightly increased after respiratory shutdown using antimycin A. rFlaA:Betv1-stimulated mDCs secreted directly antimicrobial substances in a mTOR- and fatty acid metabolism-dependent manner. In co-cultures of rFlaA:Betv1-stimulated mDCs with CD4+ T cells, the suppression of Bet v 1-specific TH2 responses was shown to depend on fatty acid synthesis. The effector function of rFlaA:Betv1-activated mDCs mainly relies on glycolysis, with fatty acid synthesis also significantly contributing to rFlaA:Betv1-mediated cytokine secretion, the production of antimicrobial molecules, and the modulation of T cell responses.


Assuntos
Receptor 5 Toll-Like , Vacinas , Receptor 5 Toll-Like/metabolismo , Alérgenos , Interleucina-10/metabolismo , Flagelina/metabolismo , Hexoquinase/metabolismo , Glutaminase/metabolismo , Ligantes , Antimicina A/metabolismo , Antimicina A/farmacologia , Cerulenina/metabolismo , Cerulenina/farmacologia , Células Dendríticas , Proteínas Recombinantes/metabolismo , Citocinas/metabolismo , Adjuvantes Imunológicos/farmacologia , Vacinas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Glicólise , Serina-Treonina Quinases TOR/metabolismo , Desoxiglucose/farmacologia , Oligomicinas/farmacologia , Ácidos Graxos/metabolismo
19.
J Cell Physiol ; 236(5): 3710-3724, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33043995

RESUMO

Following stress, transfer RNA (tRNA) is cleaved to generate tRNA halves (tiRNAs). These tiRNAs have been shown to repress protein translation. Angiogenin was considered the main enzyme that cleaves tRNA at its anticodon to generate 35-45 nucleotide long tiRNA halves, however, the recent reports indicate the presence of angiogenin-independent cleavage. We previously observed tRNA cleavage pattern occurring away from the anticodon site. To explore this noncanonical cleavage, we analyze tRNA cleavage patterns in rat model of ischemia-reperfusion and in two rat cell lines. In vivo mitochondrial tRNAs were prone to this noncanonical cleavage pattern. In vitro, however, cytosolic and mitochondrial tRNAs could be cleaved noncanonically. Our results show an important regulatory role of mitochondrial stress in angiogenin-mediated tRNA cleavage. Neither angiogenin nor RNH1 appear to regulate the noncanonical tRNA cleavage. Finally, we verified our previous findings of the role of Alkbh1 in regulating tRNA cleavage and its impact on noncanonical tRNA cleavage.


Assuntos
Células/metabolismo , RNA de Transferência/metabolismo , Estresse Fisiológico , Animais , Antimicina A/toxicidade , Arsenitos/toxicidade , Proteínas de Transporte/metabolismo , Linhagem Celular , Células/efeitos dos fármacos , Citosol/efeitos dos fármacos , Citosol/metabolismo , Desmetilação/efeitos dos fármacos , Humanos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ratos Wistar , Ribonuclease Pancreático/metabolismo , Estresse Fisiológico/efeitos dos fármacos
20.
Biochem Biophys Res Commun ; 547: 162-168, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33610916

RESUMO

Although acute myeloid leukemia (AML) is a highly heterogeneous disease with diverse genetic subsets, one hallmark of AML blasts is myeloid differentiation blockade. Extensive evidence has indicated that differentiation induction therapy represents a promising treatment strategy. Here, we identified that the pharmacological inhibition of the mitochondrial electron transport chain (ETC) complex III by antimycin A inhibits proliferation and promotes cellular differentiation of AML cells. Mechanistically, we showed that the inhibition of dihydroorotate dehydrogenase (DHODH), a rate-limiting enzyme in de novo pyrimidine biosynthesis, is involved in antimycin A-induced differentiation. The activity of antimycin A could be reversed by supplement of excessive amounts of exogenous uridine as well as orotic acid, the product of DHODH. Furthermore, we also found that complex III inhibition exerts a synergistic effect in differentiation induction combined with DHODH inhibitor brequinar as well as with the pyrimidine salvage pathway inhibitor dipyridamole. Collectively, our study uncovered the link between mitochondrial complex III and AML differentiation and may provide further insight into the potential application of mitochondrial complex III inhibitor as a mono or combination treatment in differentiation therapy of AML.


Assuntos
Antimicina A/análogos & derivados , Compostos de Bifenilo/farmacologia , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Antimicina A/farmacologia , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Di-Hidro-Orotato Desidrogenase , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/patologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa