Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.892
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 610(7933): 699-703, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36261526

RESUMO

Gas exchange and ion regulation at gills have key roles in the evolution of vertebrates1-4. Gills are hypothesized to have first acquired these important homeostatic functions from the skin in stem vertebrates, facilitating the evolution of larger, more-active modes of life2,3,5. However, this hypothesis lacks functional support in relevant taxa. Here we characterize the function of gills and skin in a vertebrate (lamprey ammocoete; Entosphenus tridentatus), a cephalochordate (amphioxus; Branchiostoma floridae) and a hemichordate (acorn worm; Saccoglossus kowalevskii) with the presumed burrowing, filter-feeding traits of vertebrate ancestors6-9. We provide functional support for a vertebrate origin of gas exchange at the gills with increasing body size and activity, as direct measurements in vivo reveal that gills are the dominant site of gas exchange only in ammocoetes, and only with increasing body size or challenges to oxygen supply and demand. Conversely, gills of all three taxa are implicated in ion regulation. Ammocoete gills are responsible for all ion flux at all body sizes, whereas molecular markers for ion regulation are higher in the gills than in the skin of amphioxus and acorn worms. This suggests that ion regulation at gills has an earlier origin than gas exchange that is unrelated to vertebrate size and activity-perhaps at the very inception of pharyngeal pores in stem deuterostomes.


Assuntos
Brânquias , Íons , Oxigênio , Filogenia , Vertebrados , Animais , Brânquias/metabolismo , Anfioxos/metabolismo , Oxigênio/metabolismo , Vertebrados/classificação , Vertebrados/metabolismo , Íons/metabolismo , Tamanho Corporal , Lampreias/metabolismo , Pele/metabolismo
2.
Dev Biol ; 506: 85-94, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38040078

RESUMO

The gill slits of fishes develop from an iterative series of pharyngeal endodermal pouches that contact and fuse with surface ectoderm on either side of the embryonic head. We find in the skate (Leucoraja erinacea) that all gill slits form via a stereotypical sequence of epithelial interactions: 1) endodermal pouches approach overlying surface ectoderm, with 2) focal degradation of ectodermal basement membranes preceding endoderm-ectoderm contact; 3) endodermal pouches contact and intercalate with overlying surface ectoderm, and finally 4) perforation of a gill slit occurs by epithelial remodelling, without programmed cell death, at the site of endoderm-ectoderm intercalation. Skate embryos express Fgf8 and Fgf3 within developing pharyngeal epithelia during gill slit formation. When we inhibit Fgf signalling by treating skate embryos with the Fgf receptor inhibitor SU5402 we find that endodermal pouch formation, basement membrane degradation and endodermal-ectodermal intercalation are unaffected, but that epithelial remodelling and gill slit perforation fail to occur. These findings point to a role for Fgf signalling in epithelial remodelling during gill slit formation in the skate and, more broadly, to an ancestral role for Fgf signalling during pharyngeal pouch epithelial morphogenesis in vertebrate embryos.


Assuntos
Ectoderma , Brânquias , Animais , Endoderma , Vertebrados , Morfogênese
3.
Development ; 149(13)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35762641

RESUMO

The pseudobranch is a gill-like epithelial elaboration that sits behind the jaw of most fishes. This structure was classically regarded as a vestige of the ancestral gill arch-like condition of the gnathostome jaw. However, more recently, hypotheses of jaw evolution by transformation of a gill arch have been challenged, and the pseudobranch has alternatively been considered a specialised derivative of the second (hyoid) pharyngeal arch. Here, we demonstrate in the skate (Leucoraja erinacea) that the pseudobranch does, in fact, derive from the mandibular arch, and that it shares gene expression features and cell types with gills. We also show that the skate mandibular arch pseudobranch is supported by a spiracular cartilage that is patterned by a shh-expressing epithelial signalling centre. This closely parallels the condition seen in the gill arches, where cartilaginous appendages called branchial rays, which support the respiratory lamellae of the gills, are patterned by a shh-expressing gill arch epithelial ridge. Together with similar discoveries in zebrafish, our findings support serial homology of the pseudobranch and gills, and an ancestral origin of gill arch-like anatomical features from the gnathostome mandibular arch.


Assuntos
Brânquias , Rajidae , Animais , Região Branquial/metabolismo , Brânquias/metabolismo , Arcada Osseodentária , Rajidae/genética , Peixe-Zebra
4.
Nature ; 573(7775): 586-589, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31511691

RESUMO

The chelicerates are a ubiquitous and speciose group of animals that has a considerable ecological effect on modern terrestrial ecosystems-notably as predators of insects and also, for instance, as decomposers1. The fossil record shows that chelicerates diversified early in the marine ecosystems of the Palaeozoic era, by at least the Ordovician period2. However, the timing of chelicerate origins and the type of body plan that characterized the earliest members of this group have remained controversial. Although megacheirans3-5 have previously been interpreted as chelicerate-like, and habeliidans6 (including Sanctacaris7,8) have been suggested to belong to their immediate stem lineage, evidence for the specialized feeding appendages (chelicerae) that are diagnostic of the chelicerates has been lacking. Here we use exceptionally well-preserved and abundant fossil material from the middle Cambrian Burgess Shale (Marble Canyon, British Columbia, Canada) to show that Mollisonia plenovenatrix sp. nov. possessed robust but short chelicerae that were placed very anteriorly, between the eyes. This suggests that chelicerae evolved a specialized feeding function early on, possibly as a modification of short antennules. The head also encompasses a pair of large compound eyes, followed by three pairs of long, uniramous walking legs and three pairs of stout, gnathobasic masticatory appendages; this configuration links habeliidans with euchelicerates ('true' chelicerates, excluding the sea spiders). The trunk ends in a four-segmented pygidium and bears eleven pairs of identical limbs, each of which is composed of three broad lamellate exopod flaps, and endopods are either reduced or absent. These overlapping exopod flaps resemble euchelicerate book gills, although they lack the diagnostic operculum9. In addition, the eyes of M. plenovenatrix were innervated by three optic neuropils, which strengthens the view that a complex malacostracan-like visual system10,11 might have been plesiomorphic for all crown euarthropods. These fossils thus show that chelicerates arose alongside mandibulates12 as benthic micropredators, at the heart of the Cambrian explosion.


Assuntos
Artrópodes/anatomia & histologia , Artrópodes/classificação , Fósseis/anatomia & histologia , Estruturas Animais/anatomia & histologia , Animais , Colúmbia Britânica , Brânquias/anatomia & histologia , Especificidade da Espécie
5.
Proteomics ; 24(1-2): e2300121, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37475512

RESUMO

Salinity tolerance in fish involves a suite of physiological changes, but a cohesive theory leading to a mechanistic understanding at the organismal level is lacking. To examine the potential of adapting energy homeostasis theory in the context of salinity stress in teleost fish, Oreochromis mossambicus were acclimated to hypersalinity at multiple rates and durations to determine salinity ranges of tolerance and resistance. Over 3000 proteins were quantified simultaneously to analyze molecular phenotypes associated with hypersalinity. A species- and tissue-specific data-independent acquisition (DIA) assay library of MSMS spectra was created. Protein networks representing complex molecular phenotypes associated with salinity acclimation were generated. O. mossambicus has a wide "zone of resistance" from 75 g/kg salinity to 120 g/kg. Crossing into the zone of resistance resulted in marked phenotypic changes including blood osmolality over 400 mOsm/kg, reduced body condition, and cessation of feeding. Protein networks impacted by hypersalinity consist of electron transport chain (ETC) proteins and specific osmoregulatory proteins. Cytoskeletal, cell adhesion, and extracellular matrix proteins are enriched in networks that are sensitive to the critical salinity threshold. These network analyses identify specific proteome changes that are associated with distinct zones described by energy homeostasis theory and distinguish them from general hypersalinity-induced proteome changes.


Assuntos
Tilápia , Animais , Tilápia/metabolismo , Proteoma/metabolismo , Brânquias/metabolismo , Estresse Salino , Homeostase , Salinidade
6.
BMC Genomics ; 25(1): 586, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862901

RESUMO

BACKGROUND: Histone post-translational modifications (PTMs) are epigenetic marks that can be induced by environmental stress and elicit heritable patterns of gene expression. To investigate this process in an ecological context, we characterized the influence of salinity stress on histone PTMs within the gills, kidney, and testes of Mozambique tilapia (Oreochromis mossambicus). A total of 221 histone PTMs were quantified in each tissue sample and compared between freshwater-adapted fish exposed to salinity treatments that varied in intensity and duration. RESULTS: Four salinity-responsive histone PTMs were identified in this study. When freshwater-adapted fish were exposed to seawater for two hours, the relative abundance of H1K16ub significantly increased in the gills. Long-term salinity stress elicited changes in both the gills and testes. When freshwater-adapted fish were exposed to a pulse of severe salinity stress, where salinity gradually increased from freshwater to a maximum of 82.5 g/kg, the relative abundance of H1S1ac significantly decreased in the gills. Under the same conditions, the relative abundance of both H3K14ac and H3K18ub decreased significantly in the testes of Mozambique tilapia. CONCLUSIONS: This study demonstrates that salinity stress can alter histone PTMs in the gills and gonads of Mozambique tilapia, which, respectively, signify a potential for histone PTMs to be involved in salinity acclimation and adaptation in euryhaline fishes. These results thereby add to a growing body of evidence that epigenetic mechanisms may be involved in such processes.


Assuntos
Brânquias , Gônadas , Histonas , Salinidade , Tilápia , Animais , Tilápia/genética , Tilápia/metabolismo , Brânquias/metabolismo , Histonas/metabolismo , Masculino , Gônadas/metabolismo , Gônadas/efeitos dos fármacos , Código das Histonas , Processamento de Proteína Pós-Traducional , Testículo/metabolismo , Testículo/efeitos dos fármacos , Estresse Salino , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo
7.
Proc Biol Sci ; 291(2015): 20231699, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38264780

RESUMO

Dragonfly nymphs breathe water using tidal ventilation, a highly unusual strategy in water-breathing animals owing to the high viscosity, density and low oxygen (O2) concentration of water. This study examines how well these insects extract O2 from the surrounding water during progressive hypoxia. Nymphs were attached to a custom-designed respiro-spirometer to simultaneously measure tidal volume, ventilation frequency and metabolic rate. Oxygen extraction efficiencies (OEE) were calculated across four partial pressure of oxygen (pO2) treatments, from normoxia to severe hypoxia. While there was no significant change in tidal volume, ventilation frequency increased significantly from 9.4 ± 1.2 breaths per minute (BPM) at 21.3 kPa to 35.6 ± 2.9 BPM at 5.3 kPa. Metabolic rate increased significantly from 1.4 ± 0.3 µl O2 min-1 at 21.3 kPa to 2.1 ± 0.4 µl O2 min-1 at 16.0 kPa, but then returned to normoxic levels as O2 levels declined further. OEE of nymphs was 40.1 ± 6.1% at 21.3 kPa, and did not change significantly during hypoxia. Comparison to literature shows that nymphs maintain their OEE during hypoxia unlike other aquatic tidal-breathers and some unidirectional breathers. This result, and numerical models simulating experimental conditions, indicate that nymphs maintain these extraction efficiencies by increasing gill conductance and/or lowering internal pO2 to maintain a sufficient diffusion gradient across their respiratory surface.


Assuntos
Brânquias , Odonatos , Animais , Hipóxia , Oxigênio , Ninfa , Água
8.
Proc Biol Sci ; 291(2025): 20240412, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38889788

RESUMO

Regulating transcription allows organisms to respond to their environment, both within a single generation (plasticity) and across generations (adaptation). We examined transcriptional differences in gill tissues of fishes in the Poecilia mexicana species complex (family Poeciliidae), which have colonized toxic springs rich in hydrogen sulfide (H2S) in southern Mexico. There are gene expression differences between sulfidic and non-sulfidic populations, yet regulatory mechanisms mediating this gene expression variation remain poorly studied. We combined capped-small RNA sequencing (csRNA-seq), which captures actively transcribed (i.e. nascent) transcripts, and messenger RNA sequencing (mRNA-seq) to examine how variation in transcription, enhancer activity, and associated transcription factor binding sites may facilitate adaptation to extreme environments. csRNA-seq revealed thousands of differentially initiated transcripts between sulfidic and non-sulfidic populations, many of which are involved in H2S detoxification and response. Analyses of transcription factor binding sites in promoter and putative enhancer csRNA-seq peaks identified a suite of transcription factors likely involved in regulating H2S-specific shifts in gene expression, including several key transcription factors known to respond to hypoxia. Our findings uncover a complex interplay of regulatory processes that reflect the divergence of extremophile populations of P. mexicana from their non-sulfidic ancestors and suggest shared responses among evolutionarily independent lineages.


Assuntos
Sulfeto de Hidrogênio , Poecilia , Animais , Sulfeto de Hidrogênio/metabolismo , Poecilia/genética , Poecilia/fisiologia , Poecilia/metabolismo , Extremófilos/metabolismo , Extremófilos/fisiologia , Extremófilos/genética , Transcrição Gênica , México , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Brânquias/metabolismo
9.
J Exp Biol ; 227(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38752366

RESUMO

The evolution and utilization of limbs facilitated terrestrial vertebrate movement on land, but little is known about how other lateral structures enhance terrestrial locomotion in amphibian fishes without terrestrialized limb structures. Climbing perch (Anabas testudineus) exhibit sustained terrestrial locomotion using uniaxial rotating gill covers instead of appendages. To investigate the role of such simple lateral structures in terrestrial locomotion and the motion-generating mechanism of the corresponding locomotor structure configuration (gill covers and body undulation), we measured the terrestrial kinematics of climbing perch and quantitatively analysed its motion characteristics. The digitized locomotor kinematics showed a unique body postural adjustment ability that enables the regulation of the posture of the caudal peduncle for converting lateral bending force into propulsion. An analysis of the coordination characteristics demonstrated that the motion of the gill cover is kinematically independent of axial undulation, suggesting that the gill cover functions as an anchored simple support pole while axial undulation actively mediates body posture and produces propulsive force. The two identified feature shapes explained more than 87% of the complex lateral undulation in multistage locomotion. The kinematic characteristics enhance our understanding of the underlying coordinating mechanism corresponding to locomotor configurations. Our work provides quantitative insight into the terrestrial locomotor adaptation of climbing perch and sheds light on terrestrial motion potential of locomotor configurations containing a typical aquatic body and restricted lateral structure.


Assuntos
Locomoção , Percas , Animais , Locomoção/fisiologia , Fenômenos Biomecânicos , Percas/fisiologia , Brânquias/fisiologia
10.
J Exp Biol ; 227(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38380449

RESUMO

Declining body size in fishes and other aquatic ectotherms associated with anthropogenic climate warming has significant implications for future fisheries yields, stock assessments and aquatic ecosystem stability. One proposed mechanism seeking to explain such body-size reductions, known as the gill oxygen limitation (GOL) hypothesis, has recently been used to model future impacts of climate warming on fisheries but has not been robustly empirically tested. We used brook trout (Salvelinus fontinalis), a fast-growing, cold-water salmonid species of broad economic, conservation and ecological value, to examine the GOL hypothesis in a long-term experiment quantifying effects of temperature on growth, resting metabolic rate (RMR), maximum metabolic rate (MMR) and gill surface area (GSA). Despite significantly reduced growth and body size at an elevated temperature, allometric slopes of GSA were not significantly different than 1.0 and were above those for RMR and MMR at both temperature treatments (15°C and 20°C), contrary to GOL expectations. We also found that the effect of temperature on RMR was time-dependent, contradicting the prediction that heightened temperatures increase metabolic rates and reinforcing the importance of longer-term exposures (e.g. >6 months) to fully understand the influence of acclimation on temperature-metabolic rate relationships. Our results indicate that although oxygen limitation may be important in some aspects of temperature-body size relationships and constraints on metabolic supply may contribute to reduced growth in some cases, it is unlikely that GOL is a universal mechanism explaining temperature-body size relationships in aquatic ectotherms. We suggest future research focus on alternative mechanisms underlying temperature-body size relationships, and that projections of climate change impacts on fisheries yields using models based on GOL assumptions be interpreted with caution.


Assuntos
Salmonidae , Animais , Ecossistema , Oxigênio , Brânquias , Temperatura , Truta , Água , Tamanho Corporal
11.
J Exp Biol ; 227(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099598

RESUMO

The occurrence of regeneration of the organs involved in respiratory gas exchange amongst vertebrates is heterogeneous. In some species of amphibians and fishes, the gills regenerate completely following resection or amputation, whereas in mammals, only partial, facultative regeneration of lung tissue occurs following injury. Given the homology between gills and lungs, the capacity of gill regeneration in aquatic species is of major interest in determining the underlying molecular or signalling pathways involved in respiratory organ regeneration. In the present study, we used adult zebrafish (Danio rerio) to characterize signalling pathways involved in the early stages of gill regeneration. Regeneration of the gills was induced by resection of gill filaments and observed over a period of up to 10 days. We screened for the effects on regeneration of the drugs SU5402, dorsomorphin and LY411575, which inhibit FGF, BMP or Notch signalling pathways, respectively. Exposure to each drug for 5 days significantly reduced regrowth of filament tips in regenerating tissue, compared with unresected controls. In separate experiments under normal conditions of regeneration, we used reverse transcription quantitative PCR and observed an increased expression of genes encoding for the bone morphogenetic factor, Bmp2b, fibroblast growth factor, Fgf8a, a transcriptional regulator (Her6) involved in Notch signalling, and Sonic Hedgehog (Shha), in regenerating gills at 10 day post-resection, compared with unresected controls. In situ hybridization confirmed that all four genes were expressed in regenerating gill tissue. This study implicates BMP, FGF, Notch and Shh signalling in gill regeneration in zebrafish.


Assuntos
Brânquias , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Brânquias/metabolismo , Proteínas Hedgehog , Transdução de Sinais/genética , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas de Peixe-Zebra/genética , Mamíferos/metabolismo
12.
J Exp Biol ; 227(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38644758

RESUMO

In bivalves and gastropods, ventricle contraction causes a negative pressure in the auricles and increases venous return from the afferent oblique vein (AOV): the constant-volume (CV) mechanism. The flow in the AOV should be a pulsative flow synchronized with the ventricular contraction. The flow in the heart and adjacent vessels of Mytilus galloprovincialis were measured by magnetic resonance imaging to confirm this hypothesis. Under a regular heartbeat, pulsative flows in the AOV and branchial vessels (BVs) were almost completely synchronized with the flow in the aorta, while filling of the ventricle was in the opposite phase. Flows in the BVs were directed to the posterior direction, and a pair of BVs in the gill axes (the efferent BVs) were connected to the AOV. Based on the images of the whole pathway of the AOV in an oblique slice, we confirmed that haemolymph flow was evoked from the efferent BVs and flow into the ventricle via the auricle was completed in a single heartbeat. Therefore, the walls of the AOV and BVs could resist negative transmural pressure caused by the ventricular contraction. In conclusion, the auricle, the AOV and the BVs, including the gill filaments, act as a suction pump. The pulsative venous return is driven by the negative pressure of the AOV as in the CV mechanism, and the negative pressure in the efferent BVs could draw haemolymph from the sinus via the gill and the afferent BVs. Therefore, Mytilus can start and stop its heartbeat as necessary.


Assuntos
Mytilus , Animais , Mytilus/fisiologia , Coração/fisiologia , Veias/fisiologia , Brânquias/fisiologia , Imageamento por Ressonância Magnética , Região Branquial/fisiologia , Hemolinfa/fisiologia , Fluxo Pulsátil/fisiologia
13.
J Exp Biol ; 227(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38197261

RESUMO

The olfactory epithelium of fish is - of necessity - in intimate contact with the surrounding water. In euryhaline fish, movement from seawater to freshwater (and vice versa) exposes the epithelium to massive changes in salinity and ionic concentrations. How does the olfactory system function in the face of such changes? The current study compared olfactory sensitivity in seawater- (35‰) and brackish water-adapted seabass (5‰) using extracellular multi-unit recording from the olfactory nerve. Seawater-adapted bass had higher olfactory sensitivity to amino acid odorants when delivered in seawater than in freshwater. Conversely, brackish water-adapted bass had largely similar sensitivities to the same odorants when delivered in seawater or freshwater, although sensitivity was still slightly higher in seawater. The olfactory system of seawater-adapted bass was sensitive to decreases in external [Ca2+], whereas brackish water-adapted bass responded to increases in [Ca2+]; both seawater- and brackish water-adapted bass responded to increases in external [Na+] but the sensitivity was markedly higher in brackish water-adapted bass. In seawater-adapted bass, olfactory sensitivity to l-alanine depended on external Ca2+ ions, but not Na+; brackish water-adapted bass did respond to l-alanine in the absence of Ca2+, albeit with lower sensitivity, whereas sensitivity was unaffected by removal of Na+ ions. A possible adaptation of the olfactory epithelium was the higher number of mucous cells in brackish water-adapted bass. The olfactory system of seabass is able to adapt to low salinities, but this is not immediate; further studies are needed to identify the processes involved.


Assuntos
Bass , Animais , Bass/fisiologia , Salinidade , Cálcio/metabolismo , Água do Mar/química , Água/metabolismo , Sódio/metabolismo , Alanina/metabolismo , Brânquias/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-38865172

RESUMO

Two bacteria, UG2_1T and UG2_2, were isolated from the gill tissues of the mangrove fiddler crab Cranuca inversa collected on the east coast of the Red Sea (Thuwal, Saudi Arabia). The cells are Gram-negative, rod-shaped, orange-pigmented, motile by gliding with no flagella, strictly aerobic, and grow at 20-37 °C (optimum, 28-35 °C), at pH 5.0-9.0 (optimum, pH 6.0-7.0), and with 1-11 % (w/v) NaCl (optimum, 2-4 %). They were positive for oxidase and catalase activity. Phylogenetic analysis based on 16S rRNA gene sequences indicated that isolates UG2_1T and UG2_2 belong to the genus Mangrovimonas, showing the highest similarity to Mangrovimonas spongiae HN-E26T (99.4 %). Phylogenomic analysis based on the whole genomes, independently using 49 and 120 concatenated genes, showed that strains UG2_1T and UG2_2 formed a monophyletic lineage in a different cluster from other type strain species within the genus Mangrovimonas. The genome sizes were 3.08 and 3.07 Mbp for UG2_1T and UG2_2, respectively, with a G+C content of 33.8 mol% for both strains. Values of average nucleotide identity and digital DNA-DNA hybridization between the strains and closely related species were 91.0 and 43.5 %, respectively. Chemotaxonomic analysis indicated that both strains had iso-C15 : 0 and iso-C15 : 1 G as dominant fatty acids, and the primary respiratory quinone was identified as MK-6. The major polar lipids comprised phosphatidylethanolamine, one unidentified glycolipid, one unidentified phospholipid, two unidentified aminolipids, and four unidentified lipids. Based on phylogenetic, phylogenomic, genome relatedness, phenotypic, and chemotaxonomical data, the two isolates represent a novel species within the genus Mangrovimonas, with the proposed name Mangrovimonas cancribranchiae sp. nov., and the type strain UG2_1T (=KCTC 102158T=DSM 117025T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , Braquiúros , DNA Bacteriano , Ácidos Graxos , Brânquias , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , Ácidos Graxos/análise , DNA Bacteriano/genética , Oceano Índico , Animais , Brânquias/microbiologia , Braquiúros/microbiologia , Arábia Saudita , Áreas Alagadas , Vitamina K 2/análogos & derivados , Vitamina K 2/análise , Fosfolipídeos/análise
15.
J Eukaryot Microbiol ; 71(3): e13021, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38480471

RESUMO

Freshwater bivalves play key ecological roles in lakes and rivers, largely contributing to healthy ecosystems. The freshwater pearl mussel, Margaritifera margaritifera, is found in Europe and on the East coast of North America. Once common in oxygenated streams, M. margaritifera is rapidly declining and consequently assessed as a threatened species worldwide. Deterioration of water quality has been considered the main factor for the mass mortality events affecting this species. Yet, the role of parasitic infections has not been investigated. Here, we report the discovery of three novel protist lineages found in Swedish populations of M. margaritifera belonging to one of the terrestrial groups of gregarines (Eugregarinorida, Apicomplexa). These lineages are closely related-but clearly separated-from the tadpole parasite Nematopsis temporariae. In one lineage, which is specifically associated with mortality events of M. margaritifera, we found cysts containing single vermiform zoites in the gills and other organs of diseased individuals using microscopy and in situ hybridization. This represents the first report of a parasitic infection in M. margaritifera that may be linked to the decline of this mussel species. We propose a tentative life cycle with the distribution of different developmental stages and potential exit from the host into the environment.


Assuntos
Bivalves , Água Doce , Filogenia , Animais , Suécia , Água Doce/parasitologia , Bivalves/parasitologia , Apicomplexa/classificação , Apicomplexa/isolamento & purificação , Apicomplexa/genética , Apicomplexa/fisiologia , Brânquias/parasitologia
16.
Fish Shellfish Immunol ; 147: 109429, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342413

RESUMO

Gibel carp (Carassius auratus gibelio) is an important economically farmed fish in China. Chilodonella hexasticha parasitizes on the gills and fins of host fish, causing disruption to their normal respiration and movement, ultimately resulting in death of the fish. In this study, a combination of histopathological, immunohistochemical, transferase dUTP nick end labeling (TUNEL), multi-omics, and molecular approaches were employed to identify the immune reaction and cell apoptosis in gill tissue in response to C. hexasticha infection. Significant lamellae fusion, hyperplasia, hyperemia, necrosis, and desquamation of infected gibel carp gills were observed. In total, the expression of 3619 genes was higher, and 3143 lower, for gills in the infected group compared to the control group. Furthermore, 76 metabolites were significantly increased and 105 were significantly decreased in the infected group compared with the control group. From the qRT-PCR analysis results, immune system-related genes encoding IL-8, CXCL8a, and CXC11 were significantly up-regulated in infected gibel carp, while ZAP70 was significantly down-regulated. Immunohistochemical results also showed the down-regulated ZAP70 in the infected group. Apoptosis-related genes encoding CASP3 and Mcl-1b were up-regulated in response to C. hexasticha infection. These genes indicate the activation of CASP family-related apoptosis and Bim-mediated mitochondrial apoptotic pathways. TUNEL assays also revealed severe apoptosis in the infected group. Based on this study's results, it can be concluded that C. hexasticha infection leads to histopathological changes in the gills of infected fish, and induces both a significant immune response and apoptosis.


Assuntos
Doenças dos Peixes , Carpa Dourada , Animais , Brânquias/metabolismo , Multiômica , Imunidade , Apoptose
17.
Fish Shellfish Immunol ; 150: 109653, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38801843

RESUMO

Land-based recirculating aquaculture systems (RAS) have risen in prevalence in recent years for Atlantic salmon production, enabling intensive production which allows increased growth and environmental control, but also having the potential for reducing water use and eutrophication. The Atlantic salmon has an anadromous life history with juvenile stages in freshwater (FW) and on-growing in seawater (SW), enabled by a transformational process known as smoltification. The timing of smoltification and transfer of smolts from FW to SW is critical under commercial production with high mortalities during this period. The impact of FW rearing system on immune function following seawater transfer (SWT) is not well understood. In this study parr were raised in either RAS or a traditional open-LOCH system until smolting and then transferred to a common marine environment. Two-weeks post-SWT fish were immune stimulated with a viral mimic (poly I:C) for 24 h to assess the ability to mount an antiviral immune response, assessed by whole transcriptome analysis of gill tissue, an important immune organ in fish. We show that unstimulated smolts reared in the LOCH had higher immune gene expression than those reared in RAS as determined by functional analysis. However, following stimulation, smolts reared in the RAS mounted a greater magnitude of response with a suite of immune genes displaying higher fold induction of transcription compared to LOCH reared smolts. We suggest RAS smolts have a lower steady state immune-associated transcriptome likely due to an unvarying environment, in terms of environmental factors and lack of exposure to pathogens, which shows a compensatory mechanism following stimulation allowing immune 'catch-up' with those reared in the LOCH. Alternatively, the RAS fish are experiencing an excessive response to the immune stimulation.


Assuntos
Aquicultura , Água Doce , Brânquias , Salmo salar , Água do Mar , Animais , Água do Mar/química , Salmo salar/imunologia , Brânquias/imunologia , Poli I-C/farmacologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Imunidade Inata
18.
Fish Shellfish Immunol ; 148: 109514, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493986

RESUMO

Cobia (Rachycentron canadum), a commercially important marine fish, has been used to develop a novel gill cell line, designated CG, for the first time. The CG cell line was cultured in Leibovitz's-15 medium with 5% fetal bovine serum (FBS) and successfully sub-cultured more than 110 passages. It underwent verification through sequencing of the mitochondrial cytochrome C oxidase subunit I (COI) gene. Optimal growth rate was achieved when the CG cell line was cultured in a medium supplemented with 5% FBS, 1% Penicillin-Streptomycin (P/S), and 5 parts per thousand (ppt) of coral sea salt water, maintained at a temperature of 27 °C. The addition of 5 ppt of salt in the growth medium suggests that this cell line could be a viable in vitro tool for marine ecosystem toxicological studies or for culturing marine parasitic microorganisms. The CG cell line was also successfully transfected using the pTurbo-GFP plasmids, showing an 18% efficiency, with observable GFP expression. Furthermore, the cell line has been effectively cryopreserved. Gene expression analysis indicated that the CG cell line exhibits responsive regulation of immune gene expression when exposured to various stimulants, highlighting its potential as an in vitro platform for immune response studies. This makes it suitable for exploring dynamic immune signaling pathways and host-pathogen interactions, thereby offering valuable insights for therapeutic development.


Assuntos
Brânquias , Perciformes , Animais , Ecossistema , Perciformes/metabolismo , Linhagem Celular , Imunidade
19.
Fish Shellfish Immunol ; 150: 109602, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38729252

RESUMO

Greater amberjack (Seriola dumerili) is a fish species that has significant economic and cultural value. It has a large size and grows rapidly. However, the intolerance to hypoxia poses a major obstacle to the growth of its aquaculture industry. This study focuses on the gills and spleen, two organs closely associated with the response to acute hypoxic stress. By simulating the acute hypoxic environment and using Illumina RNA-Seq technology, we explored the gills and spleen transcriptome changes in the acute hypoxia intolerant and tolerant groups of greater amberjack. It was discovered that gill tissues in the tolerant group may maintain a stable intracellular energy supply by promoting glycolysis and ß-oxidation compared to the intolerant group. Additionally, it promotes angiogenesis, enhances the ability to absorb dissolved oxygen, and accelerates oxygen transport to the mitochondria, adapting to the hypoxic environment. Anti-apoptotic genes were up-regulated in gill tissues in the tolerant group compared to the intolerant group, thereby minimizing the damage of acute hypoxia. On the other hand, the spleen inhibited the TCA and energy-consuming lipid synthesis pathways to supply energy under acute hypoxic stress. Pro-angiogenic genes were down-regulated in the spleen of individuals in the tolerant group compared to the intolerant group, which may be related to organ function. The suppressed reactive oxygen species (ROS) production and the impaired immune response function of the spleen were also found. The study explored the acute hypoxic stress response in greater amberjack and the molecular mechanisms underlying its tolerance to acute hypoxia.


Assuntos
Brânquias , Baço , Estresse Fisiológico , Animais , Baço/metabolismo , Baço/imunologia , Brânquias/metabolismo , Brânquias/imunologia , Hipóxia/genética , Hipóxia/veterinária , Regulação da Expressão Gênica/imunologia , Transcriptoma , Perciformes/genética , Perciformes/imunologia , Expressão Gênica , Peixes/genética , Peixes/imunologia
20.
Fish Shellfish Immunol ; 149: 109549, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599365

RESUMO

The study was designed to investigate the effects of replacing fish oil by algal oil and rapeseed oil on histomorphology indices of the intestine, skin and gill, mucosal barrier status and immune-related genes of mucin and antimicrobial peptide (AMP) genes in Atlantic salmon (Salmo salar). For these purposes, Atlantic salmon smolts were fed three different diets. The first was a control diet containing fish oil but no Schizochytrium oil. In the second diet, almost 50 % of the fish oil was replaced with algal oil, and in the third diet, fish oil was replaced entirely with algal oil. The algal oil contained mostly docosahexaenoic acid (DHA) and some eicosapentaenoic acid (EPA). The study lasted for 49 days in freshwater (FW), after which some fish from each diet group were transferred to seawater (SW) for a 48-h challenge test at 33 ppt to test their ability to tolerate high salinity. Samples of skin, gills, and mid intestine [both distal (DI) and anterior (AI) portions of the mid intestine] were collected after the feeding trial in FW and after the SW-challenge test to assess the effects of the diets on the structure and immune functions of the mucosal surfaces. The results showed that the 50 % VMO (Veramaris® algal oil) dietary group had improved intestinal, skin, and gill structures. Principal component analysis (PCA) of the histomorphological parameters demonstrated a significant effect of the algal oil on the intestine, skin, and gills. In particular, the mucosal barrier function of the intestine, skin, and gills was enhanced in the VMO 50 % dietary group after the SW challenge, as evidenced by increased mucous cell density. Immunolabelling of heat shock protein 70 (HSP70) in the intestine (both DI and AI) revealed downregulation of the protein expression in the 50 % VMO group and a corresponding upregulation in the 100 % VMO group compared to 0 % VMO. The reactivity of HSP70 in the epithelial cells was higher after the SW challenge compared to the FW phase. Immune-related genes related to mucosal defense, such as mucin genes [muc2, muc5ac1 (DI), muc5ac1 (AI), muc5ac2, muc5b (skin), and muc5ac1 (gills)], and antimicrobial peptide genes [def3 (DI), def3 (AI), and cath1 (skin)] were significantly upregulated in the 50 % VMO group. PCA of gene expression demonstrated the positive influences on gene regulation in the 50 % VMO dietary group. In conclusion, this study demonstrated the positive effect of substituting 50 % of fish oil with algal oil in the diets of Atlantic salmon. The findings of histomorphometry, mucosal mapping, immunohistochemistry, and immune-related genes connected to mucosal responses all support this conclusion.


Assuntos
Ração Animal , Dieta , Óleo de Brassica napus , Salmo salar , Animais , Salmo salar/imunologia , Dieta/veterinária , Óleo de Brassica napus/química , Ração Animal/análise , Mucosa/imunologia , Óleos de Peixe/administração & dosagem , Pele/imunologia , Pele/efeitos dos fármacos , Estações do Ano , Brânquias/imunologia , Brânquias/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Intestinos/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa