Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 378
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 118(5): 1439-1454, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38379355

RESUMO

Aporphine alkaloids are a large group of natural compounds with extensive pharmaceutical application prospects. The biosynthesis of aporphine alkaloids has been paid attentions in the past decades. Here, we determined the contents of four 1-benzylisoquinoline alkaloids and five aporphine alkaloids in root, stem, leaf, and flower of Aristolochia contorta Bunge, which belongs to magnoliids. Two CYP80 enzymes were identified and characterized from A. contorta. Both of them catalyze the unusual C-C phenol coupling reactions and directly form the aporphine alkaloid skeleton. AcCYP80G7 catalyzed the formation of hexacyclic aporphine corytuberine. AcCYP80Q8 catalyzed the formation of pentacyclic proaporphine glaziovine. Kingdom-wide phylogenetic analysis of the CYP80 family suggested that CYP80 first appeared in Nymphaeales. The functional divergence of hydroxylation and C-C (or C-O) phenol coupling preceded the divergence of magnoliids and eudicots. Probable crucial residues of AcCYP80Q8 were selected through sequence alignment and molecular docking. Site-directed mutagenesis revealed two crucial residues E284 and Y106 for the catalytic reaction. Identification and characterization of two aporphine skeleton-forming enzymes provide insights into the biosynthesis of aporphine alkaloids.


Assuntos
Alcaloides , Aporfinas , Aristolochia , Sistema Enzimático do Citocromo P-450 , Filogenia , Proteínas de Plantas , Aporfinas/metabolismo , Aristolochia/enzimologia , Aristolochia/metabolismo , Aristolochia/genética , Aristolochia/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Alcaloides/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/genética , Folhas de Planta/enzimologia , Raízes de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Flores/enzimologia , Flores/genética , Flores/metabolismo , Caules de Planta/metabolismo , Caules de Planta/enzimologia , Caules de Planta/genética
2.
Plant J ; 107(3): 713-726, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33974298

RESUMO

As rapid changes in climate threaten global crop yields, an understanding of plant heat stress tolerance is increasingly relevant. Heat stress tolerance involves the coordinated action of many cellular processes and is particularly energy demanding. We acquired a knockout mutant and generated knockdown lines in Arabidopsis thaliana of the d subunit of mitochondrial ATP synthase (gene name: ATPQ, AT3G52300, referred to hereafter as ATPd), a subunit of the peripheral stalk, and used these to investigate the phenotypic significance of this subunit in normal growth and heat stress tolerance. Homozygous knockout mutants for ATPd could not be obtained due to gametophytic defects, while heterozygotes possess no visible phenotype. Therefore, we used RNA interference to create knockdown plant lines for further studies. Proteomic analysis and blue native gels revealed that ATPd downregulation impairs only subunits of the mitochondrial ATP synthase (complex V). Knockdown plants were more sensitive to heat stress, had abnormal leaf morphology, and were severely slow growing compared to wild type. These results indicate that ATPd plays a crucial role in proper function of the mitochondrial ATP synthase holoenzyme, which, when reduced, leads to wide-ranging defects in energy-demanding cellular processes. In knockdown plants, more hydrogen peroxide accumulated and mitochondrial dysfunction stimulon (MDS) genes were activated. These data establish the essential structural role of ATPd and support the importance of complex V in normal plant growth, and provide new information about its requirement for heat stress tolerance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Resposta ao Choque Térmico/fisiologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Caules de Planta/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Regulação para Baixo , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Técnicas de Silenciamento de Genes , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , Caules de Planta/enzimologia , Subunidades Proteicas , Interferência de RNA , Transdução de Sinais
3.
BMC Plant Biol ; 21(1): 56, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33478381

RESUMO

BACKGROUND: Lignin deposited in plant cell walls negatively affects biomass conversion into advanced bioproducts. There is therefore a strong interest in developing bioenergy crops with reduced lignin content or altered lignin structures. Another desired trait for bioenergy crops is the ability to accumulate novel bioproducts, which would enhance the development of economically sustainable biorefineries. As previously demonstrated in the model plant Arabidopsis, expression of a 3-dehydroshikimate dehydratase in plants offers the potential for decreasing lignin content and overproducing a value-added metabolic coproduct (i.e., protocatechuate) suitable for biological upgrading. RESULTS: The 3-dehydroshikimate dehydratase QsuB from Corynebacterium glutamicum was expressed in the bioenergy crop switchgrass (Panicum virgatum L.) using the stem-specific promoter of an O-methyltransferase gene (pShOMT) from sugarcane. The activity of pShOMT was validated in switchgrass after observation in-situ of beta-glucuronidase (GUS) activity in stem nodes of plants carrying a pShOMT::GUS fusion construct. Under controlled growth conditions, engineered switchgrass lines containing a pShOMT::QsuB construct showed reductions of lignin content, improvements of biomass saccharification efficiency, and accumulated higher amount of protocatechuate compared to control plants. Attempts to generate transgenic switchgrass lines carrying the QsuB gene under the control of the constitutive promoter pZmUbi-1 were unsuccessful, suggesting possible toxicity issues associated with ectopic QsuB expression during the plant regeneration process. CONCLUSION: This study validates the transfer of the QsuB engineering approach from a model plant to switchgrass. We have demonstrated altered expression of two important traits: lignin content and accumulation of a co-product. We found that the choice of promoter to drive QsuB expression should be carefully considered when deploying this strategy to other bioenergy crops. Field-testing of engineered QsuB switchgrass are in progress to assess the performance of the introduced traits and agronomic performances of the transgenic plants.


Assuntos
Corynebacterium/enzimologia , Hidroliases/metabolismo , Lignina/biossíntese , Panicum/genética , Regiões Promotoras Genéticas/genética , Saccharum/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biomassa , Parede Celular/metabolismo , Corynebacterium/genética , Regulação da Expressão Gênica de Plantas , Genes Reporter , Hidroliases/genética , Lignina/análise , Metiltransferases/genética , Especificidade de Órgãos , Panicum/crescimento & desenvolvimento , Panicum/metabolismo , Proteínas de Plantas/genética , Caules de Planta/enzimologia , Caules de Planta/genética , Plantas Geneticamente Modificadas , Saccharum/enzimologia
4.
BMC Plant Biol ; 21(1): 590, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903166

RESUMO

BACKGROUND: Arabinogalactan-proteins (AGPs) are structurally complex hydroxyproline-rich cell wall glycoproteins ubiquitous in the plant kingdom. AGPs biosynthesis involves a series of post-translational modifications including the addition of type II arabinogalactans to non-contiguous Hyp residues. To date, eight Hyp-galactosyltransferases (Hyp-GALTs; GALT2-GALT9) belonging to CAZy GT31, are known to catalyze the addition of the first galactose residues to AGP protein backbones and enable subsequent AGP glycosylation. The extent of genetic redundancy, however, remains to be elucidated for the Hyp-GALT gene family. RESULTS: To examine their gene redundancy and functions, we generated various multiple gene knock-outs, including a triple mutant (galt5 galt8 galt9), two quadruple mutants (galt2 galt5 galt7 galt8, galt2 galt5 galt7 galt9), and one quintuple mutant (galt2 galt5 galt7 galt8 galt9), and comprehensively examined their biochemical and physiological phenotypes. The key findings include: AGP precipitations with ß-Yariv reagent showed that GALT2, GALT5, GALT7, GALT8 and GALT9 act redundantly with respect to AGP glycosylation in cauline and rosette leaves, while the activity of GALT7, GALT8 and GALT9 dominate in the stem, silique and flowers. Monosaccharide composition analysis showed that galactose was decreased in the silique and root AGPs of the Hyp-GALT mutants. TEM analysis of 25789 quintuple mutant stems indicated cell wall defects coincident with the observed developmental and growth impairment in these Hyp-GALT mutants. Correlated with expression patterns, galt2, galt5, galt7, galt8, and galt9 display equal additive effects on insensitivity to ß-Yariv-induced growth inhibition, silique length, plant height, and pollen viability. Interestingly, galt7, galt8, and galt9 contributed more to primary root growth and root tip swelling under salt stress, whereas galt2 and galt5 played more important roles in seed morphology, germination defects and seed set. Pollen defects likely contributed to the reduced seed set in these mutants. CONCLUSION: Additive and pleiotropic effects of GALT2, GALT5, GALT7, GALT8 and GALT9 on vegetative and reproductive growth phenotypes were teased apart via generation of different combinations of Hyp-GALT knock-out mutants. Taken together, the generation of higher order Hyp-GALT mutants demonstrate the functional importance of AG polysaccharides decorating the AGPs with respect to various aspects of plant growth and development.


Assuntos
Arabidopsis/genética , Galactanos/metabolismo , Galactosiltransferases/metabolismo , Mucoproteínas/metabolismo , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Flores/enzimologia , Flores/genética , Flores/fisiologia , Flores/ultraestrutura , Galactosiltransferases/genética , Pleiotropia Genética , Germinação , Glucosídeos/química , Glicosilação , Hidroxiprolina/metabolismo , Meristema/enzimologia , Meristema/genética , Meristema/fisiologia , Meristema/ultraestrutura , Mucoproteínas/genética , Mutação , Especificidade de Órgãos , Floroglucinol/análogos & derivados , Floroglucinol/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/enzimologia , Caules de Planta/genética , Caules de Planta/fisiologia , Caules de Planta/ultraestrutura , Biossíntese de Proteínas , Estresse Salino , Sementes/enzimologia , Sementes/genética , Sementes/fisiologia , Sementes/ultraestrutura
5.
Plant Physiol ; 184(2): 806-822, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32699027

RESUMO

Lignin, a critical phenolic polymer in secondary cell walls of plant cells, enables strength in fibers and water transportation in xylem vessel elements. Secreted enzymes, namely laccases (LACs) and peroxidases (PRXs), facilitate lignin polymerization by oxidizing lignin monomers (monolignols). Previous work in Arabidopsis (Arabidopsis thaliana) demonstrated that AtLAC4 and AtPRX64 localized to discrete lignified cell wall domains in fibers, although the spatial distributions of other enzymes in these large gene families are unknown. Here, we show that characteristic sets of putative lignin-associated LACs and PRXs localize to precise regions during stem development, with LACs and PRXs co-occurring in cell wall domains. AtLAC4, AtLAC17, and AtPRX72 localized to the thick secondary cell wall of xylem vessel elements and fibers, whereas AtLAC4, AtPRX64, and AtPRX71 localized to fiber cell corners. Interestingly, AtLAC4 had a transient cell corner localization early in fiber development that disappeared in the mature stem. In contrast with these secondary cell wall localizations, AtLAC10, AtPRX42, AtPRX52, and AtPRX71 were found in nonlignified tissues. Despite ubiquitous PRX occurrence in cell walls, PRX oxidative activity was restricted to lignifying regions during development, which suggested regulated production of apoplastic hydrogen peroxide. Relative amounts of apoplastic reactive oxygen species differed between lignified cell types, which could modulate PRX activity. Together, these results indicate that precise localization of oxidative enzymes and differential distribution of oxidative substrates, such as hydrogen peroxide, provide mechanisms to control spatiotemporal deposition of lignin during development.


Assuntos
Parede Celular/enzimologia , Lacase/metabolismo , Lignina/metabolismo , Peroxidases/metabolismo , Caules de Planta/crescimento & desenvolvimento , Arabidopsis , Caules de Planta/enzimologia , Espécies Reativas de Oxigênio/metabolismo
6.
Int J Mol Sci ; 22(2)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467001

RESUMO

Sucrose synthase is a key enzyme in sucrose metabolism as it saves an important part of sucrose energy in the uridine-5'-diphosphate glucose (UDP-glucose) molecule. As such it is also involved in the synthesis of fundamental molecules such as callose and cellulose, the latter being present in all cell walls of plant cells and therefore also in the gelatinous cell walls of sclerenchyma cells such as bast fibers. Given the importance of these cells in plants of economic interest such as hemp, flax and nettle, in this work we have studied the occurrence of Sucrose synthase in nettle stems by analyzing its distribution between the cytosol, membranes and cell wall. We have therefore developed a purification protocol that can allow the analysis of various characteristics of the enzyme. In nettle, Sucrose synthase is encoded by different genes and each form of the enzyme could be subjected to different post-translational modifications. Therefore, by two-dimensional electrophoresis analysis, we have also traced the phosphorylation profile of Sucrose synthase isoforms in the various cell compartments. This information paves the way for further investigation of Sucrose synthase in plants such as nettle, which is both economically important, but also difficult to study.


Assuntos
Glucosiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Urtica dioica/enzimologia , Citosol/enzimologia , Glucosiltransferases/química , Fosforilação , Proteínas de Plantas/química , Caules de Planta/enzimologia , Processamento de Proteína Pós-Traducional
7.
Int J Mol Sci ; 22(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467778

RESUMO

In the methyl-D-erythritol-4-phosphate (MEP) pathway, 1-deoxy-D-xylose-5-phosphate synthase (DXS) is considered the key enzyme for the biosynthesis of terpenoids. In this study, PmDXS (MK970590) was isolated from Pinus massoniana. Bioinformatics analysis revealed homology of MK970590 with DXS proteins from other species. Relative expression analysis suggested that PmDXS expression was higher in roots than in other plant parts, and the treatment of P. massoniana seedlings with mechanical injury via 15% polyethylene glycol 6000, 10 mM H2O2, 50 µM ethephon (ETH), 10 mM methyl jasmonate (MeJA), and 1 mM salicylic acid (SA) resulted in an increased expression of PmDXS. pET28a-PmDXS was expressed in Escherichia coli TransB (DE3) cells, and stress analysis showed that the recombinant protein was involved in resistance to NaCl and drought stresses. The subcellular localization of PmDXS was in the chloroplast. We also cloned a full-length 1024 bp PmDXS promoter. GUS expression was observed in Nicotiana benthamiana roots, stems, and leaves. PmDXS overexpression significantly increased carotenoid, chlorophyll a, and chlorophyll b contents and DXS enzyme activity, suggesting that DXS is important in isoprenoid biosynthesis. This study provides a theoretical basis for molecular breeding for terpene synthesis regulation and resistance.


Assuntos
Pentosefosfatos/química , Pinus/enzimologia , Terpenos/química , Transferases/metabolismo , Acetatos/química , Clorofila/química , Clorofila A/química , Biologia Computacional , Ciclopentanos/química , Escherichia coli/metabolismo , Perfilação da Expressão Gênica , Oxilipinas/química , Pigmentação , Folhas de Planta , Caules de Planta/enzimologia , Regiões Promotoras Genéticas , Proteínas Recombinantes/metabolismo , Ácido Salicílico/química , Nicotiana/metabolismo , Transferases/genética , Xilose
8.
Plant J ; 97(5): 887-900, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30466195

RESUMO

Dwarfing and semi-dwarfing are important agronomic traits that have great potential for the improvement of wheat yields. Rht12, a dominant gibberellic acid (GA)-responsive dwarfing gene from the gamma-ray-induced wheat mutant Karcagi 522M7K, is located in the long arm of chromosome 5A, which is closely linked with the locus Xwmc410. Rht12 is likely an ideal gene for GA biosynthesis and deactivation research in common wheat. However, information on the Rht12 locus and sequence is lacking. In this study, Rht12 significantly shortened stem cell length and decreased GA biosynthetic components. Using bulked segregant RNA-Seq, wheat 660k single nucleotide polymorphism chip detection, and newly developed simple sequence repeat markers, Rht12 was mapped to a 11.21-Mb region at the terminal end of chromosome 5AL, and was found to be closely linked with the Xw5ac207SSR marker with a 10.73-Mb fragment deletion in all of the homologous dwarfing plants. Transcriptome analyses of the remaining 483-kb region showed significantly higher expression of the TraesCS5A01G543100 gene encoding the GA metabolic enzyme GA 2-ß-dioxygenase in dwarfing plants than in high stalk plants, suggesting that Rht12 reduces plant height by activating TaGA2ox-A14. Taken together, our findings will promote cloning and functional studies of Rht12 in common wheat.


Assuntos
Cromossomos de Plantas/genética , Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Transcriptoma , Triticum/genética , Mapeamento Cromossômico , Genes Dominantes , Fenótipo , Proteínas de Plantas/genética , Caules de Planta/enzimologia , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/fisiologia , Deleção de Sequência , Triticum/enzimologia , Triticum/crescimento & desenvolvimento , Triticum/fisiologia
9.
Int J Mol Sci ; 21(11)2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481765

RESUMO

Callose is an important biopolymer of ß-1,3-linked glucose units involved in different phases of plant development, reproduction and response to external stimuli. It is synthesized by glycosyltransferases (GTs) known as callose synthases (CalS) belonging to family 48 in the Carbohydrate-Active enZymes (CAZymes) database. These GTs are anchored to the plasma membrane via transmembrane domains. Several genes encoding CalS have been characterized in higher plants with 12 reported in the model organism Arabidopsis thaliana. Recently, the de novo transcriptome of a fibre-producing clone of stinging nettle (Urtica dioica L.) was published and here it is mined for CalS genes with the aim of identifying members differentially expressed in the core and cortical tissues of the stem. The goal is to understand whether specific CalS genes are associated with distinct developmental stages of the stem internodes (elongation, thickening). Nine genes, eight of which encoding full-length CalS, are identified in stinging nettle. The phylogenetic analysis with CalS proteins from other fibre crops, namely textile hemp and flax, reveals grouping into 6 clades. The expression profiles in nettle tissues (roots, leaves, stem internodes sampled at different heights) reveal differences that are most noteworthy in roots vs leaves. Two CalS are differentially expressed in the internodes sampled at the top and middle of the stem. Implications of their role in nettle stem tissue development are discussed.


Assuntos
Biopolímeros/química , Carboidratos/química , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/metabolismo , Urtica dioica/enzimologia , Motivos de Aminoácidos , Arabidopsis/enzimologia , Biologia Computacional , Perfilação da Expressão Gênica , Glucanos/metabolismo , Filogenia , Folhas de Planta/enzimologia , Raízes de Plantas/enzimologia , Caules de Planta/enzimologia , Regiões Promotoras Genéticas
10.
PLoS Pathog ; 13(11): e1006724, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29131851

RESUMO

Lipids and lipid metabolites play important roles in plant-microbe interactions. Despite the extensive studies of lipases in lipid homeostasis and seed oil biosynthesis, the involvement of lipases in plant immunity remains largely unknown. In particular, GDSL esterases/lipases, characterized by the conserved GDSL motif, are a subfamily of lipolytic enzymes with broad substrate specificity. Here, we functionally identified two GDSL lipases, OsGLIP1 and OsGLIP2, in rice immune responses. Expression of OsGLIP1 and OsGLIP2 was suppressed by pathogen infection and salicylic acid (SA) treatment. OsGLIP1 was mainly expressed in leaf and leaf sheath, while OsGLIP2 showed high expression in elongating internodes. Biochemical assay demonstrated that OsGLIP1 and OsGLIP2 are functional lipases that could hydrolyze lipid substrates. Simultaneous down-regulation of OsGLIP1 and OsGLIP2 increased plant resistance to both bacterial and fungal pathogens, whereas disease resistance in OsGLIP1 and OsGLIP2 overexpression plants was significantly compromised, suggesting that both genes act as negative regulators of disease resistance. OsGLIP1 and OsGLIP2 proteins mainly localize to lipid droplets and the endoplasmic reticulum (ER) membrane. The proper cellular localization of OsGLIP proteins is indispensable for their functions in immunity. Comprehensive lipid profiling analysis indicated that the alteration of OsGLIP gene expression was associated with substantial changes of the levels of lipid species including monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG). We show that MGDG and DGDG feeding could attenuate disease resistance. Taken together, our study indicates that OsGLIP1 and OsGLIP2 negatively regulate rice defense by modulating lipid metabolism, thus providing new insights into the function of lipids in plant immunity.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Resistência à Doença , Metabolismo dos Lipídeos/fisiologia , Oryza/enzimologia , Imunidade Vegetal/fisiologia , Sequência de Aminoácidos , Hidrolases de Éster Carboxílico/genética , Sequência Conservada , Resistência à Doença/imunologia , Regulação para Baixo , Espaço Extracelular/química , Espaço Extracelular/metabolismo , Regulação da Expressão Gênica de Plantas , Homeostase , Lipase/química , Lipase/classificação , Lipase/genética , Lipase/metabolismo , Metabolismo dos Lipídeos/imunologia , Lipídeos/isolamento & purificação , Microscopia Confocal , Oryza/genética , Oryza/imunologia , Oryza/ultraestrutura , Filogenia , Folhas de Planta/química , Folhas de Planta/enzimologia , Caules de Planta/química , Caules de Planta/enzimologia , Alinhamento de Sequência , Especificidade por Substrato
11.
Microb Pathog ; 130: 71-80, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30844473

RESUMO

Mandacaru (Cereus jamacaru DC.), is a cactaceous symbol of caatinga vegetation at Brazilian Northeast region, however, there are no much studies about biochemical properties of this species. Here, the pioneering study brings very relevant data to highlight the importance of research with endemic plants of the caatinga. Afterward, the presence of enzymes such as peroxidase, protease, chitinase, ß-1,3-glucanase, and serine (trypsin) and cysteine (papain) protease inhibitors were evaluated. The peroxidase activity was higher in roots than other tissues. The ß-1,3-glucanase and proteolytic activity were prominent in stem and roots. The chitinase activity and protease inhibitor for both classes analyzed were detected in the stem and fruit peel. Antifungal activity against Colletotrichum gloeosporioides showed the root extract has a promising inhibitory activity on this economical important phytopathogenic fungus. After the contact of the hyphae with root extract increase in membrane permeability, based on Propidium Iodide (PI) uptake, and production of reactive oxygen species (ROS) were detected, compared to negative control. In addition, Scanning Electron Microscopy (SEM) analysis showed morphological damage on hyphae structure indicating that the treatment debilitates either cell membrane or cell wall leading to the cell death C. gloeosporioides.


Assuntos
Antifúngicos/farmacologia , Cactaceae/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/patologia , Colletotrichum/crescimento & desenvolvimento , Proteínas de Plantas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antifúngicos/isolamento & purificação , Cactaceae/enzimologia , Colletotrichum/efeitos dos fármacos , Colletotrichum/enzimologia , Colletotrichum/ultraestrutura , Enzimas/análise , Frutas/química , Frutas/enzimologia , Hifas/ultraestrutura , Viabilidade Microbiana/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Permeabilidade/efeitos dos fármacos , Proteínas de Plantas/isolamento & purificação , Raízes de Plantas/química , Raízes de Plantas/enzimologia , Caules de Planta/química , Caules de Planta/enzimologia
12.
Plant J ; 92(4): 611-623, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28869799

RESUMO

Trehalose 6-phosphate (Tre6P) is a signal of sucrose availability in plants, and has been implicated in the regulation of shoot branching by the abnormal branching phenotypes of Arabidopsis (Arabidopsis thaliana) and maize (Zea mays) mutants with altered Tre6P metabolism. Decapitation of garden pea (Pisum sativum) plants has been proposed to release the dormancy of axillary buds lower down the stem due to changes in sucrose supply, and we hypothesized that this response is mediated by Tre6P. Decapitation led to a rapid and sustained rise in Tre6P levels in axillary buds, coinciding with the onset of bud outgrowth. This response was suppressed by simultaneous defoliation that restricts the supply of sucrose to axillary buds in decapitated plants. Decapitation also led to a rise in amino acid levels in buds, but a fall in phosphoenolpyruvate and 2-oxoglutarate. Supplying sucrose to stem node explants in vitro triggered a concentration-dependent increase in the Tre6P content of the buds that was highly correlated with their rate of outgrowth. These data show that changes in bud Tre6P levels are correlated with initiation of bud outgrowth following decapitation, suggesting that Tre6P is involved in the release of bud dormancy by sucrose. Tre6P might also be linked to a reconfiguration of carbon and nitrogen metabolism to support the subsequent growth of the bud into a new shoot.


Assuntos
Pisum sativum/enzimologia , Sacarose/metabolismo , Fosfatos Açúcares/metabolismo , Trealose/análogos & derivados , Aminoácidos/metabolismo , Ácidos Cetoglutáricos/metabolismo , Redes e Vias Metabólicas , Modelos Biológicos , Pisum sativum/genética , Pisum sativum/crescimento & desenvolvimento , Fosfoenolpiruvato/metabolismo , Caules de Planta/enzimologia , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Sacarose/análise , Fosfatos Açúcares/análise , Trealose/análise , Trealose/metabolismo
13.
Planta ; 247(2): 429-442, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29071379

RESUMO

MAIN CONCLUSION: Studies in cell wall bound invertase mutants indicate that the promoter of the transfer cell-specific transcription factor, ZmMRP - 1 , is modulated by the carbohydrate balance. Transfer cells are highly specialized plant cells located at the surfaces that need to support an intensive exchange of nutrients, such as the entrance of fruits, seeds and nodules or the young branching points along the stem. ZmMRP-1 is a one-domain MYB-related transcription factor specifically expressed at the transfer cell layer of the maize endosperm. Previous studies demonstrated that this factor regulates the expression of a large number of transfer cell-specific genes, and suggested that ZmMRP-1 is a key regulator of the differentiation of this tissue. The expression of this gene is largely dominated by positional cues, but within the ZmMRP-1 expressing cells the promoter appears to be modulated by sugars. Here we have investigated in vivo this modulation. Using maize and Arabidopsis mutants for cell wall invertase genes, we found that the absence of cell wall invertase activity is a major inductive signal of the ZmMRP-1 expression.


Assuntos
Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo , Zea mays/enzimologia , beta-Frutofuranosidase/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Parede Celular/metabolismo , Endosperma/enzimologia , Endosperma/genética , Frutas/enzimologia , Frutas/genética , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/enzimologia , Caules de Planta/genética , Regiões Promotoras Genéticas/genética , Sementes/enzimologia , Sementes/genética , Fatores de Transcrição/genética , Zea mays/genética , beta-Frutofuranosidase/genética
14.
Plant Physiol ; 174(4): 2397-2408, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28655778

RESUMO

The complex nature of crop genomes has long prohibited the efficient isolation of agronomically relevant genes. However, recent advances in next-generation sequencing technologies provide new ways to accelerate fine-mapping and gene isolation in crops. We used RNA sequencing of allelic six-rowed spike3 (vrs3) mutants with altered spikelet development for gene identification and functional analysis in barley (Hordeum vulgare). Variant calling in two allelic vrs3 mutants revealed that VRS3 encodes a putative histone Lys demethylase with a conserved zinc finger and Jumonji C and N domain. Sanger sequencing of this candidate gene in independent allelic vrs3 mutants revealed a series of mutations in conserved domains, thus confirming our candidate as the VRS3 gene and suggesting that the row type in barley is determined epigenetically. Global transcriptional profiling in developing shoot apical meristems of vrs3 suggested that VRS3 acts as a transcriptional activator of the row-type genes VRS1 (Hv.HOMEOBOX1) and INTERMEDIUM-C (INT-C; Hv.TEOSINTE BRANCHED1). Comparative transcriptome analysis of the row-type mutants vrs3, vrs4 (Hv.RAMOSA2), and int-c confirmed that all three genes act as transcriptional activators of VRS1 and quantitative variation in the expression levels of VRS1 in these mutants correlated with differences in the number of developed lateral spikelets. The identification of genes and pathways affecting seed number in small grain cereals will enable to further unravel the transcriptional networks controlling this important yield component.


Assuntos
Histona Desmetilases/metabolismo , Hordeum/enzimologia , Hordeum/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Estudos de Associação Genética , Genótipo , Histona Desmetilases/química , Mutação/genética , Fenótipo , Proteínas de Plantas/química , Caules de Planta/enzimologia , Caules de Planta/crescimento & desenvolvimento , Domínios Proteicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA
15.
Biosci Biotechnol Biochem ; 82(11): 1931-1941, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30096253

RESUMO

Gibberellins (GAs) are a family of plant hormones that are important to multiple aspects of plant growth and development, especially stem elongation. A PSRK2 was obtained through screening and identifying RLK dominant negative mutants. Phenotype of the loss-of-function mutants, psrk2-DN and psrk2-RNAi, showed that PSRK2 could influence the length of the uppermost and fourth internodes, indicating that PSRK2 might regulate cell division in the intercalary meristems and/or cell elongation in the internodes. Moreover, the expression pattern showed that PSRK2 was strongly expressed in the joined-nodes after the start-up of reproductive growth, but undetectable in leaves. PSRK2 expression was also found to be induced by GA3, and PSRK2 was involved in GA signaling in cereal aleurone cells, and PSRK2 influence the relative length of the second leaf sheaths in seedling stage. These results indicate PSRK2 is a component of GA signaling pathway that controls stem elongation by negatively regulating GA responses. Abbreviations: Os: Oryza sativa; At: Arabidopsis thaliana; RNAi: RNA interfere; DN: Dominate Negative; SMART: Simple Modular Architecture Research Tool; Uni : Uniconazol; PSRK2: Plant Stature Related receptor-like Kinase 2; RLK: Receptor-like Kinase; GA: Gibberellin; IAA: indole-3-acetic acid; BL: Brassinosteroid.


Assuntos
Giberelinas/fisiologia , Oryza/enzimologia , Caules de Planta/fisiologia , Proteínas Quinases/metabolismo , Indução Enzimática , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Giberelinas/metabolismo , Mutação , Oryza/genética , Filogenia , Caules de Planta/enzimologia , Caules de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Proteínas Quinases/biossíntese , Proteínas Quinases/genética , Interferência de RNA , Transcrição Reversa , Transdução de Sinais , alfa-Amilases/metabolismo
16.
Plant J ; 86(4): 308-21, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26991499

RESUMO

Silicon, the second abundant element in the crust, is beneficial for plant growth, mechanical strength, and stress responses. Here we show that manipulation of the non-specific phospholipase C1, NPC1, alters silicon content in nodes and husks of rice (Oryza sativa). Silicon content in NPC1-overexpressing (OE) plants was decreased in nodes but increased in husks compared to wild-type, whereas RNAi suppression of NPC1 resulted in the opposite changes to those of NPC1-OE plants. NPC1 from rice hydrolyzed phospholipids and galactolipids to generate diacylglycerol that can be phosphorylated to phosphatidic acid. Phosphatidic acid interacts with Lsi6, a silicon transporter that is expressed at the highest level in nodes. In addition, the node cells of NPC1-OE plants have lower contents of cellulose and hemicellulose, and thinner sclerenchyma and vascular bundle fibre cells than wild-type plants; whereas NPC1-RNAi plants displayed the opposite changes. These data indicate that NPC1 modulates silicon distribution and secondary cell wall deposition in nodes and grains, affecting mechanical strength and seed shattering.


Assuntos
Oryza/enzimologia , Proteínas de Plantas/fisiologia , Silício/metabolismo , Fosfolipases Tipo C/fisiologia , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/enzimologia , Caules de Planta/metabolismo , Interferência de RNA , Fosfolipases Tipo C/antagonistas & inibidores , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo
17.
Plant J ; 86(5): 363-75, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27037613

RESUMO

Biochemical and genetic analyses have previously identified caffeoyl shikimate esterase (CSE) as an enzyme in the monolignol biosynthesis pathway in Arabidopsis thaliana, although the generality of this finding has been questioned. Here we show the presence of CSE genes and associated enzyme activity in barrel medic (Medicago truncatula, dicot, Leguminosae), poplar (Populus deltoides, dicot, Salicaceae), and switchgrass (Panicum virgatum, monocot, Poaceae). Loss of function of CSE in transposon insertion lines of M. truncatula results in severe dwarfing, altered development, reduction in lignin content, and preferential accumulation of hydroxyphenyl units in lignin, indicating that the CSE enzyme is critical for normal lignification in this species. However, the model grass Brachypodium distachyon and corn (Zea mays) do not possess orthologs of the currently characterized CSE genes, and crude protein extracts from stems of these species exhibit only a weak esterase activity with caffeoyl shikimate. Our results suggest that the reaction catalyzed by CSE may not be essential for lignification in all plant species.


Assuntos
Proteínas de Arabidopsis/genética , Hidrolases de Éster Carboxílico/genética , Esterases/metabolismo , Medicago truncatula/enzimologia , Panicum/enzimologia , Populus/enzimologia , Vias Biossintéticas , Brachypodium/genética , Esterases/genética , Regulação da Expressão Gênica de Plantas , Lignina/análise , Lignina/química , Lignina/metabolismo , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Mutagênese Insercional , Panicum/genética , Fenótipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/enzimologia , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Populus/genética , Proteínas Recombinantes , Ácido Chiquímico/química , Ácido Chiquímico/metabolismo , Nicotiana/enzimologia , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Zea mays/genética
18.
Plant Cell Physiol ; 58(7): 1249-1259, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28838126

RESUMO

Cuticular wax is an important hydrophobic layer that covers the plant aerial surface. Cuticular wax biosynthesis is shaped by multiple layers of regulation. In particular, a pair of R2R3-type MYB transcription factors, MYB96 and MYB30, are known to be the main participants in cuticular wax accumulation. Here, we report that the MYB30-INTERACTING E3 LIGASE 1 (MIEL1) E3 ubiquitin ligase controls the protein stability of the two MYB transcription factors and thereby wax biosynthesis in Arabidopsis. MIEL1-deficient miel1 mutants exhibit increased wax accumulation in stems, with up-regulation of wax biosynthetic genes targeted by MYB96 and MYB30. Genetic analysis reveals that wax accumulation of the miel1 mutant is compromised by myb96 or myb30 mutation, but MYB96 is mainly epistatic to MIEL1, playing a predominant role in cuticular wax deposition. These observations indicate that the MIEL1-MYB96 module is important for balanced cuticular wax biosynthesis in developing inflorescence stems.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ceras/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Genes Reporter , Mutação , Caules de Planta/enzimologia , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Estabilidade Proteica , Proteínas Recombinantes de Fusão , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética , Regulação para Cima , Ceras/análise
19.
Plant Biotechnol J ; 15(9): 1093-1104, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28117552

RESUMO

Genetic modification of plant cell walls has been posed to reduce lignocellulose recalcitrance for enhancing biomass saccharification. Since cellulose synthase (CESA) gene was first identified, several dozen CESA mutants have been reported, but almost all mutants exhibit the defective phenotypes in plant growth and development. In this study, the rice (Oryza sativa) Osfc16 mutant with substitutions (W481C, P482S) at P-CR conserved site in CESA9 shows a slightly affected plant growth and higher biomass yield by 25%-41% compared with wild type (Nipponbare, a japonica variety). Chemical and ultrastructural analyses indicate that Osfc16 has a significantly reduced cellulose crystallinity (CrI) and thinner secondary cell walls compared with wild type. CESA co-IP detection, together with implementations of a proteasome inhibitor (MG132) and two distinct cellulose inhibitors (Calcofluor, CGA), shows that CESA9 mutation could affect integrity of CESA4/7/9 complexes, which may lead to rapid CESA proteasome degradation for low-DP cellulose biosynthesis. These may reduce cellulose CrI, which improves plant lodging resistance, a major and integrated agronomic trait on plant growth and grain production, and enhances biomass enzymatic saccharification by up to 2.3-fold and ethanol productivity by 34%-42%. This study has for the first time reported a direct modification for the low-DP cellulose production that has broad applications in biomass industries.


Assuntos
Celulose/metabolismo , Glucosiltransferases/metabolismo , Lignina/metabolismo , Oryza/enzimologia , Biomassa , Membrana Celular/metabolismo , Parede Celular/metabolismo , Glucosiltransferases/genética , Modelos Biológicos , Mutação , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/ultraestrutura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/enzimologia , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/ultraestrutura
20.
Plant Cell ; 26(12): 4834-42, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25490917

RESUMO

Cellulose is the most abundant renewable polymer on Earth and a major component of the plant cell wall. In vascular plants, cellulose synthesis is catalyzed by a large, plasma membrane-localized cellulose synthase complex (CSC), visualized as a hexameric rosette structure. Three unique cellulose synthase (CESA) isoforms are required for CSC assembly and function. However, elucidation of either the number or stoichiometry of CESAs within the CSC has remained elusive. In this study, we show a 1:1:1 stoichiometry between the three Arabidopsis thaliana secondary cell wall isozymes: CESA4, CESA7, and CESA8. This ratio was determined utilizing a simple but elegant method of quantitative immunoblotting using isoform-specific antibodies and (35)S-labeled protein standards for each CESA. Additionally, the observed equimolar stoichiometry was found to be fixed along the axis of the stem, which represents a developmental gradient. Our results complement recent spectroscopic analyses pointing toward an 18-chain cellulose microfibril. Taken together, we propose that the CSC is composed of a hexamer of catalytically active CESA trimers, with each CESA in equimolar amounts. This finding is a crucial advance in understanding how CESAs integrate to form higher order complexes, which is a key determinate of cellulose microfibril and cell wall properties.


Assuntos
Arabidopsis/enzimologia , Glucosiltransferases/química , Arabidopsis/metabolismo , Parede Celular/química , Immunoblotting , Isoenzimas/genética , Isoenzimas/metabolismo , Isoenzimas/fisiologia , Caules de Planta/enzimologia , Caules de Planta/metabolismo , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa