Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33.503
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 37: 73-95, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31026414

RESUMO

Neurotropic RNA viruses continue to emerge and are increasingly linked to diseases of the central nervous system (CNS) despite viral clearance. Indeed, the overall mortality of viral encephalitis in immunocompetent individuals is low, suggesting efficient mechanisms of virologic control within the CNS. Both immune and neural cells participate in this process, which requires extensive innate immune signaling between resident and infiltrating cells, including microglia and monocytes, that regulate the effector functions of antiviral T and B cells as they gain access to CNS compartments. While these interactions promote viral clearance via mainly neuroprotective mechanisms, they may also promote neuropathology and, in some cases, induce persistent alterations in CNS physiology and function that manifest as neurologic and psychiatric diseases. This review discusses mechanisms of RNA virus clearance and neurotoxicity during viral encephalitis with a focus on the cytokines essential for immune and neural cell inflammatory responses and interactions. Understanding neuroimmune communications in the setting of viral infections is essential for the development of treatments that augment neuroprotective processes while limiting ongoing immunopathological processes that cause ongoing CNS disease.


Assuntos
Encéfalo/imunologia , Imunidade Inata , Microglia/fisiologia , Infecções por Vírus de RNA/imunologia , Vírus de RNA/fisiologia , Animais , Barreira Hematoencefálica , Encéfalo/virologia , Humanos , Inflamação Neurogênica , Neuroimunomodulação
2.
Cell ; 187(18): 4946-4963.e17, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39089253

RESUMO

The choroid plexus (ChP) is a vital brain barrier and source of cerebrospinal fluid (CSF). Here, we use longitudinal two-photon imaging in awake mice and single-cell transcriptomics to elucidate the mechanisms of ChP regulation of brain inflammation. We used intracerebroventricular injections of lipopolysaccharides (LPS) to model meningitis in mice and observed that neutrophils and monocytes accumulated in the ChP stroma and surged across the epithelial barrier into the CSF. Bi-directional recruitment of monocytes from the periphery and, unexpectedly, macrophages from the CSF to the ChP helped eliminate neutrophils and repair the barrier. Transcriptomic analyses detailed the molecular steps accompanying this process and revealed that ChP epithelial cells transiently specialize to nurture immune cells, coordinating their recruitment, survival, and differentiation as well as regulation of the tight junctions that control the permeability of the ChP brain barrier. Collectively, we provide a mechanistic understanding and a comprehensive roadmap of neuroinflammation at the ChP brain barrier.


Assuntos
Barreira Hematoencefálica , Plexo Corióideo , Lipopolissacarídeos , Macrófagos , Doenças Neuroinflamatórias , Neutrófilos , Plexo Corióideo/metabolismo , Animais , Camundongos , Doenças Neuroinflamatórias/metabolismo , Barreira Hematoencefálica/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Neutrófilos/metabolismo , Neutrófilos/imunologia , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Masculino , Junções Íntimas/metabolismo , Células Epiteliais/metabolismo , Feminino
3.
Cell ; 186(16): 3522-3522.e1, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37541203

RESUMO

Located in each brain ventricle, choroid plexus (ChP) tissue forms a blood-CSF barrier and produces cerebrospinal fluid (CSF) and other supportive factors. Sheets of ChP epithelial cells enclose a vascularized stroma of mesenchymal, immune, and neuron/glia-like cells. Burgeoning ChP studies are revealing its complex set of functions across the lifespan. To view this SnapShot, open or download the PDF.


Assuntos
Encéfalo , Plexo Corióideo , Barreira Hematoencefálica , Longevidade , Células Epiteliais , Líquido Cefalorraquidiano
4.
Cell ; 186(20): 4289-4309.e23, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37683635

RESUMO

Here, we reveal an unanticipated role of the blood-brain barrier (BBB) in regulating complex social behavior in ants. Using scRNA-seq, we find localization in the BBB of a key hormone-degrading enzyme called juvenile hormone esterase (Jhe), and we show that this localization governs the level of juvenile hormone (JH3) entering the brain. Manipulation of the Jhe level reprograms the brain transcriptome between ant castes. Although ant Jhe is retained and functions intracellularly within the BBB, we show that Drosophila Jhe is naturally extracellular. Heterologous expression of ant Jhe into the Drosophila BBB alters behavior in fly to mimic what is seen in ants. Most strikingly, manipulation of Jhe levels in ants reprograms complex behavior between worker castes. Our study thus uncovers a remarkable, potentially conserved role of the BBB serving as a molecular gatekeeper for a neurohormonal pathway that regulates social behavior.


Assuntos
Formigas , Animais , Formigas/fisiologia , Barreira Hematoencefálica , Encéfalo/metabolismo , Drosophila , Comportamento Social , Comportamento Animal
5.
Cell ; 186(23): 5028-5040.e14, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37852257

RESUMO

Wnt proteins are enzymatically lipidated by Porcupine (PORCN) in the ER and bind to Wntless (WLS) for intracellular transport and secretion. Mechanisms governing the transfer of these low-solubility Wnts from the ER to the extracellular space remain unclear. Through structural and functional analyses of Wnt7a, a crucial Wnt involved in central nervous system angiogenesis and blood-brain barrier maintenance, we have elucidated the principles of Wnt biogenesis and Wnt7-specific signaling. The Wnt7a-WLS complex binds to calreticulin (CALR), revealing that CALR functions as a chaperone to facilitate Wnt transfer from PORCN to WLS during Wnt biogenesis. Our structures, functional analyses, and molecular dynamics simulations demonstrate that a phospholipid in the core of Wnt-bound WLS regulates the association and dissociation between Wnt and WLS, suggesting a lipid-mediated Wnt secretion mechanism. Finally, the structure of Wnt7a bound to RECK, a cell-surface Wnt7 co-receptor, reveals how RECKCC4 engages the N-terminal domain of Wnt7a to activate Wnt7-specific signaling.


Assuntos
Receptores Acoplados a Proteínas G , Proteínas Wnt , Via de Sinalização Wnt , Barreira Hematoencefálica/metabolismo , Ligação Proteica , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Proteínas Wnt/química , Proteínas Wnt/metabolismo
6.
Cell ; 186(4): 764-785.e21, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36803604

RESUMO

The choroid plexus (ChP) is the blood-cerebrospinal fluid (CSF) barrier and the primary source of CSF. Acquired hydrocephalus, caused by brain infection or hemorrhage, lacks drug treatments due to obscure pathobiology. Our integrated, multi-omic investigation of post-infectious hydrocephalus (PIH) and post-hemorrhagic hydrocephalus (PHH) models revealed that lipopolysaccharide and blood breakdown products trigger highly similar TLR4-dependent immune responses at the ChP-CSF interface. The resulting CSF "cytokine storm", elicited from peripherally derived and border-associated ChP macrophages, causes increased CSF production from ChP epithelial cells via phospho-activation of the TNF-receptor-associated kinase SPAK, which serves as a regulatory scaffold of a multi-ion transporter protein complex. Genetic or pharmacological immunomodulation prevents PIH and PHH by antagonizing SPAK-dependent CSF hypersecretion. These results reveal the ChP as a dynamic, cellularly heterogeneous tissue with highly regulated immune-secretory capacity, expand our understanding of ChP immune-epithelial cell cross talk, and reframe PIH and PHH as related neuroimmune disorders vulnerable to small molecule pharmacotherapy.


Assuntos
Plexo Corióideo , Hidrocefalia , Humanos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Plexo Corióideo/metabolismo , Hidrocefalia/líquido cefalorraquidiano , Hidrocefalia/imunologia , Imunidade Inata , Síndrome da Liberação de Citocina/patologia
7.
Cell ; 184(11): 3056-3074.e21, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33932339

RESUMO

The choroid plexus (ChP) in each brain ventricle produces cerebrospinal fluid (CSF) and forms the blood-CSF barrier. Here, we construct a single-cell and spatial atlas of each ChP in the developing, adult, and aged mouse brain. We delineate diverse cell types, subtypes, cell states, and expression programs in epithelial and mesenchymal cells across ages and ventricles. In the developing ChP, we predict a common progenitor pool for epithelial and neuronal cells, validated by lineage tracing. Epithelial and fibroblast cells show regionalized expression by ventricle, starting at embryonic stages and persisting with age, with a dramatic transcriptional shift with maturation, and a smaller shift in each aged cell type. With aging, epithelial cells upregulate host-defense programs, and resident macrophages upregulate interleukin-1ß (IL-1ß) signaling genes. Our atlas reveals cellular diversity, architecture and signaling across ventricles during development, maturation, and aging of the ChP-brain barrier.


Assuntos
Plexo Corióideo/embriologia , Plexo Corióideo/metabolismo , Fatores Etários , Envelhecimento/fisiologia , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiologia , Encefalopatias/genética , Encefalopatias/fisiopatologia , Diferenciação Celular/genética , Linhagem da Célula/genética , Plexo Corióideo/fisiologia , Células Epiteliais/metabolismo , Feminino , Masculino , Camundongos/embriologia , Camundongos Endogâmicos C57BL , Transdução de Sinais , Análise de Célula Única
8.
Nat Immunol ; 24(7): 1173-1187, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37291385

RESUMO

Blood protein extravasation through a disrupted blood-brain barrier and innate immune activation are hallmarks of neurological diseases and emerging therapeutic targets. However, how blood proteins polarize innate immune cells remains largely unknown. Here, we established an unbiased blood-innate immunity multiomic and genetic loss-of-function pipeline to define the transcriptome and global phosphoproteome of blood-induced innate immune polarization and its role in microglia neurotoxicity. Blood induced widespread microglial transcriptional changes, including changes involving oxidative stress and neurodegenerative genes. Comparative functional multiomics showed that blood proteins induce distinct receptor-mediated transcriptional programs in microglia and macrophages, such as redox, type I interferon and lymphocyte recruitment. Deletion of the blood coagulation factor fibrinogen largely reversed blood-induced microglia neurodegenerative signatures. Genetic elimination of the fibrinogen-binding motif to CD11b in Alzheimer's disease mice reduced microglial lipid metabolism and neurodegenerative signatures that were shared with autoimmune-driven neuroinflammation in multiple sclerosis mice. Our data provide an interactive resource for investigation of the immunology of blood proteins that could support therapeutic targeting of microglia activation by immune and vascular signals.


Assuntos
Doença de Alzheimer , Microglia , Camundongos , Animais , Microglia/metabolismo , Multiômica , Barreira Hematoencefálica/metabolismo , Doença de Alzheimer/genética , Fibrinogênio
9.
Cell ; 183(1): 126-142.e17, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32961131

RESUMO

CD19-directed immunotherapies are clinically effective for treating B cell malignancies but also cause a high incidence of neurotoxicity. A subset of patients treated with chimeric antigen receptor (CAR) T cells or bispecific T cell engager (BiTE) antibodies display severe neurotoxicity, including fatal cerebral edema associated with T cell infiltration into the brain. Here, we report that mural cells, which surround the endothelium and are critical for blood-brain-barrier integrity, express CD19. We identify CD19 expression in brain mural cells using single-cell RNA sequencing data and confirm perivascular staining at the protein level. CD19 expression in the brain begins early in development alongside the emergence of mural cell lineages and persists throughout adulthood across brain regions. Mouse mural cells demonstrate lower levels of Cd19 expression, suggesting limitations in preclinical animal models of neurotoxicity. These data suggest an on-target mechanism for neurotoxicity in CD19-directed therapies and highlight the utility of human single-cell atlases for designing immunotherapies.


Assuntos
Barreira Hematoencefálica/metabolismo , Células Epiteliais/metabolismo , Imunoterapia Adotiva/efeitos adversos , Animais , Anticorpos Biespecíficos/imunologia , Antígenos CD19/imunologia , Linfócitos B/imunologia , Barreira Hematoencefálica/imunologia , Encéfalo/imunologia , Encéfalo/metabolismo , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Humanos , Imunoterapia/efeitos adversos , Imunoterapia/métodos , Imunoterapia Adotiva/métodos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Músculo Liso Vascular/metabolismo , Neoplasias , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Análise de Célula Única/métodos , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cell ; 182(2): 267-269, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32707092

RESUMO

Brain disorders are at the leading edge of global disease burden worldwide. Effective therapies are lagging behind because most drugs cannot reach their targets in the brain because of the blood-brain barrier (BBB). The new development of a BBB transport vehicle may bring us a step closer to solve this problem.


Assuntos
Barreira Hematoencefálica/metabolismo , Encefalopatias/patologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Barreira Hematoencefálica/efeitos dos fármacos , Encefalopatias/metabolismo , Portadores de Fármacos/química , Humanos , Imunoconjugados/química , Imunoconjugados/imunologia , Imunoconjugados/farmacologia , Receptores da Transferrina/imunologia , Receptores da Transferrina/metabolismo , Transcitose
11.
Nat Immunol ; 22(9): 1083-1092, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34429552

RESUMO

For decades, it was commonly accepted that the brain is secluded from peripheral immune activity and is self-sufficient for its maintenance and repair. This simplistic perception was based on the presence of resident immune cells, the microglia, and barrier systems within the brain, and the assumption that the central nervous system (CNS) lacks lymphatic drainage. This view was revised with the discoveries that higher functions of the CNS, homeostasis and repair are supported by peripheral innate and adaptive immune cells. The findings of bone marrow-derived immune cells in specialized niches, and the renewed observation that a lymphatic drainage system exists within the brain, further contributed to this revised model. In this Review, we describe the immune niches within the brain, the contribution of professional immune cells to brain functions, the bidirectional relationships between the CNS and the immune system and the relevance of immune components to brain aging and neurodegenerative diseases.


Assuntos
Encéfalo/imunologia , Imunidade/fisiologia , Microglia/imunologia , Doenças Neurodegenerativas/imunologia , Envelhecimento/imunologia , Barreira Hematoencefálica/imunologia , Células da Medula Óssea/imunologia , Líquido Cefalorraquidiano/citologia , Líquido Cefalorraquidiano/imunologia , Humanos , Subpopulações de Linfócitos/imunologia , Macrófagos/imunologia
12.
Nat Immunol ; 22(10): 1280-1293, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34556874

RESUMO

Traumatic brain injury (TBI) and cerebrovascular injury are leading causes of disability and mortality worldwide. Systemic infections often accompany these disorders and can worsen outcomes. Recovery after brain injury depends on innate immunity, but the effect of infections on this process is not well understood. Here, we demonstrate that systemically introduced microorganisms and microbial products interfered with meningeal vascular repair after TBI in a type I interferon (IFN-I)-dependent manner, with sequential infections promoting chronic disrepair. Mechanistically, we discovered that MDA5-dependent detection of an arenavirus encountered after TBI disrupted pro-angiogenic myeloid cell programming via induction of IFN-I signaling. Systemic viral infection similarly blocked restorative angiogenesis in the brain parenchyma after intracranial hemorrhage, leading to chronic IFN-I signaling, blood-brain barrier leakage and a failure to restore cognitive-motor function. Our findings reveal a common immunological mechanism by which systemic infections deviate reparative programming after central nervous system injury and offer a new therapeutic target to improve recovery.


Assuntos
Anti-Infecciosos/imunologia , Lesões Encefálicas Traumáticas/imunologia , Sistema Nervoso Central/imunologia , Imunidade Inata/imunologia , Animais , Barreira Hematoencefálica/imunologia , Encéfalo/imunologia , Modelos Animais de Doenças , Feminino , Interferon Tipo I/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/imunologia
13.
Immunity ; 57(6): 1192-1194, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38865965

RESUMO

Bacterial lipopolysaccharide (LPS) is implicated in disrupting the blood-brain barrier (BBB). In a recent issue of Nature, Wei et al. now show that LPS activates the inflammatory caspases (4, 5, and 11) and gasdermin D (GSDMD) in brain endothelial cells, which triggers their pyroptotic cell death and disrupts the BBB.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Lipopolissacarídeos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/imunologia , Animais , Humanos , Células Endoteliais/metabolismo , Células Endoteliais/imunologia , Lipopolissacarídeos/imunologia , Caspases/metabolismo , Piroptose , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Camundongos
14.
Cell ; 175(6): 1665-1678.e18, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30343896

RESUMO

Low-grade gliomas almost invariably progress into secondary glioblastoma (sGBM) with limited therapeutic option and poorly understood mechanism. By studying the mutational landscape of 188 sGBMs, we find significant enrichment of TP53 mutations, somatic hypermutation, MET-exon-14-skipping (METex14), PTPRZ1-MET (ZM) fusions, and MET amplification. Strikingly, METex14 frequently co-occurs with ZM fusion and is present in ∼14% of cases with significantly worse prognosis. Subsequent studies show that METex14 promotes glioma progression by prolonging MET activity. Furthermore, we describe a MET kinase inhibitor, PLB-1001, that demonstrates remarkable potency in selectively inhibiting MET-altered tumor cells in preclinical models. Importantly, this compound also shows blood-brain barrier permeability and is subsequently applied in a phase I clinical trial that enrolls MET-altered chemo-resistant glioma patients. Encouragingly, PLB-1001 achieves partial response in at least two advanced sGBM patients with rarely significant side effects, underscoring the clinical potential for precisely treating gliomas using this therapy.


Assuntos
Neoplasias Encefálicas , Éxons , Glioblastoma , Mutação , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-met , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Sistemas de Liberação de Medicamentos , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Ratos Sprague-Dawley , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Cell ; 174(5): 1216-1228.e19, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30057111

RESUMO

Protein phosphorylation is a prevalent and ubiquitous mechanism of regulation. Kinases are popular drug targets, but identifying selective phosphatase inhibitors has been challenging. Here, we used surface plasmon resonance to design a method to enable target-based discovery of selective serine/threonine phosphatase inhibitors. The method targeted a regulatory subunit of protein phosphatase 1, PPP1R15B (R15B), a negative regulator of proteostasis. This yielded Raphin1, a selective inhibitor of R15B. In cells, Raphin1 caused a rapid and transient accumulation of its phosphorylated substrate, resulting in a transient attenuation of protein synthesis. In vitro, Raphin1 inhibits the recombinant R15B-PP1c holoenzyme, but not the closely related R15A-PP1c, by interfering with substrate recruitment. Raphin1 was orally bioavailable, crossed the blood-brain barrier, and demonstrated efficacy in a mouse model of Huntington's disease. This identifies R15B as a druggable target and provides a platform for target-based discovery of inhibitors of serine/threonine phosphatases.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Guanidinas/farmacologia , Proteína Fosfatase 1/antagonistas & inibidores , Animais , Peso Corporal , Modelos Animais de Doenças , Descoberta de Drogas , Feminino , Guanidinas/química , Células HeLa , Humanos , Doença de Huntington/metabolismo , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Proteína Fosfatase 1/metabolismo , Subunidades Proteicas/antagonistas & inibidores , Proteostase , Proteínas Recombinantes/farmacologia , Ressonância de Plasmônio de Superfície
16.
Cell ; 173(1): 130-139.e10, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29526461

RESUMO

Endogenous circadian rhythms are thought to modulate responses to external factors, but mechanisms that confer time-of-day differences in organismal responses to environmental insults/therapeutic treatments are poorly understood. Using a xenobiotic, we find that permeability of the Drosophila "blood"-brain barrier (BBB) is higher at night. The permeability rhythm is driven by circadian regulation of efflux and depends on a molecular clock in the perineurial glia of the BBB, although efflux transporters are restricted to subperineurial glia (SPG). We show that transmission of circadian signals across the layers requires cyclically expressed gap junctions. Specifically, during nighttime, gap junctions reduce intracellular magnesium ([Mg2+]i), a positive regulator of efflux, in SPG. Consistent with lower nighttime efflux, nighttime administration of the anti-epileptic phenytoin is more effective at treating a Drosophila seizure model. These findings identify a novel mechanism of circadian regulation and have therapeutic implications for drugs targeted to the central nervous system.


Assuntos
Barreira Hematoencefálica/metabolismo , Relógios Circadianos , Drosophila/metabolismo , Rodaminas/metabolismo , Xenobióticos/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/metabolismo , Relógios Circadianos/efeitos dos fármacos , Conexinas/metabolismo , Proteínas de Drosophila/metabolismo , Feminino , Junções Comunicantes/metabolismo , Magnésio/metabolismo , Neuroglia/metabolismo , Fenitoína/farmacologia , Fenitoína/uso terapêutico , Convulsões/tratamento farmacológico , Convulsões/patologia , Convulsões/veterinária
17.
Annu Rev Cell Dev Biol ; 35: 591-613, 2019 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-31299172

RESUMO

The vertebrate vasculature displays high organotypic specialization, with the structure and function of blood vessels catering to the specific needs of each tissue. A unique feature of the central nervous system (CNS) vasculature is the blood-brain barrier (BBB). The BBB regulates substance influx and efflux to maintain a homeostatic environment for proper brain function. Here, we review the development and cell biology of the BBB, focusing on the cellular and molecular regulation of barrier formation and the maintenance of the BBB through adulthood. We summarize unique features of CNS endothelial cells and highlight recent progress in and general principles of barrier regulation. Finally, we illustrate why a mechanistic understanding of the development and maintenance of the BBB could provide novel therapeutic opportunities for CNS drug delivery.


Assuntos
Transporte Biológico/fisiologia , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/crescimento & desenvolvimento , Sistema Nervoso Central/citologia , Células Endoteliais/citologia , Animais , Astrócitos/citologia , Membrana Basal/citologia , Membrana Basal/metabolismo , Transporte Biológico/genética , Barreira Hematoencefálica/metabolismo , Encéfalo/citologia , Encéfalo/fisiologia , Sistema Nervoso Central/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Homeostase , Humanos , Leucócitos , Acoplamento Neurovascular/fisiologia , Pericitos/citologia , Junções Íntimas , Transcitose/fisiologia , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/fisiologia
18.
Nat Immunol ; 21(11): 1319-1326, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33077953

RESUMO

Injury is a key driver of inflammation, a critical yet necessary response involving several mediators that is aimed at restoring tissue homeostasis. Inflammation in the central nervous system can be triggered by a variety of stimuli, some intrinsic to the brain and others arising from peripheral signals. Fine-tuned regulation of this response is crucial in a system that is vulnerable due to, for example, aging and ongoing neurodegeneration. In this context, seemingly harmless interventions like a common surgery to repair a broken limb can overwhelm the immune system and become the driver of further complications such as delirium and other perioperative neurocognitive disorders. Here, we discuss potential mechanisms by which the immune system affects the central nervous system after surgical trauma. Together, these neuroimmune interactions are becoming hallmarks of and potential therapeutic targets for multiple neurologic conditions, including those affecting the perioperative space.


Assuntos
Inflamação/etiologia , Inflamação/metabolismo , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/metabolismo , Complicações Pós-Operatórias , Alarminas/genética , Alarminas/metabolismo , Animais , Coagulação Sanguínea , Fatores de Coagulação Sanguínea/genética , Fatores de Coagulação Sanguínea/metabolismo , Barreira Hematoencefálica/metabolismo , Terapia Combinada , Ativação do Complemento/imunologia , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Gerenciamento Clínico , Suscetibilidade a Doenças , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Inflamação/diagnóstico , Inflamação/terapia , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/terapia , Neuroglia/imunologia , Neuroglia/metabolismo , Neuroimunomodulação , Resultado do Tratamento
19.
Immunity ; 56(12): 2677-2678, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38091948

RESUMO

Neurodegeneration is a devastating complication of Langerhans cell histiocytosis (LCH), but it is not clear how it develops. In this issue of Immunity, Wilk et al. demonstrate that circulating BRAFV600E+ myeloid cells damage the blood-brain barrier and infiltrate the brain. Dual inhibition of the MAPK and senescence pathways can block parenchymal injury, providing a potential therapeutic avenue for histiocytic neurodegeneration.


Assuntos
Histiocitose de Células de Langerhans , Monócitos , Humanos , Monócitos/metabolismo , Histiocitose de Células de Langerhans/metabolismo , Encéfalo/metabolismo , Barreira Hematoencefálica/metabolismo , Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo
20.
Annu Rev Neurosci ; 46: 101-121, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-36854317

RESUMO

Astrocyte endfeet enwrap the entire vascular tree within the central nervous system, where they perform important functions in regulating the blood-brain barrier (BBB), cerebral blood flow, nutrient uptake, and waste clearance. Accordingly, astrocyte endfeet contain specialized organelles and proteins, including local protein translation machinery and highly organized scaffold proteins, which anchor channels, transporters, receptors, and enzymes critical for astrocyte-vascular interactions. Many neurological diseases are characterized by the loss of polarization of specific endfoot proteins, vascular dysregulation, BBB disruption, altered waste clearance, or, in extreme cases, loss of endfoot coverage. A role for astrocyte endfeet has been demonstrated or postulated in many of these conditions. This review provides an overview of the development, composition, function, and pathological changes of astrocyte endfeet and highlights the gaps in our knowledge that future research should address.


Assuntos
Astrócitos , Barreira Hematoencefálica , Astrócitos/fisiologia , Barreira Hematoencefálica/metabolismo , Sistema Nervoso Central , Biossíntese de Proteínas , Encéfalo/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa