Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Cell ; 184(10): 2696-2714.e25, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33891876

RESUMO

Components of the proteostasis network malfunction in aging, and reduced protein quality control in neurons has been proposed to promote neurodegeneration. Here, we investigate the role of chaperone-mediated autophagy (CMA), a selective autophagy shown to degrade neurodegeneration-related proteins, in neuronal proteostasis. Using mouse models with systemic and neuronal-specific CMA blockage, we demonstrate that loss of neuronal CMA leads to altered neuronal function, selective changes in the neuronal metastable proteome, and proteotoxicity, all reminiscent of brain aging. Imposing CMA loss on a mouse model of Alzheimer's disease (AD) has synergistic negative effects on the proteome at risk of aggregation, thus increasing neuronal disease vulnerability and accelerating disease progression. Conversely, chemical enhancement of CMA ameliorates pathology in two different AD experimental mouse models. We conclude that functional CMA is essential for neuronal proteostasis through the maintenance of a subset of the proteome with a higher risk of misfolding than the general proteome.


Assuntos
Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Autofagia Mediada por Chaperonas/fisiologia , Neurônios/metabolismo , Proteostase , Envelhecimento/patologia , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Caseína Quinase I/genética , Autofagia Mediada por Chaperonas/genética , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Neurônios/patologia , Proteoma
2.
Mol Cell ; 83(10): 1677-1692.e8, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37207626

RESUMO

PERIOD (PER) and Casein Kinase 1δ regulate circadian rhythms through a phosphoswitch that controls PER stability and repressive activity in the molecular clock. CK1δ phosphorylation of the familial advanced sleep phase (FASP) serine cluster embedded within the Casein Kinase 1 binding domain (CK1BD) of mammalian PER1/2 inhibits its activity on phosphodegrons to stabilize PER and extend circadian period. Here, we show that the phosphorylated FASP region (pFASP) of PER2 directly interacts with and inhibits CK1δ. Co-crystal structures in conjunction with molecular dynamics simulations reveal how pFASP phosphoserines dock into conserved anion binding sites near the active site of CK1δ. Limiting phosphorylation of the FASP serine cluster reduces product inhibition, decreasing PER2 stability and shortening circadian period in human cells. We found that Drosophila PER also regulates CK1δ via feedback inhibition through the phosphorylated PER-Short domain, revealing a conserved mechanism by which PER phosphorylation near the CK1BD regulates CK1 kinase activity.


Assuntos
Relógios Circadianos , Proteínas Circadianas Period , Animais , Humanos , Fosforilação , Retroalimentação , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Caseína Quinase I/genética , Caseína Quinase I/metabolismo , Ritmo Circadiano/genética , Drosophila/metabolismo , Serina/metabolismo , Mamíferos/metabolismo
3.
Cell ; 161(7): 1619-32, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26091039

RESUMO

The existence of extracellular phosphoproteins has been acknowledged for over a century. However, research in this area has been undeveloped largely because the kinases that phosphorylate secreted proteins have escaped identification. Fam20C is a kinase that phosphorylates S-x-E/pS motifs on proteins in milk and in the extracellular matrix of bones and teeth. Here, we show that Fam20C generates the majority of the extracellular phosphoproteome. Using CRISPR/Cas9 genome editing, mass spectrometry, and biochemistry, we identify more than 100 secreted phosphoproteins as genuine Fam20C substrates. Further, we show that Fam20C exhibits broader substrate specificity than previously appreciated. Functional annotations of Fam20C substrates suggest roles for the kinase beyond biomineralization, including lipid homeostasis, wound healing, and cell migration and adhesion. Our results establish Fam20C as the major secretory pathway protein kinase and serve as a foundation for new areas of investigation into the role of secreted protein phosphorylation in human biology and disease.


Assuntos
Caseína Quinase I/química , Caseína Quinase I/metabolismo , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/metabolismo , Sequência de Aminoácidos , Proteínas Sanguíneas/metabolismo , Caseína Quinase I/genética , Adesão Celular , Movimento Celular , Proteínas do Líquido Cefalorraquidiano/metabolismo , Proteínas da Matriz Extracelular/genética , Técnicas de Inativação de Genes , Ontologia Genética , Humanos , Dados de Sequência Molecular , Fosfoproteínas/análise , Via Secretória , Especificidade por Substrato
4.
Mol Cell ; 81(6): 1133-1146, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33545069

RESUMO

In our 24/7 well-lit world, it's easy to skip or delay sleep to work, study, and play. However, our circadian rhythms are not easily fooled; the consequences of jet lag and shift work are many and severe, including metabolic, mood, and malignant disorders. The internal clock that keeps track of time has at its heart the reversible phosphorylation of the PERIOD proteins, regulated by isoforms of casein kinase 1 (CK1). In-depth biochemical, genetic, and structural studies of these kinases, their mutants, and their splice variants have combined over the past several years to provide a robust understanding of how the core clock is regulated by a phosphoswitch whereby phosphorylation of a stabilizing site on PER blocks phosphorylation of a distant phosphodegron. The recent structure of a circadian mutant form of CK1 implicates an internal activation loop switch that regulates this phosphoswitch and points to new approaches to regulation of the clock.


Assuntos
Caseína Quinase I/metabolismo , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Proteínas Circadianas Period/metabolismo , Animais , Caseína Quinase I/genética , Humanos , Proteínas Circadianas Period/genética , Fosforilação/fisiologia
5.
PLoS Genet ; 19(4): e1010740, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37099597

RESUMO

Oxidative stress response is a fundamental biological process mediated by conserved mechanisms. The identities and functions of some key regulators remain unknown. Here, we report a novel role of C. elegans casein kinase 1 gamma CSNK-1 (also known as CK1γ or CSNK1G) in regulating oxidative stress response and ROS levels. csnk-1 interacted with the bli-3/tsp-15/doxa-1 NADPH dual oxidase genes via genetic nonallelic noncomplementation to affect C. elegans survival in oxidative stress. The genetic interaction was supported by specific biochemical interactions between DOXA-1 and CSNK-1 and potentially between their human orthologs DUOXA2 and CSNK1G2. Consistently, CSNK-1 was required for normal ROS levels in C. elegans. CSNK1G2 and DUOXA2 each can promote ROS levels in human cells, effects that were suppressed by a small molecule casein kinase 1 inhibitor. We also detected genetic interactions between csnk-1 and skn-1 Nrf2 in oxidative stress response. Together, we propose that CSNK-1 CSNK1G defines a novel conserved regulatory mechanism for ROS homeostasis.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Humanos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Oxidases Duais/farmacologia , NADP , Espécies Reativas de Oxigênio , Caseína Quinase I/genética , Estresse Oxidativo/genética , NADPH Oxidases , Tetraspaninas/genética
6.
EMBO Rep ; 24(11): e57250, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37712432

RESUMO

MicroRNAs (miRNAs) together with Argonaute (AGO) proteins form the core of the RNA-induced silencing complex (RISC) to regulate gene expression of their target RNAs post-transcriptionally. Argonaute proteins are subjected to intensive regulation via various post-translational modifications that can affect their stability, silencing efficacy and specificity for targeted gene regulation. We report here that in Caenorhabditis elegans, two conserved serine/threonine kinases - casein kinase 1 alpha 1 (CK1A1) and casein kinase 2 (CK2) - regulate a highly conserved phosphorylation cluster of 4 Serine residues (S988:S998) on the miRNA-specific AGO protein ALG-1. We show that CK1A1 phosphorylates ALG-1 at sites S992 and S995, while CK2 phosphorylates ALG-1 at sites S988 and S998. Furthermore, we demonstrate that phospho-mimicking mutants of the entire S988:S998 cluster rescue the various developmental defects observed upon depleting CK1A1 and CK2. In humans, we show that CK1A1 also acts as a priming kinase of this cluster on AGO2. Altogether, our data suggest that phosphorylation of AGO within the cluster by CK1A1 and CK2 is required for efficient miRISC-target RNA binding and silencing.


Assuntos
Proteínas de Caenorhabditis elegans , MicroRNAs , Animais , Humanos , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caseína Quinase I/genética , Caseína Quinase I/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Complexo de Inativação Induzido por RNA/genética , Complexo de Inativação Induzido por RNA/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Inativação Gênica , Serina/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
7.
Mol Biol Evol ; 40(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979156

RESUMO

Whole-genome duplication (WGD) followed by speciation allows us to examine the parallel evolution of ohnolog pairs. In the yeast family Saccharomycetaceae, HRR25 is a rare case of repeated ohnolog maintenance. This gene has reverted to a single copy in Saccharomyces cerevisiae where it is now essential, but has been maintained as pairs in at least 7 species post-WGD. In S. cerevisiae, HRR25 encodes the casein kinase 1δ/ε and plays a role in a variety of functions through its kinase activity and protein-protein interactions (PPIs). We hypothesized that the maintenance of duplicated HRR25 ohnologs could be a result of repeated subfunctionalization. We tested this hypothesis through a functional complementation assay in S. cerevisiae, testing all pairwise combinations of 25 orthologs (including 7 ohnolog pairs). Contrary to our expectations, we observed no cases of pair-dependent complementation, which would have supported the subfunctionalization hypothesis. Instead, most post-WGD species have one ohnolog that failed to complement, suggesting their nonfunctionalization or neofunctionalization. The ohnologs incapable of complementation have undergone more rapid protein evolution, lost most PPIs that were observed for their functional counterparts and singletons from post-WGD and non-WGD species, and have nonconserved cellular localization, consistent with their ongoing loss of function. The analysis in Naumovozyma castellii shows that the noncomplementing ohnolog is expressed at a lower level and has become nonessential. Taken together, our results indicate that HRR25 orthologs are undergoing gradual nonfunctionalization.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Saccharomyces cerevisiae/genética , Duplicação Gênica , Genoma Fúngico , Evolução Molecular , Saccharomycetales/genética , Proteínas de Saccharomyces cerevisiae/genética , Caseína Quinase I/genética
8.
EMBO J ; 39(18): e103932, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32965059

RESUMO

Wnt/ß-catenin signaling is a primary pathway for stem cell maintenance during tissue renewal and a frequent target for mutations in cancer. Impaired Wnt receptor endocytosis due to loss of the ubiquitin ligase RNF43 gives rise to Wnt-hypersensitive tumors that are susceptible to anti-Wnt-based therapy. Contrary to this paradigm, we identify a class of RNF43 truncating cancer mutations that induce ß-catenin-mediated transcription, despite exhibiting retained Wnt receptor downregulation. These mutations interfere with a ubiquitin-independent suppressor role of the RNF43 cytosolic tail that involves Casein kinase 1 (CK1) binding and phosphorylation. Mechanistically, truncated RNF43 variants trap CK1 at the plasma membrane, thereby preventing ß-catenin turnover and propelling ligand-independent target gene transcription. Gene editing of human colon stem cells shows that RNF43 truncations cooperate with p53 loss to drive a niche-independent program for self-renewal and proliferation. Moreover, these RNF43 variants confer decreased sensitivity to anti-Wnt-based therapy. Our data demonstrate the relevance of studying patient-derived mutations for understanding disease mechanisms and improved applications of precision medicine.


Assuntos
Caseína Quinase I/metabolismo , Neoplasias/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Via de Sinalização Wnt , Caseína Quinase I/genética , Células HEK293 , Humanos , Neoplasias/genética , Neoplasias/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/genética , beta Catenina/genética , beta Catenina/metabolismo
9.
EMBO J ; 39(20): e105117, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32840906

RESUMO

Heterotetrameric adapter (AP) complexes cooperate with the small GTPase Arf1 or lipids in cargo selection, vesicle formation, and budding at endomembranes in eukaryotic cells. While most AP complexes also require clathrin as the outer vesicle shell, formation of AP-3-coated vesicles involved in Golgi-to-vacuole transport in yeast has been postulated to depend on Vps41, a subunit of the vacuolar HOPS tethering complex. HOPS has also been identified as the tether of AP-3 vesicles on vacuoles. To unravel this conundrum of a dual Vps41 function, we anchored Vps41 stably to the mitochondrial outer membrane. By monitoring AP-3 recruitment, we now show that Vps41 can tether AP-3 vesicles to mitochondria, yet AP-3 vesicles can form in the absence of Vps41 or clathrin. By proximity labeling and mass spectrometry, we identify the Arf1 GTPase-activating protein (GAP) Age2 at the AP-3 coat and show that tethering, but not fusion at the vacuole can occur without complete uncoating. We conclude that AP-3 vesicles retain their coat after budding and that their complete uncoating occurs only after tethering at the vacuole.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Vesículas Citoplasmáticas/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Fatores de Ribosilação do ADP/genética , Transporte Biológico Ativo/genética , Caseína Quinase I/genética , Caseína Quinase I/metabolismo , Vesículas Citoplasmáticas/ultraestrutura , Proteínas Ativadoras de GTPase/genética , Deleção de Genes , Complexo de Golgi/metabolismo , Espectrometria de Massas , Fusão de Membrana , Microscopia Eletrônica , Membranas Mitocondriais/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Vacúolos/ultraestrutura , Proteínas de Transporte Vesicular/genética
10.
Prenat Diagn ; 44(3): 369-372, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38163266

RESUMO

Raine syndrome (MIM 259775) is a rare autosomal recessive disorder, first described by Raine et al. in 1989, with an estimated prevalence of <1/1,000,000. This is due to pathogenic variants in FAM20C characterized by osteosclerosis, typical craniofacial features, and brain calcifications. Here, we report a novel variant in FAM20C, describe a uniquely severe craniofacial and CNS phenotype of Raine syndrome, and correlate it with prenatal findings. Fetal phenotyping was based on ultrasound and MRI. Solo exome sequencing was performed from DNA extracted from postmortem skin biopsy. Targeted parental variant testing was subsequently performed. A homozygous missense variant NM_020223.4 (c.1445 G > A (p.Gly482Glu)) was identified in FAM20C associated with Raine syndrome. The infant had the characteristic dysmorphic features seen in Raine syndrome. He had particularly significant CNS manifestations consisting of multisuture craniosynostosis with protrusion of the brain parenchyma through fontanelles and cranial lacunae. Histological sections of the brain showed marked periventricular gliosis with regions of infarction, hemorrhage, and cavitation with global periventricular leukomalacia. Numerous dystrophic calcifications were diffusely present. Here, we demonstrate the identification of a novel variant in FAM20C in an infant with the characteristic features seen in Raine syndrome. The patient expands the characteristic phenotype of Raine syndrome to include a uniquely severe CNS phenotype, first identified on prenatal imaging.


Assuntos
Anormalidades Múltiplas , Encefalopatias , Fissura Palatina , Anormalidades Craniofaciais , Exoftalmia , Microcefalia , Osteosclerose , Sinostose , Masculino , Lactente , Humanos , Gravidez , Feminino , Proteínas da Matriz Extracelular/genética , Caseína Quinase I/genética , Osteosclerose/diagnóstico por imagem , Osteosclerose/genética , Encéfalo/diagnóstico por imagem , Fenótipo , Sinostose/complicações , Crânio
11.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34349020

RESUMO

Family with sequence similarity 20C (Fam20C), the major protein kinase in the secretory pathway, generates the vast majority of the secreted phosphoproteome. However, the regulatory mechanisms of Fam20C transport, secretion, and function remain largely unexplored. Here, we show that Fam20C exists as a type II transmembrane protein within the secretory compartments, with its N-terminal signal peptide-like region serving as a membrane anchor for Golgi retention. The secretion and kinase activity of Fam20C are governed by site-1 protease (S1P), a key regulator of cholesterol homeostasis. We find that only mature Fam20C processed by S1P functions in osteoblast differentiation and mineralization. Together, our findings reveal a unique mechanism for Fam20C secretion and activation via proteolytic regulation, providing a molecular link between biomineralization and lipid metabolism.


Assuntos
Caseína Quinase I/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Pró-Proteína Convertases/metabolismo , Serina Endopeptidases/metabolismo , Motivos de Aminoácidos , Animais , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Caseína Quinase I/genética , Diferenciação Celular/efeitos dos fármacos , Proteínas da Matriz Extracelular/genética , Complexo de Golgi/metabolismo , Células HeLa , Humanos , Camundongos , Mutação , Osteoblastos/citologia , Osteoblastos/metabolismo , Pró-Proteína Convertases/antagonistas & inibidores , Pró-Proteína Convertases/genética , Domínios Proteicos , Transporte Proteico , Pirrolidinas/farmacologia , Via Secretória , Serina Endopeptidases/genética
12.
J Biol Chem ; 298(6): 101986, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35487243

RESUMO

Aberrant activation or suppression of WNT/ß-catenin signaling contributes to cancer initiation and progression, neurodegeneration, and bone disease. However, despite great need and more than 40 years of research, targeted therapies for the WNT pathway have yet to be fully realized. Kinases are considered exceptionally druggable and occupy key nodes within the WNT signaling network, but several pathway-relevant kinases remain understudied and "dark." Here, we studied the function of the casein kinase 1γ (CSNK1γ) subfamily of human kinases and their roles in WNT signaling. miniTurbo-based proximity biotinylation and mass spectrometry analysis of CSNK1γ1, CSNK1γ2, and CSNK1γ3 revealed numerous components of the ß-catenin-dependent and ß-catenin-independent WNT pathways. In gain-of-function experiments, we found that CSNK1γ3 but not CSNK1γ1 or CSNK1γ2 activated ß-catenin-dependent WNT signaling, with minimal effect on other signaling pathways. We also show that within the family, CSNK1γ3 expression uniquely induced low-density lipoprotein receptor-related protein 6 phosphorylation, which mediates downstream WNT signaling transduction. Conversely, siRNA-mediated silencing of CSNK1γ3 alone had no impact on WNT signaling, though cosilencing of all three family members decreased WNT pathway activity. Finally, we characterized two moderately selective and potent small-molecule inhibitors of the CSNK1γ family. We show that these inhibitors and a CSNK1γ3 kinase-dead mutant suppressed but did not eliminate WNT-driven low-density lipoprotein receptor-related protein 6 phosphorylation and ß-catenin stabilization. Our data suggest that while CSNK1γ3 expression uniquely drives pathway activity, potential functional redundancy within the family necessitates loss of all three family members to suppress the WNT signaling pathway.


Assuntos
Caseína Quinase I , Via de Sinalização Wnt , beta Catenina , Caseína Quinase I/genética , Caseína Quinase I/metabolismo , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Fosforilação , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
13.
Plant Physiol ; 189(4): 2091-2109, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35522025

RESUMO

High temperature (HT) causes male sterility and decreases crop yields. Our previous works have demonstrated that sugar and auxin signaling pathways, Gossypium hirsutum Casein kinase I (GhCKI), and DNA methylation are all involved in HT-induced male sterility in cotton. However, the signaling mechanisms leading to distinct GhCKI expression patterns induced by HT between HT-tolerant and HT-sensitive cotton anthers remain largely unknown. Here, we identified a GhCKI promoter (ProGhCKI) region that functions in response to HT in anthers and found the transcription factor GhMYB4 binds to this region to act as an upstream positive regulator of GhCKI. In the tapetum of early-stage cotton anthers, upregulated expression of GhMYB4 under HT and overexpressed GhMYB4 under normal temperature both led to severe male sterility phenotypes, coupled with enhanced expression of GhCKI. We also found that GhMYB4 interacts with GhMYB66 to form a heterodimer to enhance its binding to ProGhCKI. However, GhMYB66 showed an expression pattern similar to GhMYB4 under HT but did not directly bind to ProGhCKI. Furthermore, HT reduced siRNA-mediated CHH DNA methylations in the GhMYB4 promoter, which enhanced the expression of GhMYB4 in tetrad stage anthers and promoted the formation of the GhMYB4/GhMYB66 heterodimer, which in turn elevated the transcription of GhCKI in the tapetum, leading to male sterility. Overall, we shed light on the GhMYB66-GhMYB4-GhCKI regulatory pathway in response to HT in cotton anthers.


Assuntos
Gossypium , Infertilidade Masculina , Caseína Quinase I/genética , Caseína Quinase I/metabolismo , Regulação da Expressão Gênica de Plantas , Gossypium/metabolismo , Temperatura Alta , Humanos , Masculino , Temperatura
14.
Plant Cell ; 32(9): 2878-2897, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32641349

RESUMO

Casein kinase 1 (CK1) family members are conserved Ser/Thr protein kinases that regulate important developmental processes in all eukaryotic organisms. However, the functions of CK1 in plant immunity remain largely unknown. Barley yellow striate mosaic virus (BYSMV), a plant cytorhabdovirus, infects cereal crops and is obligately transmitted by the small brown planthopper (SBPH; Laodelphax striatellus). The BYSMV phosphoprotein (P) exists as two forms with different mobilities corresponding to 42 kD (P42) and 44 kD (P44) in SDS-PAGE gels. Mass spectrometric analyses revealed a highly phosphorylated serine-rich (SR) motif at the C-terminal intrinsically disordered region of the P protein. The Ala-substitution mutant (PS5A) in the SR motif stimulated virus replication, whereas the phosphorylation-mimic mutant (PS5D) facilitated virus transcription. Furthermore, PS5A and PS5D associated preferentially with nucleocapsid protein-RNA templates and the large polymerase protein to provide optimal replication and transcription complexes, respectively. Biochemistry assays demonstrated that plant and insect CK1 protein kinases could phosphorylate the SR motif and induce conformational changes from P42 to P44. Moreover, overexpression of CK1 or a dominant-negative mutant impaired the balance between P42 and P44, thereby compromising virus infections. Our results demonstrate that BYSMV recruits the conserved CK1 kinases to achieve its cross-kingdom infection in host plants and insect vectors.


Assuntos
Caseína Quinase I/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Proteínas de Plantas/metabolismo , Rhabdoviridae/fisiologia , Proteínas Virais/metabolismo , Motivos de Aminoácidos , Caseína Quinase I/genética , Genoma Viral , Proteínas de Insetos/metabolismo , Espectrometria de Massas , Mutação , Fosfoproteínas/metabolismo , Fosforilação , Doenças das Plantas/virologia , Rhabdoviridae/patogenicidade , Serina , Nicotiana/virologia , Replicação Viral/fisiologia
15.
FASEB J ; 36(1): e22059, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34847273

RESUMO

The mineralocorticoid receptor (MR) with its ligand aldosterone (aldo) physiologically regulates electrolyte homeostasis and blood pressure but it can also lead to pathophysiological effects in the cardiovascular system. Previous results show that posttranslational modifications (PTM) can influence MR signaling and function. Based on in silico and in vitro data, casein kinase 1 (CK1) was predicted as a candidate for MR phosphorylation. To gain a deeper mechanistic insight into MR activation, we investigated the influence of CK1 on MR function in HEK cells. Co-immunoprecipitation experiments indicated that the MR is located in a protein-protein complex with CK1α and CK1ε. Reporter gene assays with pharmacological inhibitors and MR constructs demonstrated that especially CK1ε acts as a positive modulator of GRE activity via the C-terminal MR domains CDEF. CK1 enhanced the binding affinity of aldosterone to the MR, facilitated nuclear translocation and DNA interaction of the MR, and led to expression changes of pathophysiologically relevant genes like Per-1 and Phlda1. By peptide microarray and site-directed mutagenesis experiments, we identified the highly conserved T800 as a direct CK1 phosphorylation site of the MR, which modulates the nuclear import and genomic activity of the receptor. Direct phosphorylation of the MR was unable to fully account for all of the CK1 effects on MR signaling, suggesting additional phosphorylation of MR co-regulators. By LC/MS/MS, we identified the MR-associated proteins NOLC1 and TCOF1 as candidates for such CK1-regulated co-factors. Overall, we found that CK1 acts as a co-activator of MR GRE activity through direct and indirect phosphorylation, which accelerates cytosolic-nuclear trafficking, facilitates nuclear accumulation and DNA binding of the MR, and increases the expression of pathologically relevant MR-target genes.


Assuntos
Caseína Quinase I/metabolismo , Receptores de Mineralocorticoides/metabolismo , Transcrição Gênica , Caseína Quinase I/genética , Células HEK293 , Humanos , Fosforilação , Domínios Proteicos , Receptores de Mineralocorticoides/genética
16.
Int J Mol Sci ; 24(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37240249

RESUMO

FAM20C (family with sequence similarity 20, member C) is a serine/threonine-specific protein kinase that is ubiquitously expressed and mainly associated with biomineralization and phosphatemia regulation. It is mostly known due to pathogenic variants causing its deficiency, which results in Raine syndrome (RNS), a sclerosing bone dysplasia with hypophosphatemia. The phenotype is recognized by the skeletal features, which are related to hypophosphorylation of different FAM20C bone-target proteins. However, FAM20C has many targets, including brain proteins and the cerebrospinal fluid phosphoproteome. Individuals with RNS can have developmental delay, intellectual disability, seizures, and structural brain defects, but little is known about FAM20C brain-target-protein dysregulation or about a potential pathogenesis associated with neurologic features. In order to identify the potential FAM20C actions on the brain, an in silico analysis was conducted. Structural and functional defects reported in RNS were described; FAM20C targets and interactors were identified, including their brain expression. Gene ontology of molecular processes, function, and components was completed for these targets, as well as for potential involved signaling pathways and diseases. The BioGRID and Human Protein Atlas databases, the Gorilla tool, and the PANTHER and DisGeNET databases were used. Results show that genes with high expression in the brain are involved in cholesterol and lipoprotein processes, plus axo-dendritic transport and the neuron part. These results could highlight some proteins involved in the neurologic pathogenesis of RNS.


Assuntos
Microcefalia , Proteínas Quinases , Humanos , Proteínas Quinases/metabolismo , Microcefalia/genética , Encéfalo/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Caseína Quinase I/genética , Caseína Quinase I/metabolismo
17.
J Cell Mol Med ; 26(6): 1729-1741, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33560588

RESUMO

Renal cell carcinoma (RCC) is the most common form of kidney cancer, with a high recurrence rate and metastasis capacity. Circular RNAs (circRNAs) have been suggested to act as the critical regulator in several diseases. This study is designed to investigate the role of circCSNK1G3 on RCC progression. We observed a highly expression of circCSNK1G3 in RCC tissues compared with normal tissues. The aberrantly circCSNK1G3 promoted the tumour growth and metastasis in RCC. In the subsequent mechanism investigation, we discovered that the tumour-promoting effects of circCSNK1G3 were, at least partly, achieved by up-regulating miR-181b. Increased miR-181b inhibits several tumour suppressor gene, including CYLD, LATS2, NDRG2 and TIMP3. Furthermore, the decreased TIMP3 leads to the enhanced epithelial to mesenchymal transition (EMT) process, thus promoting the cancer metastasis. In conclusion, we identified the oncogenic role of circCSNK1G3 in RCC progression and demonstrated the regulatory role of circCSNK1G3 induced miR-181b expression, which leads to TIMP3-mediated EMT process, thus resulting in tumour growth and metastasis in RCC. This study reveals the promise of circCSNK1G3 to be developed as a potential diagnostic and prognostic biomarker in the clinic. And the roles of circCSNK1G3 in cancer research deserve further investigation.


Assuntos
Carcinoma de Células Renais , Caseína Quinase I/genética , Neoplasias Renais , MicroRNAs , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Serina-Treonina Quinases , Inibidor Tecidual de Metaloproteinase-3/genética , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Proteínas Supressoras de Tumor/genética
18.
Prenat Diagn ; 42(5): 589-600, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35373843

RESUMO

INTRODUCTION: Raine syndrome is an autosomal recessive disorder characterized mainly by the presence of exophthalmos, choanal atresia or stenosis, osteosclerosis, and cerebral calcifications. There are around 50 cases described in the literature with a prevalence of less than 1/1,000,000. It is secondary to pathogenic variants in the FAM20 C gene, located on chromosome 7p22.3. CASE REPORT: We report a consanguineous family with three affected pregnancies. In the first two, exophthalmos and bone abnormalities were noted, ending in one intra-uterine demise and one neonatal death, without identifying any genetic disorder. During the couple's most recent pregnancy, fetal anomaly sonogram and fetal CT scan revealed microcephaly, intracranial calcifications, exophthalmos, hypertelorism, depressed nasal bridge, midface hypoplasia and thoracic hypoplasia. Fetal blood sampling for whole exome sequencing revealed a novel pathogenic homozygous variant c.1363+1G > A in the FAM20 C gene associated with Raine syndrome. Delivery occurred at 26 weeks of gestation after rupture of membranes followed by neonatal death due to respiratory failure. REVIEW: A review of the distinctive features of Raine syndrome, the contribution of different prenatal imaging modalities (Ultrasound, Computed Tomography and Magnetic Resonance Imaging) in making the diagnosis and the molecular characterization of this disorder is provided.


Assuntos
Calcinose , Exoftalmia , Morte Perinatal , Anormalidades Múltiplas , Caseína Quinase I/genética , Fissura Palatina , Proteínas da Matriz Extracelular/genética , Feminino , Humanos , Recém-Nascido , Microcefalia , Mutação , Osteosclerose , Gravidez
19.
Proc Natl Acad Sci U S A ; 116(23): 11528-11536, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31097584

RESUMO

The circadian clock provides organisms with the ability to adapt to daily and seasonal cycles. Eukaryotic clocks mostly rely on lineage-specific transcriptional-translational feedback loops (TTFLs). Posttranslational modifications are also crucial for clock functions in fungi and animals, but the posttranslational modifications that affect the plant clock are less understood. Here, using chemical biology strategies, we show that the Arabidopsis CASEIN KINASE 1 LIKE (CKL) family is involved in posttranslational modification in the plant clock. Chemical screening demonstrated that an animal CDC7/CDK9 inhibitor, PHA767491, lengthens the Arabidopsis circadian period. Affinity proteomics using a chemical probe revealed that PHA767491 binds to and inhibits multiple CKL proteins, rather than CDC7/CDK9 homologs. Simultaneous knockdown of Arabidopsis CKL-encoding genes lengthened the circadian period. CKL4 phosphorylated transcriptional repressors PSEUDO-RESPONSE REGULATOR 5 (PRR5) and TIMING OF CAB EXPRESSION 1 (TOC1) in the TTFL. PHA767491 treatment resulted in accumulation of PRR5 and TOC1, accompanied by decreasing expression of PRR5- and TOC1-target genes. A prr5 toc1 double mutant was hyposensitive to PHA767491-induced period lengthening. Together, our results reveal posttranslational modification of transcriptional repressors in plant clock TTFL by CK1 family proteins, which also modulate nonplant circadian clocks.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Caseína Quinase I/genética , Relógios Circadianos/genética , Fatores de Transcrição/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas/genética , Fosforilação/genética , Processamento de Proteína Pós-Traducional/genética , Transcrição Gênica/genética
20.
J Biol Chem ; 295(34): 12262-12278, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32647006

RESUMO

Membrane fusion/fission is a highly dynamic and conserved process that responds to intra- and extracellular signals. Whereas the molecular machineries involved in membrane fusion/fission have been dissected, regulation of membrane dynamics remains poorly understood. The lysosomal vacuole of budding yeast (Saccharomyces cerevisiae) has served as a seminal model in studies of membrane dynamics. We have previously established that yeast ENV7 encodes an ortholog of STK16-related kinases that localizes to the vacuolar membrane and downregulates vacuolar membrane fusion. Additionally, we have previously reported that Env7 phosphorylation in vivo depends on YCK3, a gene that encodes a vacuolar membrane casein kinase I (CKI) homolog that nonredundantly functions in fusion regulation. Here, we report that Env7 physically interacts with and is directly phosphorylated by Yck3. We also establish that Env7 vacuole fusion/fission regulation and vacuolar localization are mediated through its Yck3-dependent phosphorylation. Through extensive site-directed mutagenesis, we map phosphorylation to the Env7 C terminus and confirm that Ser-331 is a primary and preferred phosphorylation site. Phospho-deficient Env7 mutants were defective in negative regulation of membrane fusion, increasing the number of prominent vacuoles, whereas a phosphomimetic substitution at Ser-331 increased the number of fragmented vacuoles. Bioinformatics approaches confirmed that Env7 Ser-331 is within a motif that is highly conserved in STK16-related kinases and that it also anchors an SXXS CKI phosphorylation motif (328SRFS331). This study represents the first report on the regulatory mechanism of an STK16-related kinase. It also points to regulation of vacuolar membrane dynamics via a novel Yck3-Env7 kinase cascade.


Assuntos
Caseína Quinase I/metabolismo , Membranas Intracelulares/enzimologia , Lisossomos/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Vacúolos/enzimologia , Motivos de Aminoácidos , Caseína Quinase I/genética , Lisossomos/genética , Fusão de Membrana , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Vacúolos/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa