Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.439
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 21(7): 727-735, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32541831

RESUMO

Stimulator-of-interferon genes (STING) is vital for sensing cytosolic DNA and initiating innate immune responses against microbial infection and tumors. Redox homeostasis is the balance of oxidative and reducing reactions present in all living systems. Yet, how the intracellular redox state controls STING activation is unclear. Here, we show that cellular redox homeostasis maintained by glutathione peroxidase 4 (GPX4) is required for STING activation. GPX4 deficiency enhanced cellular lipid peroxidation and thus specifically inhibited the cGAS-STING pathway. Concordantly, GPX4 deficiency inhibited herpes simplex virus-1 (HSV-1)-induced innate antiviral immune responses and promoted HSV-1 replication in vivo. Mechanistically, GPX4 inactivation increased production of lipid peroxidation, which led to STING carbonylation at C88 and inhibited its trafficking from the endoplasmic reticulum (ER) to the Golgi complex. Thus, cellular stress-induced lipid peroxidation specifically attenuates the STING DNA-sensing pathway, suggesting that GPX4 facilitates STING activation by maintaining redox homeostasis of lipids.


Assuntos
Herpes Simples/imunologia , Proteínas de Membrana/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Animais , Carbolinas/farmacologia , Células Cultivadas , DNA Viral/imunologia , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Feminino , Fibroblastos , Complexo de Golgi/metabolismo , Células HEK293 , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/imunologia , Homeostase/imunologia , Humanos , Imunidade Inata , Peroxidação de Lipídeos/genética , Peroxidação de Lipídeos/imunologia , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Proteínas de Membrana/imunologia , Camundongos , Camundongos Knockout , Nucleotidiltransferases/metabolismo , Oxirredução , Oximas/farmacologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/antagonistas & inibidores , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Cultura Primária de Células , Carbonilação Proteica/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Sulfonamidas/farmacologia , Células THP-1 , Replicação Viral/imunologia
2.
Pflugers Arch ; 476(7): 1077-1086, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38769127

RESUMO

Diabetes is commonly associated with an elevated level of reactive carbonyl species due to alteration of glucose and fatty acid metabolism. These metabolic changes cause an abnormality in cardiac Ca2+ regulation that can lead to cardiomyopathies. In this study, we explored how the reactive α-dicarbonyl methylglyoxal (MGO) affects Ca2+ regulation in mouse ventricular myocytes. Analysis of intracellular Ca2+ dynamics revealed that MGO (200 µM) increases action potential (AP)-induced Ca2+ transients and sarcoplasmic reticulum (SR) Ca2+ load, with a limited effect on L-type Ca2+ channel-mediated Ca2+ transients and SERCA-mediated Ca2+ uptake. At the same time, MGO significantly slowed down cytosolic Ca2+ extrusion by Na+/Ca2+ exchanger (NCX). MGO also increased the frequency of Ca2+ waves during rest and these Ca2+ release events were abolished by an external solution with zero [Na+] and [Ca2+]. Adrenergic receptor activation with isoproterenol (10 nM) increased Ca2+ transients and SR Ca2+ load, but it also triggered spontaneous Ca2+ waves in 27% of studied cells. Pretreatment of myocytes with MGO increased the fraction of cells with Ca2+ waves during adrenergic receptor stimulation by 163%. Measurements of intracellular [Na+] revealed that MGO increases cytosolic [Na+] by 57% from the maximal effect produced by the Na+-K+ ATPase inhibitor ouabain (20 µM). This increase in cytosolic [Na+] was a result of activation of a tetrodotoxin-sensitive Na+ influx, but not an inhibition of Na+-K+ ATPase. An increase in cytosolic [Na+] after treating cells with ouabain produced similar effects on Ca2+ regulation as MGO. These results suggest that protein carbonylation can affect cardiac Ca2+ regulation by increasing cytosolic [Na+] via a tetrodotoxin-sensitive pathway. This, in turn, reduces Ca2+ extrusion by NCX, causing SR Ca2+ overload and spontaneous Ca2+ waves.


Assuntos
Cálcio , Miócitos Cardíacos , Carbonilação Proteica , Retículo Sarcoplasmático , Sódio , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/efeitos dos fármacos , Camundongos , Cálcio/metabolismo , Sódio/metabolismo , Carbonilação Proteica/efeitos dos fármacos , Trocador de Sódio e Cálcio/metabolismo , Ventrículos do Coração/metabolismo , Ventrículos do Coração/citologia , Aldeído Pirúvico/farmacologia , Aldeído Pirúvico/metabolismo , Sinalização do Cálcio/fisiologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Potenciais de Ação/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Células Cultivadas , Masculino
3.
J Biochem Mol Toxicol ; 38(1): e23580, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37961937

RESUMO

Alzheimer's disease (AD) is one of the major devastating neurodegenerative disorders associated with the gradual decline of an individual's memory, cognition, and ability to carry out day-to-day activities. In the present study, the neuroprotective ability of α-bisabolol ß-d-fucopyranoside (ABFP) was assessed via measurement of antioxidant parameters like lipid peroxidation, glutathione peroxidation, glutathione, protein carbonyl content assays, and caspase-3 activity estimation. Moreover, the acute toxicity of ABFP was estimated in the zebrafish larval model. The results showed that ABFP exhibits little to no toxicity at lower concentrations in the acute toxicity test. ABFP-pretreated and scopolamine-exposed fish exhibited more exploratory behavior in the behavior assay than scopolamine-only induced groups. Additionally, the results of antioxidant enzyme assays revealed reduced oxidative stress and damage in ABFP-treated fish, while enzyme activity experiments carried out with brain homogenate from ABFP-treated fish showed decreased acetylcholinesterase enzyme activity. Overall, it can be concluded that ABFP has the potential to be a promising agent for the treatment of AD in the future.


Assuntos
Doença de Alzheimer , Sesquiterpenos Monocíclicos , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Escopolamina/efeitos adversos , Antioxidantes/metabolismo , Acetilcolinesterase/metabolismo , Carbonilação Proteica , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Estresse Oxidativo , Doença de Alzheimer/induzido quimicamente , Glutationa/metabolismo
4.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542166

RESUMO

Diabetic retinopathy (DR) severely affects vision in individuals with diabetes. High glucose (HG) induces oxidative stress in retinal cells, a key contributor to DR development. Previous studies suggest that fibroblast growth factor-1 (FGF-1) can mitigate hyperglycemia and protect tissues from HG-induced damage. However, the specific effects and mechanisms of FGF-1 on DR remain unclear. In our study, FGF-1-pretreated adult retinal pigment epithelial (ARPE)-19 cells were employed to investigate. Results indicate that FGF-1 significantly attenuated HG-induced oxidative stress, including reactive oxygen species, DNA damage, protein carbonyl content, and lipid peroxidation. FGF-1 also modulated the expression of oxidative and antioxidative enzymes. Mechanistic investigations showed that HG induced high endoplasmic reticulum (ER) stress and upregulated specific proteins associated with apoptosis. FGF-1 effectively alleviated ER stress, reduced apoptosis, and restored autophagy through the adenosine monophosphate-activated protein kinase/mammalian target of the rapamycin signaling pathway. We observed that the changes induced by HG were dose-dependently reversed by FGF-1. Higher concentrations of FGF-1 (5 and 10 ng/mL) exhibited increased effectiveness in mitigating HG-induced damage, reaching statistical significance (p < 0.05). In conclusion, our study underscores the promising potential of FGF-1 as a safeguard against DR. FGF-1 emerges as a formidable intervention, attenuating oxidative stress, ER stress, and apoptosis, while concurrently promoting autophagy. This multifaceted impact positions FGF-1 as a compelling candidate for alleviating retinal cell damage in the complex pathogenesis of DR.


Assuntos
Retinopatia Diabética , Fator 1 de Crescimento de Fibroblastos , Humanos , Fator 1 de Crescimento de Fibroblastos/farmacologia , Fator 1 de Crescimento de Fibroblastos/metabolismo , Carbonilação Proteica , Epitélio Pigmentado da Retina/metabolismo , Estresse Oxidativo , Apoptose , Estresse do Retículo Endoplasmático , Autofagia , Retinopatia Diabética/metabolismo , Glucose/toxicidade , Glucose/metabolismo , Células Epiteliais/metabolismo , Pigmentos da Retina/metabolismo
5.
J Sci Food Agric ; 104(2): 675-685, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37653259

RESUMO

BACKGROUND: Ark clams, a seafood abundant in various nutrients, are widely consumed worldwide. This study aimed to investigate the protective benefits of two common ark clams in Korea, Scapharca subcrenata (SS) and Tegillarca granosa (TG), on gut health in d-galactose (d-gal)-induced aging rats. RESULTS: Thirty-two Wistar rats (11 weeks old) were randomly allocated into four groups: a CON group (normal diet + saline intraperitoneal (i.p.) injection), a CD group (normal diet + d-gal i.p. injection), an SS group (normal diet with 5% SS supplementation + d-gal i.p. injection), and a TG group (normal diet with 5% TG supplementation + d-gal i.p. injection). After 12 weeks of treatment, histopathological results showed that gut barrier damage was alleviated in rats of the SS and TG groups, as evidenced by increases in mucus layer thickness and goblet cell numbers. Meanwhile, the two groups supplemented with ark clams showed an evident reduction in oxidative stress biomarkers (malondialdehyde and protein carbonyl content levels in the colon) and an increase in the immune-related factor (immunoglobulin A level in the plasma) in rats. The 16S ribosomal RNA analysis revealed that SS and TG ark clams significantly increased the proliferations of Bacteroidetes at the phylum level and Parabacteroides at the genus level. Additionally, the levels of the three main short-chain fatty acids in the cecal contents were also significantly increased in the SS and TG groups. CONCLUSION: Our results indicated a potent preventive effect of SS and TG ark clams on d-gal-induced gut injury, suggesting that ark clams may be a promising dietary component for intervening in aging. © 2023 Society of Chemical Industry.


Assuntos
Bivalves , Microbioma Gastrointestinal , Ratos , Animais , Galactose/metabolismo , Ratos Wistar , Carbonilação Proteica , Envelhecimento , Estresse Oxidativo , Suplementos Nutricionais
6.
BMC Bioinformatics ; 24(1): 429, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957582

RESUMO

BACKGROUND: As an irreversible post-translational modification, protein carbonylation is closely related to many diseases and aging. Protein carbonylation prediction for related patients is significant, which can help clinicians make appropriate therapeutic schemes. Because carbonylation sites can be used to indicate change or loss of protein function, integrating these protein carbonylation site data has been a promising method in prediction. Based on these protein carbonylation site data, some protein carbonylation prediction methods have been proposed. However, most data is highly class imbalanced, and the number of un-carbonylation sites greatly exceeds that of carbonylation sites. Unfortunately, existing methods have not addressed this issue adequately. RESULTS: In this work, we propose a novel two-way rebalancing strategy based on the attention technique and generative adversarial network (Carsite_AGan) for identifying protein carbonylation sites. Specifically, Carsite_AGan proposes a novel undersampling method based on attention technology that allows sites with high importance value to be selected from un-carbonylation sites. The attention technique can obtain the value of each sample's importance. In the meanwhile, Carsite_AGan designs a generative adversarial network-based oversampling method to generate high-feasibility carbonylation sites. The generative adversarial network can generate high-feasibility samples through its generator and discriminator. Finally, we use a classifier like a nonlinear support vector machine to identify protein carbonylation sites. CONCLUSIONS: Experimental results demonstrate that our approach significantly outperforms other resampling methods. Using our approach to resampling carbonylation data can significantly improve the effect of identifying protein carbonylation sites.


Assuntos
Processamento de Proteína Pós-Traducional , Proteínas , Humanos , Proteínas/metabolismo , Carbonilação Proteica , Máquina de Vetores de Suporte
7.
Stroke ; 54(11): 2804-2813, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37795592

RESUMO

BACKGROUND: Acute ischemic stroke (AIS) is associated with enhanced oxidative stress and unfavorably altered fibrin clot properties. We investigated determinants of plasma protein carbonylation (PC) in AIS, its impact on the prothrombotic state, and prognostic value during follow-up. METHODS: We included 98 consecutive AIS patients aged 74±12 years (male:female ratio, 50:48 [51%:49%]) at the Neurology Center in Warsaw, Poland, between January and December 2014. As many as 74 (75.5%) patients underwent thrombolysis, and 24 were unsuitable for thrombolysis. We determined plasma PC, along with thrombin generation, fibrin clot permeability, and clot lysis time on admission, at 24 hours, and 3 months. Stroke severity was assessed using the National Institutes of Health Stroke Scale and stroke outcome with the modified Rankin Scale. Hemorrhagic transformation was assessed on the computed tomography scan within 48 hours from the symptom onset, while stroke-related mortality was evaluated at 3 months. RESULTS: On admission, PC levels (median, 4.61 [3.81-5.70] nM/mg protein) were associated with the time since symptom onset (r=0.41; P<0.0001) and with the National Institutes of Health Stroke Scale score (P=0.36; P=0.0003). Higher PC levels on admission correlated with denser fibrin clot formation and prolonged clot lysis time but not with thrombin generation. In thrombolysed patients, lower PC levels were observed after 24 hours (-34%) and at 3 months (-23%; both P<0.001). PC levels at baseline and after 24 hours predicted the modified Rankin Scale score >2 at 3 months (OR, 1.90 [95% CI, 1.21-3.00]; OR, 2.19 [95% CI, 1.39-3.44], respectively). Higher PC at baseline predicted hemorrhagic transformation of stroke (OR, 1.95 [95% CI, 1.02-3.74]) and stroke-related mortality (OR, 2.02 [95% CI, 1.08-3.79]), while higher PC at 24 hours predicted solely stroke-related mortality (OR, 2.11 [95% CI, 1.28-3.46]). CONCLUSIONS: Elevated plasma PC levels in patients with AIS, related to prothrombotic fibrin clot properties, are associated with stroke severity. Thrombolysis reduces the extent of PC. The current study suggests a prognostic value of PC in AIS.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Trombose , Humanos , Masculino , Feminino , Fibrina , Trombina/metabolismo , Carbonilação Proteica , Tempo de Lise do Coágulo de Fibrina/métodos , Fenótipo
8.
J Recept Signal Transduct Res ; 43(6): 123-132, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38270433

RESUMO

PURPOSE: Oxidative stress can damage cells and cause age-related illnesses such as Alzheimer's, Parkinson's, and Huntington's. This study looked at newly synthesized isoindole derivatives and their effects on SH-SY5Y as a neuroblastoma cell under oxidative stress through the NRF2 signaling pathway. NRF2 transcription factor plays a vital role in the oxidative stress response and cellular homeostasis. METHOD: Three isoindoline-dione derivatives were synthesized by reacting phthalic anhydrides with 4-(2-aminoethyl)-1-benzyl piperidine. Their structures were confirmed through FT-IR, NMR, and Mass spectroscopy. The derivatives were then tested on human SH-SY5Y cells under an oxidative stress model induced by hydrogen peroxide (H2O2). The cell viability, ROS levels, protein carbonyl content, and gene expression of NRF2 and phase II antioxidative enzymes were measured after 24 h. RESULTS: Three isoindoline derivatives (3a-3c) were observed to increase the viability of SH-SY5Y cells by protective against oxidative stress, reducing intracellular reactive oxygen species and carbonylated proteins, and increasing gene expression levels of NRF2 and associated genes such as NQO-1, and GSTK1. CONCLUSION: Isoindoline derivatives demonstrated a neuroprotective effect on SH-SY5Y cells through various neuroprotective mechanisms, although more studies are needed.


Assuntos
Neuroblastoma , Fármacos Neuroprotetores , Humanos , Neuroproteção , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Carbonilação Proteica , Espectroscopia de Infravermelho com Transformada de Fourier , Linhagem Celular Tumoral , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Fármacos Neuroprotetores/farmacologia , Sobrevivência Celular , Apoptose
9.
Antonie Van Leeuwenhoek ; 116(4): 353-365, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36749507

RESUMO

One of the mechanistic approaches for explaining ageing is the oxidative stress theory of ageing. Saccharomyces cerevisiae has been used as a model to study ageing due to many factors. We have attempted to investigate if the differential ability to withstand oxidative stress can be correlated with their lifespans. In all the four strains studied (AP22, 699, 8C, and SP4), there was no age-associated increases in lipid peroxidation levels measured as thiobarbituric acid reactive substances (TBARS). Under induced oxidative stress conditions, there was an increased TBARS level in both the ages assessed with a quantum-fold increase in the stationary phase cells of AP22. In contrast, the late stationary phase cells of 8C exhibited the least susceptibility to induced oxidative stress. The level of TBARS in both exponential and late stationary phase cells of 699 was overall more than that in the other three strains. Protein carbonylation increased with age in 8C and 699. Induced stress increased carbonylation in the exponential cells of SP4 and 699 and the stationary phase cells of all four strains. Protein carbonylation data indicate that the AP22 cells exhibit decreased protein carbonylation vis-à-vis the other strains. Induced stress data showed that while the exponential cells of 699 are susceptible, the late stationary phase cells of 699 are most resistant. Western blotting analysis using anti-HNE antibodies showed two proteins of molecular mass ~ 56 and ~ 84 kDa that were selectively modified with age in all the strains. Under induced stress conditions, an additional protein of ~ 69 kDa was oxidized. Our investigation shows that the difference in lifespan between the four strains of S. cerevisiae may be regulated by oxidative stress. Knowledge of the identity of the oxidized proteins will significantly facilitate a better understanding of the effect of oxidative stress conditions on the cells of S. cerevisiae.


Assuntos
Senescência Celular , Estresse Oxidativo , Saccharomyces cerevisiae , Oxirredução , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Peroxidação de Lipídeos , Carbonilação Proteica , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Longevidade , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Cell Biochem Funct ; 41(8): 1330-1342, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37805950

RESUMO

Unpredictable chronic mild stress (UCMS) leads to variable metabolic effects. Oxidative stress (OS) of adipose tissue (AT) and mitochondrial energy homeostasis is little investigated. This work studied the effects of UCMS on OS and the antioxidant/redox status in AT and mitochondrial energy homeostasis in rats. Twenty-four male Wistar rats (180-220 g) were divided into two equal groups; the normal control (NC) group and the UCMS group which were exposed to various stresses for 28 days. An indirect calorimetry machine was used to measure volumes of respiratory gases (VO2 & VCO2 ), total energy expenditure (TEE), and food intake (FI). The AT depots were collected, weighed, and used for measuring activities and gene expression of key antioxidant enzymes (GPx1, SOD, CAT, GR, GCL, and GS), OS marker levels including superoxide anion (SA), peroxynitrite radical (PON), nitric oxide (NO), hydrogen peroxide (H2 O2 ), lipid peroxides (LPO), t-protein carbonyl content (PCC), and reduced/oxidized glutathione levels (GSH, GSSG). Additionally, AT mitochondrial fractions were used to determine the activities of the tricarboxylic acid cycle (TCA) cycle enzymes (CS, α-KGDH, ICDH, SDH, MDH), respiratory chain complexes I-III, II-III, IV, the nicotinamide coenzymes NAD+ , NADH, and ATP/ADP levels. Compared with the NC group, the UCMS group showed very significantly increased OS marker levels, lowered antioxidant enzyme activities and gene expression, as well as lowered TCA cycle and respiratory chain activity and NAD+ , NADH, and ATP levels (p < .001 for all comparisons). Besides, the UCMS group had lowered TEE and insignificant FI and weight gain. In conclusion, AT of the UCMS-subjected rats showed a state of disturbed redox balance linked to disrupted energy homeostasis producing augmentation of AT.


Assuntos
Antioxidantes , NAD , Ratos , Masculino , Animais , Antioxidantes/metabolismo , Ratos Wistar , NAD/metabolismo , Carbonilação Proteica , Oxirredução , Estresse Oxidativo , Trifosfato de Adenosina/metabolismo , Homeostase
11.
Int J Mol Sci ; 24(11)2023 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-37298684

RESUMO

Protein carbonylation is an irreversible form of post-translational modification triggered by reactive oxygen species in animal and plant cells. It occurs either through the metal-catalyzed oxidation of Lys, Arg, Pro, and Thr side chains or the addition of α, ß-unsaturated aldehydes and ketones to the side chains of Cys, Lys, and His. Recent genetic studies concerning plants pointed to an implication of protein carbonylation in gene regulation through phytohormones. However, for protein carbonylation to stand out as a signal transduction mechanism, such as phosphorylation and ubiquitination, it must be controlled in time and space by a still unknown trigger. In this study, we tested the hypothesis that the profile and extent of protein carbonylation are influenced by iron homeostasis in vivo. For this, we compared the profile and the contents of the carbonylated proteins in the Arabidopsis thaliana wild-type and mutant-deficient in three ferritin genes under normal and stress conditions. Additionally, we examined the proteins specifically carbonylated in wild-type seedlings exposed to iron-deficient conditions. Our results indicated that proteins were differentially carbonylated between the wild type and the triple ferritin mutant Fer1-3-4 in the leaves, stems, and flowers under normal growth conditions. The profile of the carbonylated proteins was also different between the wild type and the ferritin triple mutant exposed to heat stress, thus pointing to the influence of iron on the carbonylation of proteins. Consistent with this, the exposure of the seedlings to iron deficiency and iron excess greatly influenced the carbonylation of certain proteins involved in intracellular signal transduction, translation, and iron deficiency response. Overall, the study underlined the importance of iron homeostasis in the occurrence of protein carbonylation in vivo.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Deficiências de Ferro , Animais , Carbonilação Proteica , Ferro/metabolismo , Arabidopsis/metabolismo , Ferritinas/genética , Ferritinas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
12.
Cryo Letters ; 44(6): 327-332, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38311926

RESUMO

BACKGROUND: Antioxidant present in sperm cells protects them from oxidative damage. However, sperm are more susceptible to peroxidative damages due to the loss of these enzymes during cryopreservation and their survival and fertility may be compromised. Insulin like growth factor-1 (IGF-1) has an antioxidant effect and could maintain sperm motility. OBJECTIVE: To improve seminal parameters, mitochondrial membrane potential (MMP), oxidative status and DNA integrity of buck semen after freeze-thawing by fortification of goat semen diluent with various concentrations of IGF-1. MATERIALS AND METHODS: Fifty ejaculates were collected and were extended with tris- citric acid- fructose diluent with 10% egg yolk and 6% glycerol with sperm concentrations of 1×108 mL-1. Post-cryopreserved sperm were assessed for motility and a range of other functional parameters. RESULTS: In post-thaw semen sperm motility, live sperm count, acrosome integrity, hypo-osmotic swelling positive spermatozoa, malondialdehyde (MDA), protein carbonyl content (PCC), TUNEL positive sperm differed significantly (P<0.05) with the various concentrations of IGF-1 used. Sperm functional parameters post-thawing were significantly (P<0.05) better in 250 ng/mL IGF-1. IGF-1 protects against lipid peroxidation by lowering MDA and PCC production, thus reducing the harmful effect of reactive oxygen species. The kidding percentage using the artificial insemination technique was significantly higher ( i.e., 40%) in the group supplemented with 250 ng/mL of IGF-1 than in the non-supplemented group (i.e., 30%). CONCLUSION: IGF-1 may be used to improve post-thaw semen quality and fertility as measured by actual kidding rate. Doi.org/10.54680/fr23610110312.


Assuntos
Preservação do Sêmen , Sêmen , Animais , Masculino , Análise do Sêmen , Potencial da Membrana Mitocondrial , Cabras , Fator de Crescimento Insulin-Like I/farmacologia , Fragmentação do DNA , Carbonilação Proteica , Motilidade dos Espermatozoides , Criopreservação/métodos , Preservação do Sêmen/veterinária , Preservação do Sêmen/métodos , Espermatozoides , Antioxidantes/farmacologia
13.
Molecules ; 28(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446788

RESUMO

Oxidative stress and chronic inflammation interplay with the pathogenesis of cancer. Breast cancer in women is the burning issue of this century, despite chemotherapy and magnetic therapy. The management of secondary complications triggered by post-chemotherapy poses a great challenge. Thus, identifying target-specific drugs with anticancer potential without secondary complications is a challenging task for the scientific community. It is possible that green technology has been employed in a greater way in order to fabricate nanoparticles by amalgamating plants with medicinal potential with metal oxide nanoparticles that impart high therapeutic properties with the least toxicity. Thus, the present study describes the synthesis of Titanium dioxide nanoparticles (TiO2 NPs) using aqueous Terenna asiatica fruit extract, with its antioxidant, anti-inflammatory and anticancer properties. The characterisation of TiO2 NPs was carried out using a powdered X-ray diffractometer (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray diffraction (EDX), high-resolution transmission electron microscopy (HR-TEM), dynamic light scattering (DLS), and zeta-potential. TiO2 NPs showed their antioxidant property by scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radicals in a dose-dependent manner with an IC50 value of 80.21 µg/µL. To ascertain the observed antioxidant potential of TiO2 NPs, red blood cells (RBC) were used as an in vitro model system. Interestingly, TiO2 NPs significantly ameliorated all the stress parameters, such as lipid peroxidation (LPO), protein carbonyl content (PCC), total thiol (TT), superoxide dismutase (SOD), and catalase (CAT) in sodium nitrite (NaNO2)-induced oxidative stress, in RBC. Furthermore, TiO2 NPs inhibited RBC membrane lysis and the denaturation of both egg and bovine serum albumin, significantly in a dose-dependent manner, suggesting its anti-inflammatory property. Interestingly, TiO2 NPs were found to kill the MCF-7 cells as a significant decrease in cell viability of the MCF-7 cell lines was observed. The percentage of growth inhibition of the MCF-7 cells was compared to that of untreated cells at various doses (12.5, 25, 50, 100, and 200 µg/mL). The IC50 value of TiO2 NPs was found to be (120 µg/mL). Furthermore, the Annexin V/PI staining test was carried out to confirm apoptosis. The assay indicated apoptosis in cancer cells after 24 h of exposure to TiO2 NPs (120 µg/mL). The untreated cells showed no significant apoptosis in comparison with the standard drug doxorubicin. In conclusion, TiO2 NPs potentially ameliorate NaNO2-induced oxidative stress in RBC, inflammation and MCF-7 cells proliferation.


Assuntos
Neoplasias da Mama , Nanopartículas Metálicas , Humanos , Feminino , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Carbonilação Proteica , Estresse Oxidativo , Nanopartículas Metálicas/química , Inflamação , Proliferação de Células
14.
J Sci Food Agric ; 103(6): 2858-2866, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36620871

RESUMO

BACKGROUND: Protein oxidation during food processing causes changes in the balance of protein-molecular interactions and protein-water interactions, ultimately leading to protein denaturation, which results in the loss of a range of functional properties. Therefore, how to control the oxidative modification of proteins during processing has been the focus of research. RESULTS: In the present study, the intrinsic fluorescence value of the myofibrillar proteins (MP) decreased and the surface hydrophobicity value increased, indicating that the heat treatment caused a significant change in the conformation of the MP. With an increase in heating temperature, protein carbonyl content increased, total sulfhydryl content decreased, and protein secondary structure changed from α-helix to ß-sheet, indicating that protein oxidation and aggregation occurred. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that heat treatment can lead to the degradation of proteins, especially myosin heavy chain, although actin had a certain thermal stability. In total, 733 proteins were identified by proteomics, and the protein oxidation caused by low temperature vacuum heating (LTVH) was determined to be mild oxidation dominated by malondialdehyde and 4-hydroxynonenal by oxidation site division. CONCLUSION: The present study has revealed the effect of LTVH treatment on the protein oxidation modification behavior of sturgeon meat, and explored the effect mechanism of LTVH treatment on the processing quality of sturgeon meat from the perspective of protein oxidation. The results may provide a theoretical basis for the precise processing of aquatic products. © 2023 Society of Chemical Industry.


Assuntos
Calefação , Proteínas , Animais , Temperatura , Carbonilação Proteica , Vácuo , Peixes , Peptídeos , Oxirredução
15.
J Sci Food Agric ; 103(12): 5938-5948, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37186089

RESUMO

BACKGROUND: Ultrasound is widely used as a novel non-thermal processing technique to improve protein properties. In recent decades, applying ultrasound-assisted emulsification (UAE) to produce protein-stabilized emulsion has attracted people's attention. Instead of applying ultrasound to treat a single protein solution, UAE treatment refers to the use of sonication to a mixture of protein and oil. The purpose of this study was to compare the different effects of ultrasound treatment on the properties of myofibrillar protein (MP) in the presence or absence of soybean oil. A suitable sonication power was selected based on the change in emulsion properties. RESULTS: 300 W sonication power was selected because of its most effectively decreased emulsion droplet size and increased absolute zeta potential. Sonication more significantly increased the protein carbonyl content and disulfide bonds of the MP-soybean oil sample compared with the MP sample. Due to the presence of oil, ultrasound could unfold more protein molecules, illustrated by a lower α-helix content and intrinsic fluorescence intensity, and a higher surface hydrophobicity. Results of liquid chromatography-tandem mass spectrometry illustrated that sonication enhanced the myosin heavy chain and actin content at the soybean oil interface as well as accelerated the myosin light chain to separate from myosin in the MP-soybean oil system. CONCLUSION: Ultrasound treatment could lead to a higher level of protein oxidation and greater protein molecule exposure in the MP in the presence of oil system than in the oil-free MP system. © 2023 Society of Chemical Industry.


Assuntos
Óleo de Soja , Humanos , Óleo de Soja/química , Emulsões/química , Carbonilação Proteica , Oxirredução , Interações Hidrofóbicas e Hidrofílicas
16.
Bull Environ Contam Toxicol ; 110(4): 70, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36959482

RESUMO

The biocide Bacillus thuringiensis var. israelensis (Bti) is applied to wetlands to control nuisance by mosquitoes. Amphibians inhabiting these wetlands can be exposed to Bti multiple times, potentially inducing oxidative stress in developing tadpoles. For biochemical stress responses, ambient water temperature plays a key role. Therefore, we exposed tadpoles of the European common frog (Rana temporaria) three times to field-relevant doses of Bti in outdoor floodplain pond mesocosms (FPM) under natural environmental conditions. We sampled tadpoles after each Bti application over the course of a 51-day experiment (April to June 2021) and investigated the activity of the glutathione-S-transferase (GST) and protein carbonyl content as a measure for detoxification activity and oxidative damage. GST activity increased over the course of the experiment likely due to a general increase of water temperature. We did not observe an effect of Bti on either of the investigated biomarkers under natural ambient temperatures. However, Bti-induced effects may be concealed by the generally low water temperatures in our FPMs, particularly at the first application in April, when we expected the highest effect on the most sensitive early stage tadpoles. In light of the global climate change, temperature-related effects of pesticides and biocides on tadpoles should be carefully monitored - in particular since they are known as one of the factors driving the worldwide decline of amphibian populations.


Assuntos
Bacillus thuringiensis , Desinfetantes , Animais , Rana temporaria , Controle de Mosquitos , Larva , Desinfetantes/farmacologia , Lagoas , Carbonilação Proteica , Glutationa Transferase , Água
17.
Fetal Pediatr Pathol ; 42(2): 227-240, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35983848

RESUMO

BACKGROUND: Limited studies are available on fetal oxidative stress and endothelial dysfunction and their association with adverse fetal outcomes in hypertensive disorders of pregnancy (HDP). Method: Umbilical cord blood samples were collected at delivery from 134 pregnant women with HDP and 59 controls. Markers of oxidative stress, endothelial dysfunction and inflammation and adipokines were analyzed. Results were correlated with adverse fetal outcomes. Results: Malondialdehyde, total antioxidant status(TAS), ADMA and hsCRP levels were increased in late and early onset preeclampsia. Adiponectin levels were decreased in early onset preeclampsia. High ADMA levels were positively associated with preterm births and fetal mortality and high TAS, protein carbonyl content(PC), ADMA and low adiponectin levels were positively associated with low birth weight babies. Conclusion: Fetal systemic oxidative stress, endothelial dysfunction and inflammation were altered in early and late onset preeclampsia. High TAS, PC and ADMA levels and low adiponectin levels were positively associated with adverse fetal outcomes in HDP.


Assuntos
Hipertensão Induzida pela Gravidez , Pré-Eclâmpsia , Recém-Nascido , Gravidez , Humanos , Feminino , Adiponectina , Carbonilação Proteica , Estresse Oxidativo , Inflamação , Cordão Umbilical , Sangue Fetal
18.
Cell Physiol Biochem ; 56(6): 629-643, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36426388

RESUMO

BACKGROUND/AIMS: Occurring in marine invertebrates infectious haemic neoplasia (bivalves transmissible neoplasia, BTN) arises from genome instabilities leading to multilevel malfunctions and unregulated cell division of presumably haemocyte precursors. As its biochemical characterisation remains unknown, we here present the first data describing selected aspects of the physiology and biochemistry of the disease a in model clam Macoma balthica. We chose free amino acids (FAA) composition, mitochondrial respiration and enzymatic activity, oxidative stress enzymes activities and corticosteroids profile as markers of this contagious cancer. METHODS: Selected markers were measured in neoplastic and healthy clams and two tissue types, haemolymph and solid tissue. FAA composition was assessed in the haemolymph samples using high performance liquid chromatography-mass spectrometry (LC/MS). Mitochondrial respiration analysis was performed on haemocytes using oxygen electrodes integrated system Seahorse XFp. Mitochondrial enzymes activities were measured using spectrophotometry (cytochrome oxidase, COX) and commercial kit (succinate dehydrogenase, SDH). Total Antioxidant Capacity (TAC), Acetylocholinesterase (AChE), Protein Carbonyl Content (CBO) and Malondialdehyde (MDA) levels were measured in the solid tissue using analytical kits, and glutathione (GSH) was measured spectrophotometrically. Corticosteroids profile, measured in the solid tissue, was obtained with Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (HPLC-ESI-MS/MS) technique. RESULTS: In both clam groups nine FAAs were detected with Asp, Glu, Pro, Ser constituting over 90% of total FAA content. Significantly higher Gln level was detected in BTN positive clams. In neoplastic clams, an impairment of mitochondrial metabolism was observed as a decrease in mitochondrial oxygen consumption and lower cytochrome c oxidase activity. In the neoplastic clams significantly higher concentration of low molecular weight antioxidants was found. Finally, we report high level of corticosterone and lower levels of dehydrocorticosterone, cortisol and cortisone in healthy clams and elevated cortisol level in BTN individuals. CONCLUSION: Neoplastic clams are characterized by altered mitochondrial metabolism, with a potential key role of glutamine (Gln) in cancer cells energy production. Despite low aerobic respiration, BTN cells have efficient antioxidative response to elevated concentration of ROS. Elevated cortisol level in BTN-positive clams may indicate an important role of this corticosteroid in cancer biochemistry. Thus, we here provide the first results of selected physiological and biochemical aspects of BTN, making an important step in studying cancer epidemiology in wildlife.


Assuntos
Bivalves , Neoplasias , Humanos , Animais , Hidrocortisona , Carbonilação Proteica , Espectrometria de Massas em Tandem , Glutamina , Glutationa , Aminoácidos
19.
Biochem Biophys Res Commun ; 589: 92-99, 2022 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-34896781

RESUMO

Heated tobacco products (HTPs) are an emerging class of tobacco goods that claim to have lower health risks than those of smoking combustible tobacco products. In this study, we exposed human lung epithelial cell lines to extracts prepared from HTP aerosols and combustible cigarette smoke to compare cytotoxicity. We focused on the effects of aldehydes present in the aerosols of HTPs at levels close to those in combustible cigarette smoke. Significant toxicity was confirmed for the HTP extract, albeit to a lesser extent than that with the combustible cigarette extract. When redox balance was evaluated by the oxidative loss of low-molecular-weight thiols in the cells, we found that total glutathione (GSH) contents and low-molecular-weight thiol levels were significantly decreased after exposure to the aerosol extract of HTPs. These results indicated that GSH is rapidly consumed during the detoxification of xenobiotics, such as aldehydes from tobacco extracts. Accordingly, exposure to the aerosol extract of HTPs resulted in the enhanced carbonylation of many proteins. In a simple comparison, the results for HTPs were significantly different from those obtained with combustible cigarette smoke, suggesting reduced toxicity of HTPs. However, we found significant and harmful effects after exposing lung epithelial cells to the aerosol extract of HTPs. Thus, a further comprehensive study is needed to clarify the lung damage induced via the long-term inhalation of aerosols from HTPs.


Assuntos
Aerossóis/efeitos adversos , Células Epiteliais/metabolismo , Glutationa/metabolismo , Temperatura Alta , Pulmão/patologia , Nicotiana/química , Carbonilação Proteica , Células A549 , Morte Celular , Gases , Humanos , Peso Molecular , Compostos de Sulfidrila/metabolismo , Produtos do Tabaco , Volatilização
20.
Bioinformatics ; 37(2): 171-177, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-32766811

RESUMO

MOTIVATION: Protein carbonylation is one of the most important oxidative stress-induced post-translational modifications, which is generally characterized as stability, irreversibility and relative early formation. It plays a significant role in orchestrating various biological processes and has been already demonstrated to be related to many diseases. However, the experimental technologies for carbonylation sites identification are not only costly and time consuming, but also unable of processing a large number of proteins at a time. Thus, rapidly and effectively identifying carbonylation sites by computational methods will provide key clues for the analysis of occurrence and development of diseases. RESULTS: In this study, we developed a predictor called iCarPS to identify carbonylation sites based on sequence information. A novel feature encoding scheme called residues conical coordinates combined with their physicochemical properties was proposed to formulate carbonylated protein and non-carbonylated protein samples. To remove potential redundant features and improve the prediction performance, a feature selection technique was used. The accuracy and robustness of iCarPS were proved by experiments on training and independent datasets. Comparison with other published methods demonstrated that the proposed method is powerful and could provide powerful performance for carbonylation sites identification. AVAILABILITY AND IMPLEMENTATION: Based on the proposed model, a user-friendly webserver and a software package were constructed, which can be freely accessed at http://lin-group.cn/server/iCarPS. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Processamento de Proteína Pós-Traducional , Proteínas , Biologia Computacional , Estresse Oxidativo , Carbonilação Proteica , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa