Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 523
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 85, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38308226

RESUMO

BACKGROUND: Onion seeds have limited storage capacity compared to other vegetable seeds. It is crucial to identify the mechanisms that induce tolerance to storage conditions and reduce seed deterioration. To address this goal, an experiment was conducted to evaluate changes in germination, biochemical, physiological, and molecular characteristics of onion seed landraces (Horand, Kazerun landraces and Zargan cultivar) at different aging levels (control, three-days and six-days accelerated aging, and natural aging for one year). RESULTS: The findings suggest that there was an increase in glucose, fructose, total sugar, and electrolyte leakage in the Horand (HOR), Kazerun (KAZ) landraces, and Zarghan (ZAR) cultivar, with Kazerun exhibiting the greatest increase. The percentage and rate of germination of Kazerun decreased by 54% and 33%, respectively, in six-day accelerated aging compared to the control, while it decreased by 12% and 14%, respectively, in Horand. Protein content decreased with increasing levels of aging, with a decrease of 26% in Kazerun landrace at six days of aging, while it was 16% in Horand landrace. The antioxidant activities of catalase, superoxide dismutase, and glutathione peroxidase decreased more intensively in Kazerun. The expression of AMY1, BMY1, CTR1, and NPR1 genes were lower in Kazerun landraces than in Horand and Zargan at different aging levels. CONCLUSIONS: The AMY1, BMY1, CTR1, and NPR1 genes play a pivotal role in onion seed germination, and their downregulation under stressful conditions has been shown to decrease germination rates. In addition, the activity of CAT, SOD, and GPx enzymes decreased by seed aging, and the amount of glucose, fructose, total sugar and electrolyte leakage increased, which ultimately led to seed deterioration. Based on the results of this experiment, it is recommended to conduct further studies into the molecular aspects involved in onion seed deterioration. More research on the genes related to this process is suggested, as well as investigating the impact of different priming treatments on the genes expression involved in the onion seed aging process.


Assuntos
Germinação , Cebolas , Cebolas/genética , Germinação/genética , Sementes/metabolismo , Eletrólitos/análise , Eletrólitos/metabolismo , Frutose/análise , Frutose/metabolismo , Glucose/metabolismo , Açúcares/metabolismo
2.
Theor Appl Genet ; 137(6): 118, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709404

RESUMO

KEY MESSAGE: Through a map-based cloning approach, a gene coding for an R2R3-MYB transcription factor was identified as a causal gene for the I locus controlling the dominant white bulb color in onion. White bulb colors in onion (Allium cepa L.) are determined by either the C or I loci. The causal gene for the C locus was previously isolated, but the gene responsible for the I locus has not been identified yet. To identify candidate genes for the I locus, an approximately 7-Mb genomic DNA region harboring the I locus was obtained from onion and bunching onion (A. fistulosum) whole genome sequences using two tightly linked molecular markers. Within this interval, the AcMYB1 gene, known as a positive regulator of anthocyanin production, was identified. No polymorphic sequences were found between white and red AcMYB1 alleles in the 4,860-bp full-length genomic DNA sequences. However, a 4,838-bp LTR-retrotransposon was identified in the white allele, in the 79-bp upstream coding region from the stop codon. The insertion of this LTR-retrotransposon created a premature stop codon, resulting in the replacement of 26 amino acids with seven different residues. A molecular marker was developed based on the insertion of this LTR-retrotransposon to genotype the I locus. A perfect linkage between bulb color phenotypes and marker genotypes was observed among 5,303 individuals of segregating populations. The transcription of AcMYB1 appeared to be normal in both red and white onions, but the transcription of CHS-A, which encodes chalcone synthase and is involved in the first step of the anthocyanin biosynthesis pathway, was inactivated in the white onions. Taken together, an aberrant AcMYB1 protein produced from the mutant allele might be responsible for the dominant white bulb color in onions.


Assuntos
Mapeamento Cromossômico , Genes de Plantas , Cebolas , Pigmentação , Alelos , Antocianinas/genética , Cor , Marcadores Genéticos , Cebolas/genética , Fenótipo , Pigmentação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Retroelementos/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Mutagenesis ; 39(4-5): 219-237, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39178319

RESUMO

The purposes of this review were to investigate the application of the comet assay in Allium cepa root cells to assess the genotoxicity of environmental samples and to analyse the experimental procedures employed. A literature search was performed selecting articles published between January 2000 and October 2023 from online databases using the combined search terms 'comet assay' and 'A. cepa'. Only 18 papers met the inclusion criteria. None of these were published in the first eight years (2000-2007), highlighting the increasing interest in using the comet assay on A. cepa to analyse environmental samples over the last decade. The majority of the selected studies (15/18, 83%) were performed on samples belonging to the water compartment on onion bulbs. Half of the selected studies (9/18) were conducted to demonstrate the DNA damaging effect of the sample, while the other half of the studies not only recognized the presence of genotoxic agents but also addressed possible remediation measures. Detailed analysis of the experimental procedures revealed heterogeneity in many key steps, such as exposure time, test controls, nuclei isolation solutions, duration of electrophoresis, and number of nuclei scored. This literature review has shown that the comet assay on A. cepa, although recognized as an appropriate tool, is underutilized in environmental toxicology. Greater standardization could lead to its more widespread use, providing valuable information on the genotoxicity of environmental samples and the ability of different processes to mitigate their negative effects on plants.


Assuntos
Ensaio Cometa , Dano ao DNA , Cebolas , Cebolas/genética , Cebolas/efeitos dos fármacos , Ensaio Cometa/métodos , Mutagênicos/toxicidade , Monitoramento Ambiental/métodos , Raízes de Plantas/genética , Poluentes Ambientais/toxicidade
4.
Mol Biol Rep ; 51(1): 962, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235644

RESUMO

The MD-2-related lipid-recognition (ML/Md-2) domain is a lipid/sterol-binding domain that are involved in sterol transfer and innate immunity in eukaryotes. Here we report a genome-wide survey of this family, identifying 84 genes in 30 fungi including plant pathogens. All the studied species were found to have varied ML numbers, and expansion of the family was observed in Rhizophagus irregularis (RI) with 33 genes. The molecular docking studies of these proteins with cholesterol derivatives indicate lipid-binding functional conservation across the animal and fungi kingdom. The phylogenetic studies among eukaryotic ML proteins showed that Puccinia ML members are more closely associated with animal (insect) npc2 proteins than other fungal ML members. One of the candidates from leaf rust fungus Puccinia triticina, Pt5643 was PCR amplified and further characterized using various studies such as qRT-PCR, subcellular localization studies, yeast functional complementation, signal peptide validation, and expression studies. The Pt5643 exhibits the highest expression on the 5th day post-infection (dpi). The confocal microscopy of Pt5643 in onion epidermal cells and N. benthamiana shows its location in the cytoplasm and nucleus. The functional complementation studies of Pt5643 in npc2 mutant yeast showed its functional similarity to the eukaryotic/yeast npc2 gene. Furthermore, the overexpression of Pt5643 also suppressed the BAX, NEP1, and H2O2-induced program cell death in Nicotiana species and yeast. Altogether the present study reports the novel function of ML domain proteins in plant fungal pathogens and their possible role as effector molecules in host defense manipulation.


Assuntos
Morte Celular , Proteínas Fúngicas , Filogenia , Doenças das Plantas , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Nicotiana/microbiologia , Nicotiana/metabolismo , Nicotiana/genética , Basidiomycota/patogenicidade , Basidiomycota/metabolismo , Basidiomycota/genética , Puccinia/patogenicidade , Puccinia/metabolismo , Domínios Proteicos , Simulação de Acoplamento Molecular , Cebolas/microbiologia , Cebolas/metabolismo , Cebolas/genética
5.
BMC Genomics ; 24(1): 165, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016310

RESUMO

BACKGROUND: The Salmonella enterica serovar Newport red onion outbreak of 2020 was the largest foodborne outbreak of Salmonella in over a decade. The epidemiological investigation suggested two farms as the likely source of contamination. However, single nucleotide polymorphism (SNP) analysis of the whole genome sequencing data showed that none of the Salmonella isolates collected from the farm regions were linked to the clinical isolates-preventing the use of phylogenetics in source identification. Here, we explored an alternative method for analyzing the whole genome sequencing data driven by the hypothesis that if the outbreak strain had come from the farm regions, then the clinical isolates would disproportionately contain plasmids found in isolates from the farm regions due to horizontal transfer. RESULTS: SNP analysis confirmed that the clinical isolates formed a single, nearly-clonal clade with evidence for ancestry in California going back a decade. The clinical clade had a large core genome (4,399 genes) and a large and sparsely distributed accessory genome (2,577 genes, at least 64% on plasmids). At least 20 plasmid types occurred in the clinical clade, more than were found in the literature for Salmonella Newport. A small number of plasmids, 14 from 13 clinical isolates and 17 from 8 farm isolates, were found to be highly similar (> 95% identical)-indicating they might be related by horizontal transfer. Phylogenetic analysis was unable to determine the geographic origin, isolation source, or time of transfer of the plasmids, likely due to their promiscuous and transient nature. However, our resampling analysis suggested that observing a similar number and combination of highly similar plasmids in random samples of environmental Salmonella enterica within the NCBI Pathogen Detection database was unlikely, supporting a connection between the outbreak strain and the farms implicated by the epidemiological investigation. CONCLUSION: Horizontally transferred plasmids provided evidence for a connection between clinical isolates and the farms implicated as the source of the outbreak. Our case study suggests that such analyses might add a new dimension to source tracking investigations, but highlights the need for detailed and accurate metadata, more extensive environmental sampling, and a better understanding of plasmid molecular evolution.


Assuntos
Salmonella enterica , Sorogrupo , Cebolas/genética , Fazendas , Filogenia , Plasmídeos/genética , Surtos de Doenças
6.
J Evol Biol ; 36(11): 1582-1586, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37975503

RESUMO

Illustration of life-histories of phages and plasmids through horizontal and vertical transmission (see Figure 1 for more information).


Assuntos
Cebolas , Vírus , Cebolas/genética , Transferência Genética Horizontal , Plasmídeos , Vírus/genética , Sequências Repetitivas Dispersas
7.
Physiol Plant ; 175(6): e14112, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148228

RESUMO

With the intensification of the greenhouse effect and the continuous rise of global temperature, high temperatures in summer seriously affect the growth of green onion (Allium fistulosum L.var.caespitosum Makino) and reduce its yield and quality. It is important to study the mechanism of heat tolerance in green onion for selecting and breeding new varieties with high-temperature tolerance. In this study, we used the heat-tolerant green onion variety AF60 and heat-sensitive green onion variety AF35 and measured their physiological indexes under different durations of heat stress. The results showed that high-temperature stress adversely affected the water content, protein composition and antioxidant system of green onion. In addition, a comprehensive analysis using transcriptomics and metabolomics showed that heat-tolerant green onions responded positively to heat stress by up-regulating the expression of heat shock proteins, whereas heat-sensitive green onions responded to heat stress by activating the galactose metabolic pathway and maintained normal physiological activities. This study revealed the physiological performance and high-temperature response pathways of different heat-tolerant green onion cultivars under heat stress. The results further deepen the understanding of the molecular mechanism of green onion's heat stress response.


Assuntos
Biodiversidade , Multiômica , Temperatura , Cebolas/genética , Antioxidantes
8.
Mol Biol Rep ; 51(1): 37, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38157089

RESUMO

BACKGROUND: Salt and drought stress are the main environmental constraints that limit onion growth and productivity. Türkiye is the fifth largest onion producer, whereas the stress conditions are increasing in the region, resulting in poor crop growth. METHODS AND RESULTS: A current study was conducted under greenhouse conditions according to a completely randomized design with factorial arrangements to evaluate the performance of onion cultivars. Plants were subjected to salt stress with an application of 750 mM NaCl and drought stress was applied by depriving plants of irrigation water for 20 days to measure biochemical and transcript changes. The antioxidant activities of the cultivars were quantified by using four different methods, i.e., 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assays, cupric reducing antioxidant capacity, 2,2-Diphenyl-1-picrylhydrazyl, and ferric reducing antioxidant power (FRAP). The damage to pigments, phenolic, osmolytes, and hydrogen peroxide (H2O2) accumulation was also evaluated. Results revealed that the cultivars "Elit and Hazar" had higher H2O2, maximum damage to pigments, and least accumulation of phenolics and osmolytes under both stress conditions. The cultivar "Sampiyon" performance was better under salt stress but exhibited a poor antioxidant defensive mechanism under drought stress conditions. The remaining cultivars suggested a resilient nature with a higher accumulation of osmolytes, antioxidants and phenolics. The change in transcript levels further strengthened the response of resilient cultivars; for instance, they showed higher transcript levels of superoxide dismutase, ascorbate oxidase and transcription factors (WRKY70, NAC29). It helped alleviate the oxidative stress in tolerant cultivars and maintained the physio-biochemical functioning of the cultivars.. CONCLUSION: The results of the current study will fill the gap of missing literature in onion at biochemical and molecular levels. Additionally, resilient cultivars can effectively cope with abiotic stresses to ensure future food security.


Assuntos
Antioxidantes , Cebolas , Catalase , Cebolas/genética , Secas , Peróxido de Hidrogênio
9.
Mol Biol Rep ; 50(6): 5147-5155, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37119414

RESUMO

BACKGROUND: MSH1 (MutS homolog1) is a nuclear-encoded protein that plays a crucial role in maintaining low mutation rates and stability of the organellar genome. While plastid MSH1 maintains nuclear epigenome plasticity and affects plant development patterns, mitochondrial MSH1 suppresses illegitimate recombination within the mitochondrial genome, affects mitochondrial genome substoichiometric shifting activity and induces cytoplasmic male sterility (CMS) in crops. However, a detailed functional investigation of onion MSH1 has yet to be achieved. MATERIALS AND RESULTS: The homology analysis of onion genome database identified a single copy of the AcMSH1 gene in the onion cv. Bhima Super. In silico analysis of AcMSH1 protein sequence revealed the presence of 6 conserved functional domains including a unique MSH1-specific GIY-YIG endonuclease domain at the C-terminal end. At N-terminal end, it has signal peptide sequences targeting chloroplast and mitochondria. The concentration of AcMSH1 was found to be highest in isolated mitochondria, followed by chloroplasts, and negligible in the cytoplasmic fraction; which proved its localization to the mitochondria and chloroplasts. Quantitative expression analysis revealed that AcMSH1 protein levels were highest in leaves, followed by flower buds, root tips, flowers, and umbels, with the lowest amount found in callus tissue. CONCLUSION: Onion genome has single copy of MSH1, with characteristic GIY-YIG endonuclease domain. AcMSH1 targeted towards both chloroplasts and mitochondria. The identification and characterisation of AcMSH1 may provide valuable insights into the development of CMS lines in onion.


Assuntos
Mitocôndrias , Cebolas , Cebolas/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Endonucleases/metabolismo , Clonagem Molecular
10.
Arch Insect Biochem Physiol ; 114(2): 1-21, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37459157

RESUMO

A nonmodel insect, Acrolepiopsis sapporensis, has been analyzed in immune responses. The total hemocytes in the fifth instar larvae were 2.33 × 106 cells/mL. These hemocytes comprised at least five different types and different relative ratios: 47% granulocytes, 26% plasmatocytes, 11% oenocytoid, 8% prohemocytes, and 5% spherulocytes. Upon bacterial challenge, some of the hemocytes exhibited typical hemocyte-spreading behaviors, such as focal adhesion, and filopodial and lamellipodial cytoplasmic extensions. The hemocyte behaviors induced cellular immune responses demonstrated by nodule formation. In addition, the plasma collected from the immune-challenged larvae exhibited humoral immune responses by bacterial growth inhibition along with enhanced phenoloxidase enzyme activity. These cellular and humoral immune responses were further analyzed by determining the immune-associated genes from a transcriptome generated by RNA-Seq. A total of about 12 Gb sequences led to about 218,116 contigs, which were predicted to encode about 46,808 genes. Comparative expression analysis showed 8392 uniquely expressed genes in the immune-challenged larvae. Differentially expressed gene (DEG) analysis among the commonly expressed genes indicated that 782 genes were upregulated and 548 genes were downregulated in the expressions after bacterial challenge. These immune-associated genes included pattern recognition receptors, immune mediation/signaling genes, and various immune effectors. Specifically, the genetic components of the Toll, IMD, and JAK/STAT immune signaling pathways were included in the DEG database. These results demonstrate the immune responses of A. sapporensis larvae and suggest the genes associated with the immune responses in this nonmodel insect.


Assuntos
Mariposas , Animais , Mariposas/genética , Cebolas/genética , RNA-Seq , Larva , Imunidade/genética , Hemócitos
11.
Biochem Genet ; 61(5): 2116-2134, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36947296

RESUMO

Flower organ development is one of the most important processes in plant life. However, onion CMS (cytoplasmic male sterility) shows an abnormal development of floral organs. The regulation of MADS-box transcription factors is important for flower development. To further understand the role of MADS-box transcription factors in the regulation of cytoplasmic male sterility onions. We cloned the full-length cDNA of five MADS-box transcription factors from the flowers of onion using RACE (rapid amplification of cDNA ends) technology. We used bioinformatics methods for sequence analysis and phylogenetic analysis. Real-time quantitative PCR was used to detect the expression patterns of these genes in different onion organs. The relative expression levels of five flower development genes were compared in CMS onions and wild onions. The results showed that the full-length cDNA sequences of the cloned MADS-box genes AcFUL, AcDEF, AcPI, AcAG, and AcSEP3 belonged to A, B, C, and E MADS-box genes, respectively. A phylogenetic tree construction analysis was performed on its sequence. Analysis of MADS-box gene expression in wild onion and CMS onion showed that the formation of CMS onion was caused by down-regulation of AcDEF, AcPI, and AcAG gene expression, up-regulation of AcSEP3 gene expression, and no correlation with AcFUL gene expression. This work laid the foundation for further study of the molecular mechanism of onion flower development and the molecular mechanism of CMS onion male sterility.


Assuntos
Proteínas de Domínio MADS , Cebolas , Cebolas/genética , Cebolas/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Filogenia , DNA Complementar/metabolismo , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Flores/genética , Flores/metabolismo , Clonagem Molecular , Regulação da Expressão Gênica de Plantas
12.
Plant Dis ; 107(12): 3886-3895, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37330630

RESUMO

Stemphylium leaf blight (SLB), caused by the fungus Stemphylium vesicarium, is dominant within the foliar disease complex affecting onion production in New York (NY). The disease causes premature defoliation and significant reductions in bulb weight and quality. Foliar diseases of onion are usually managed by an intensive fungicide program, but SLB management is complicated by resistance to multiple single-site modes of action. The design of integrated disease management strategies is limited by incomplete knowledge surrounding the dominant sources of S. vesicarium inoculum. To facilitate genomic-based studies of S. vesicarium populations, nine microsatellite markers were developed. The markers were multiplexed into two PCR assays containing four and five fluorescently labeled microsatellite markers. Initial testing of the S. vesicarium isolates found the markers were highly polymorphic and reproducible with an average of 8.2 alleles per locus. The markers were used to characterize 54 S. vesicarium isolates from major NY onion production regions in 2016 (n = 27) and 2018 (n = 27). Fifty-two multilocus genotypes (MLGs) were identified between these populations. Genotypic and allelic diversities were high in both the 2016 and 2018 populations. A greater degree of genetic variation was observed within populations than between years. No distinct pattern of MLGs according to population was identified and some MLGs were closely related between 2016 and 2018. The lack of evidence for linkage among loci also was strongly suggestive of clonal populations with only minor differences between the two populations. These microsatellite markers will be a foundational resource for the testing of hypotheses surrounding the population biology of S. vesicarium and therefore informing disease management.


Assuntos
Ascomicetos , Cebolas , Cebolas/genética , Cebolas/microbiologia , Ascomicetos/genética , Repetições de Microssatélites/genética , New York
13.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37108228

RESUMO

Meiotic crossovers/chiasmata are not randomly distributed and strictly controlled. The mechanisms behind crossover (CO) patterning remain largely unknown. In Allium cepa, as in the vast majority of plants and animals, COs predominantly occur in the distal 2/3 of the chromosome arm, while in Allium fistulosum they are strictly localized in the proximal region. We investigated the factors that may contribute to the pattern of COs in A. cepa, A. fistulosum and their F1 diploid (2n = 2x = 8C + 8F) and F1 triploid (2n = 3x = 16F + 8C) hybrids. The genome structure of F1 hybrids was confirmed using genomic in situ hybridization (GISH). The analysis of bivalents in the pollen mother cells (PMCs) of the F1 triploid hybrid showed a significant shift in the localization of COs to the distal and interstitial regions. In F1 diploid hybrid, the COs localization was predominantly the same as that of the A. cepa parent. We found no differences in the assembly and disassembly of ASY1 and ZYP1 in PMCs between A. cepa and A. fistulosum, while F1 diploid hybrid showed a delay in chromosome pairing and a partial absence of synapsis in paired chromosomes. Immunolabeling of MLH1 (class I COs) and MUS81 (class II COs) proteins showed a significant difference in the class I/II CO ratio between A. fistulosum (50%:50%) and A. cepa (73%:27%). The MLH1:MUS81 ratio at the homeologous synapsis of F1 diploid hybrid (70%:30%) was the most similar to that of the A. cepa parent. F1 triploid hybrid at the A. fistulosum homologous synapsis showed a significant increase in MLH1:MUS81 ratio (60%:40%) compared to the A. fistulosum parent. The results suggest possible genetic control of CO localization. Other factors affecting the distribution of COs are discussed.


Assuntos
Allium , Allium/genética , Triploidia , Cebolas/genética , Hibridização In Situ , Cromossomos
14.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675118

RESUMO

High-resolution melting (HRM) analysis is a powerful detection method for fast, high-throughput post-PCR analysis. A two-step HRM marker system was developed for identification of the N-, S-, R- and T-cytoplasms of onion. In the first step for the identification of N-, S- and R-cytoplasms, one forward primer was designed to the identical sequences of both cox1 and orf725 genes, and two reverse primers specific to the polymorphic sequences of cox1 and orf725 genes were used. For the second step, breeding lines with N-cytoplasm were evaluated with primers developed from the orfA501 sequence to distinguish between N- and T-cytoplasms. An amplicon with primers to the mitocondrial atp9 gene was used as an internal control. The two-step HRM marker system was tested using 246 onion plants. HRM analysis showed that the most common source of CMS, often used by Russian breeders, was S-cytoplasm; the rarest type of CMS was R-cytoplasm; and the proportion of T-cytoplasm among the analyzed breeding lines was 20.5%. The identification of the cytoplasm of a single plant by phenotype takes from 4 to 8 years. The HRM-based system enables quick and easy distinguishing of the four types of onion cytoplasm.


Assuntos
Cebolas , Melhoramento Vegetal , Cebolas/genética , Reação em Cadeia da Polimerase , Citoplasma/genética , Genes de Plantas
15.
Acta Virol ; 67(1): 109-113, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950891

RESUMO

 This work describes a novel partitivirus genome assembled from RNA-seq data generated from onion tissue from fields in Brazil. A new partitivirus genome composed of three dsRNAs, which was closely related to arhar cryptic virus 1, was assembled from Allium cepa samples from Brazil. The genomic sequences were also identified from available transcriptomic datasets of onion samples from China, Czech Republic, India, South Korea and USA. According to the species demarcation in the Partitiviridae family, the new virus was classified into the genus Deltapartitivirus with the suggested name of allium deltapartitivirus. This is the first report of the occurrence of a cryptic virus in plants of the genus Allium, and therefore, this work contributes to the understanding of the genetic diversity of partitiviruses  that infect the genus Allium. Keywords: Allium sp.; high-throughput sequencing; partitiviruses.


Assuntos
Cebolas , Vírus de RNA , Cebolas/genética , Brasil , Genômica , Transcriptoma
16.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675079

RESUMO

Flubendiamide (FLB) is an insecticide that is commonly employed to control pests on a variety of vegetables and fruits, with low toxicity for non-target organisms. However, due to its widespread use, the environmental risks and food safety have become major concerns. In this study, the toxicity potential of FLB was studied in the model organisms, Allium cepa and Drosophila melanogaster. The cyto-genotoxic effects of FLB on the root growth, mitotic index (MI), chromosomal aberrations (CAs) and deoxyribonucleic acid (DNA) damage in A. cepa root meristematic cells were investigated using the root growth inhibition Allium test and Comet assays. FLB caused CAs in the form of disturbed ana-telophase, chromosome laggards, stickiness, anaphase-bridge and polyploidy depending on the concentration and the exposure time. The toxicity and genotoxicity of FLB at various doses (0.001, 0.01, 0.1 and 1 mM) on D. melanogaster were investigated from the point of view of larval weight and movement, pupal formation success, pupal position, emergence success and DNA damage, respectively. FLB exposure led to a significant reduction of the locomotor activity at the highest concentration. While DNA damage increased significantly in the FLB-treated onions depending on the concentration and time, DNA damage in the FLB-treated D. melanogaster significantly increased only at the highest dose compared to that which occurred in the control group. Moreover, to provide a mechanistic insight into the genotoxic and locomotion-disrupting effects of FLB, molecular docking simulations of this pesticide were performed against the DNA and diamondback moth (DBM) ryanodine receptor (RyR) Repeat34 domain. The docking studies revealed that FLB binds strongly to a DNA region that is rich in cytosine-guanine-adenine bases (C-G-A) in the minor groove, and it displayed a remarkable binding affinity against the DBM RyR Repeat34 domain.


Assuntos
Allium , Drosophila melanogaster , Animais , Drosophila melanogaster/genética , Cebolas/genética , Simulação de Acoplamento Molecular , Raízes de Plantas/genética , Dano ao DNA , Meristema/genética , Aberrações Cromossômicas
17.
Plant J ; 107(6): 1616-1630, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34216173

RESUMO

Glutamine is a product of ammonium (NH4+ ) assimilation catalyzed by glutamine synthetase (GS) and glutamate synthase (GOGAT). The growth of NH4+ -preferring paddy rice (Oryza sativa L.) depends on root NH4+ assimilation and the subsequent root-to-shoot allocation of glutamine; however, little is known about the mechanism of glutamine storage in roots. Here, using transcriptome and reverse genetics analyses, we show that the rice amino acid transporter-like 6 (OsATL6) protein exports glutamine to the root vacuoles under NH4+ -replete conditions. OsATL6 was expressed, along with OsGS1;2 and OsNADH-GOGAT1, in wild-type (WT) roots fed with sufficient NH4 Cl, and was induced by glutamine treatment. We generated two independent Tos17 retrotransposon insertion mutants showing reduced OsATL6 expression to determine the function of OsATL6. Compared with segregants lacking the Tos17 insertion, the OsATL6 knock-down mutant seedlings exhibited lower root glutamine content but higher glutamine concentration in the xylem sap and greater shoot growth under NH4+ -replete conditions. The transient expression of monomeric red fluorescent protein-fused OsATL6 in onion epidermal cells confirmed the tonoplast localization of OsATL6. When OsATL6 was expressed in Xenopus laevis oocytes, glutamine efflux from the cell into the acidic bath solution increased. Under sufficient NH4+ supply, OsATL6 transiently accumulated in sclerenchyma and pericycle cells, which are located adjacent to the Casparian strip, thus obstructing the apoplastic solute path, and in vascular parenchyma cells of WT roots before the peak accumulation of GS1;2 and NADH-GOGAT1 occurred. These findings suggest that OsATL6 temporarily stores excess glutamine, produced by NH4+ assimilation, in root vacuoles before it can be translocated to the shoot.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Glutamina/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Amônia/metabolismo , Cloreto de Amônio/farmacologia , Animais , Feminino , Regulação da Expressão Gênica de Plantas , Homeostase , Mutação , Cebolas/citologia , Cebolas/genética , Oócitos/metabolismo , Oryza/efeitos dos fármacos , Oryza/genética , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Vacúolos/metabolismo , Xenopus laevis
18.
Biochem Biophys Res Commun ; 586: 68-73, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34826703

RESUMO

The mitogen-activated protein kinase OsMPK1 is involved in abscisic acid (ABA) biosynthesis in rice (Oryza sativa L.). However, the underlying molecular mechanisms of OsMPK1 in regulating ABA biosynthesis are poorly understood. Here, by using yeast two-hybrid assay and firefly luciferase complementary imaging assay, we show that OsMPK1 physically interact with a short-chain dehydrogenase protein OsABA2. However, OsMPK5, a homolog of OsMPK1, does not interact with OsABA2. Further, OsMPK1 can phosphorylate OsABA2S197 in vitro. Phosphorylation at the position of OsABA2S197 does not affect its subcellular localization, but enhances the stability of OsABA2 protein. We also found that OsABA2 has feedback regulation on OsMPK1 kinase activity. Further research reveals that OsMPK1 and OsABA2 coordinately regulate the biosynthesis of ABA, and phosphorylation of OsABA2 at Ser197 by OsMPK1 plays a crucial role in regulating the biosynthesis of ABA. Finally, genetic analysis showed that OsABA2 can enhance the sensitivity of rice to ABA and the tolerance of rice to drought and salt stress.


Assuntos
Ácido Abscísico/metabolismo , Oxirredutases do Álcool/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Oryza/genética , Proteínas de Plantas/genética , Proteínas Recombinantes/genética , Oxirredutases do Álcool/metabolismo , Secas , Retroalimentação Fisiológica , Regulação da Expressão Gênica de Plantas , Genes Reporter , Isoenzimas/genética , Isoenzimas/metabolismo , Luciferases/genética , Luciferases/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Cebolas/genética , Cebolas/metabolismo , Oryza/metabolismo , Fosforilação , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Estresse Fisiológico , Técnicas do Sistema de Duplo-Híbrido
19.
J Exp Bot ; 73(14): 4908-4922, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35552692

RESUMO

Fructans such as inulin and levan accumulate in certain taxonomic groups of plants and are a reserve carbohydrate alternative to starch. Onion (Allium cepa L.) is a typical plant species that accumulates fructans, and it synthesizes inulin-type and inulin neoseries-type fructans in the bulb. Although genes for fructan biosynthesis in onion have been identified so far, no genes for fructan degradation had been found. In this study, phylogenetic analysis predicted that we isolated a putative vacuolar invertase gene (AcpVI1), but our functional analyses demonstrated that it encoded a fructan 1-exohydrolase (1-FEH) instead. Assessments of recombinant proteins and purified native protein showed that the protein had 1-FEH activity, hydrolyzing the ß-(2,1)-fructosyl linkage in inulin-type fructans. Interestingly, AcpVI1 had an amino acid sequence close to those of vacuolar invertases and fructosyltransferases, unlike all other FEHs previously found in plants. We showed that AcpVI1 was localized in the vacuole, as are onion fructosyltransferases Ac1-SST and Ac6G-FFT. These results indicate that fructan-synthesizing and -degrading enzymes are both localized in the vacuole. In contrast to previously reported FEHs, our data suggest that onion 1-FEH evolved from a vacuolar invertase and not from a cell wall invertase. This demonstrates that classic phylogenetic analysis on its own is insufficient to discriminate between invertases and FEHs, highlighting the importance of functional markers in the nearby active site residues.


Assuntos
Cebolas , beta-Frutofuranosidase , Frutanos/metabolismo , Glicosídeo Hidrolases/metabolismo , Inulina , Cebolas/genética , Cebolas/metabolismo , Filogenia , Vacúolos/metabolismo , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo
20.
Theor Appl Genet ; 135(3): 1025-1036, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35034161

RESUMO

KEY MESSAGE: A gene encoding a laccase responsible for chartreuse onion bulb color was identified. Markers tagging this gene showed perfect linkage with bulb colors among diverse germplasm. To identify a casual gene for the G locus determining chartreuse bulb color in onion (Allium cepa L.), bulked segregant RNA-Seq (BSR-Seq) was performed using yellow and chartreuse individuals of a segregating population. Through single nucleotide polymorphism (SNP) and differentially expressed gene (DEG) screening processes, 163 and 143 transcripts were selected, respectively. One transcript encoding a laccase-like protein was commonly identified from SNP and DEG screening. This transcript contained four highly conserved copper-binding domains known to be signature sequences of laccases. This gene was designated AcLAC12 since it showed high homology with Arabidopsis AtLAC12. A 4-bp deletion creating a premature stop codon was identified in exon 5 of the chartreuse allele. Another mutant allele in which an intact LTR-retrotransposon was transposed in exon 5 was identified from other chartreuse breeding lines. Genotypes of molecular markers tagging AcLAC12 were perfectly matched with bulb color phenotypes in segregating populations and diverse breeding lines. All chartreuse breeding lines contained inactive alleles of DFR-A gene determining red bulb color, indicating that chartreuse color appeared when both DFR-A and AcLAC12 genes were inactivated. Linkage maps showed that AcLAC12 was positioned at the end of chromosome 7. Transcription levels of structural genes encoding enzymes in anthocyanin biosynthesis pathway were generally reduced in chartreuse bulk compared with yellow bulk. Concentrations of total quercetins were also reduced in chartreuse onion. However, significant amounts of quercetins were detected in chartreuse onion, implying that AcLAC12 might be involved in modification of quercetin derivatives in onion.


Assuntos
Cebolas , Melhoramento Vegetal , Alelos , Genótipo , Cebolas/genética , RNA-Seq
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa