Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.210
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Biol Chem ; 299(9): 105112, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37517692

RESUMO

NADPH-cytochrome P450 reductase delivers electrons required by heme oxygenase, squalene monooxygenase, fatty acid desaturase, and 48 human cytochrome P450 enzymes. While conformational changes supporting reductase intramolecular electron transfer are well defined, intermolecular interactions with these targets are poorly understood, in part because of their transient association. Herein the reductase FMN domain responsible for interacting with targets was fused to the N-terminus of three drug-metabolizing and two steroidogenic cytochrome P450 enzymes to increase the probability of interaction. These artificial fusion enzymes were profiled for their ability to bind their respective substrates and inhibitors and to perform catalysis supported by cumene hydroperoxide. Comparisons with the isolated P450 enzymes revealed that even the oxidized FMN domain causes substantial and diverse effects on P450 function. The FMN domain could increase, decrease, or not affect total ligand binding and/or dissociation constants depending on both P450 enzyme and ligand. As examples, FMN domain fusion has no effect on inhibitor ketoconazole binding to CYP17A1 but substantially altered CYP21A2 binding of the same compound. FMN domain fusion to CYP21A2 resulted in differential effects dependent on whether the ligand was 17α-hydroxyprogesterone versus ketoconazole. Similar enzyme-specific effects were observed on steady-state kinetics. These observations are most consistent with FMN domain interacting with the proximal P450 surface to allosterically impact P450 ligand binding and metabolism separate from electron delivery. The variety of effects on different P450 enzymes and on the same P450 with different ligands suggests intricate and differential allosteric communication between the P450 active site and its proximal reductase-binding surface.


Assuntos
Sistema Enzimático do Citocromo P-450 , NADPH-Ferri-Hemoproteína Redutase , Humanos , Mononucleotídeo de Flavina/metabolismo , Cetoconazol , Ligantes , NADPH-Ferri-Hemoproteína Redutase/química , Oxirredução , Esteroide 21-Hidroxilase/metabolismo , Domínios Proteicos , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Peróxido de Hidrogênio/farmacologia
2.
Drug Metab Dispos ; 52(2): 80-85, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071551

RESUMO

Previous studies have suggested that the incidence of vincristine-induced peripheral neuropathy (VIPN) is potentially linked with cytochrome P450 (CYP)3A5, a polymorphic enzyme that metabolizes vincristine in vitro, and with concurrent use of azole antifungals such as ketoconazole. The assumed mechanism for these interactions is through modulation of CYP3A-mediated metabolism, leading to decreased vincristine clearance and increased susceptibility to VIPN. Given the controversy surrounding the contribution of these mechanisms, we directly tested these hypotheses in genetically engineered mouse models with a deficiency of the entire murine Cyp3a locus [Cyp3a(-/-) mice] and in humanized transgenic animals with hepatic expression of functional and nonfunctional human CYP3A5 variants. Compared with wild-type mice, the systemic exposure to vincristine was increased by only 1.15-fold (95% confidence interval, 0.84-1.58) in Cyp3a(-/-) mice, suggesting that the clearance of vincristine in mice is largely independent of hepatic Cyp3a function. In line with these observations, we found that Cyp3a deficiency or pretreatment with the CYP3A inhibitors ketoconazole or nilotinib did not influence the severity and time course of VIPN and that exposure to vincristine was not substantially altered in humanized CYP3A5*3 mice or humanized CYP3A5*1 mice compared with Cyp3a(-/-) mice. Our study suggests that the contribution of CYP3A5-mediated metabolism to vincristine elimination and the associated drug-drug interaction potential is limited and that plasma levels of vincristine are unlikely to be strongly predictive of VIPN. SIGNIFICANCE STATEMENT: The current study suggests that CYP3A5 genotype status does not substantially influence vincristine disposition and neurotoxicity in translationally relevant murine models. These findings raise concerns about the causality of previously reported relationships between variant CYP3A5 genotypes or concomitant azole use with the incidence of vincristine neurotoxicity.


Assuntos
Citocromo P-450 CYP3A , Cetoconazol , Humanos , Animais , Camundongos , Vincristina/toxicidade , Vincristina/metabolismo , Vincristina/uso terapêutico , Citocromo P-450 CYP3A/genética , Cetoconazol/farmacologia , Inibidores do Citocromo P-450 CYP3A/farmacologia , Genótipo , Azóis
3.
Arch Biochem Biophys ; 753: 109919, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307316

RESUMO

Ketoconazole (Ke) is an important antifungal drug, and two of its diphenylphosphinemethyl derivatives (KeP: Ph2PCH2-Ke and KeOP: Ph2P(O)CH2-Ke) have shown improved antifungal activity, namely against a yeast strain lacking ergosterol, suggesting alternative modes of action for azole compounds. In this context, the interactions of these compounds with a model of the cell membrane were investigated, using POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) large unilamellar vesicles and taking advantage of the intrinsic fluorescence of Ke, KeP and KeOP. Steady-state fluorescence spectra and anisotropy, including partition and aggregation studies, as well as fluorescence lifetime measurements, were carried out. In addition, the ability of the compounds to increase membrane permeability was assessed through carboxyfluorescein leakage. The membrane/water mole fraction partition coefficients (Kp,x): (3.31 ± 0.36) x105, (8.31 ± 1.60) x105 and (4.66 ± 0.72) x106, for Ke, KeP and KeOP, respectively, show that all three compounds have moderate to high affinity for the lipid bilayer. Moreover, KeP, and particularly KeOP interact more efficiently with POPC bilayers than Ke, which correlates well with their in vitro antifungal activity. Furthermore, although the three compounds disturb the lipid bilayer, KeOP is the quickest and most efficient one. Hence, the higher affinity and ability to permeabilize the membrane of KeOP when compared to that of KeP, despite the higher lipophilicity of the latter, points to an important role of Ph2P(O)CH2- oxygen. Overall, this work suggests that membrane interactions are important for the antifungal activity of these azoles and should be considered in the design of new therapeutic agents.


Assuntos
Antifúngicos , Cetoconazol , Antifúngicos/farmacologia , Cetoconazol/farmacologia , Bicamadas Lipídicas , Fosfatidilcolinas
4.
Molecules ; 29(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731409

RESUMO

As a powerful imidazole antifungal drug, ketoconazole's low solubility (0.017 mg/mL), together with its odor and irritation, limited its clinical applications. The inclusion complex of ketoconazole with randomly methylated ß-cyclodextrin was prepared by using an aqueous solution method after cyclodextrin selection through phase solubility studies, complexation methods, and condition selection through single factor and orthogonal strategies. The complex was confirmed by FTIR (Fourier-transform infrared spectroscopy), DSC (differential scanning calorimetry), TGA (thermogravimetric analysis), SEM (scanning electron microscope images), and NMR (Nuclear magnetic resonance) studies. Through complexation, the water solubility of ketoconazole in the complex was increased 17,000 times compared with that of ketoconazole alone, which is the best result so far for the ketoconazole water solubility study. In in vitro pharmacokinetic studies, ketoconazole in the complex can be 100% released in 75 min, and in in vivo pharmacokinetic studies in dogs, through the complexation, the Cmax was increased from 7.56 µg/mL to 13.58 µg/mL, and the AUC0~72 was increased from 22.69 µgh/mL to 50.19 µgh/mL, indicating that this ketoconazole complex can be used as a more efficient potential new anti-fungal drug.


Assuntos
Antifúngicos , Cetoconazol , Solubilidade , beta-Ciclodextrinas , Cetoconazol/química , Cetoconazol/farmacocinética , Cetoconazol/farmacologia , Cetoconazol/administração & dosagem , beta-Ciclodextrinas/química , Animais , Antifúngicos/farmacologia , Antifúngicos/farmacocinética , Antifúngicos/química , Cães , Varredura Diferencial de Calorimetria , Espectroscopia de Infravermelho com Transformada de Fourier , Metilação
5.
J Cell Mol Med ; 27(13): 1880-1886, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37246626

RESUMO

Dealing with nude mice, which lack thymus and therefore are sensitive to unsterile conditions, needs special care and laboratory conditions. For preclinical studies, especially tumour imaging purposes, in which therapeutic properties of drugs or therapeutic compounds are not studied, mice with normal immune system can be a favourable alternative if they carry tumours of interest. In the current study, we introduce an optimized protocol for induction of human tumours in BALB/c mice for preclinical studies. Immune system of BALB/c mice was suppressed by administration of cyclosporine A (CsA), ketoconazole and cyclophosphamide. The tumours of MDA-MB-231, A-431 and U-87-MG human cancer cells were induced by subcutaneous injection of the cells to the immunosuppressed mice. Tumour size was calculated weekly. Histopathological and metastatic analyses were performed using haematoxylin and eosin staining. The combination of the three drugs was found to suppress immune system and decrease the numbers of white blood cells, including lymphocytes. At the eighth week, tumours with a dimension of approximately 1400 mm3 developed. Large atypical nuclei with scant cytoplasm were found to exist using histopathological analysis. No metastasis was observed in the tumour-bearing mice. A combination of CsA, ketoconazole and cyclophosphamide can be used to suppress the immune system in BALB/c mice and induce tumours with significant size.


Assuntos
Cetoconazol , Neoplasias , Humanos , Animais , Camundongos , Cetoconazol/farmacologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Ciclofosfamida/farmacologia , Ciclosporina , Neoplasias/tratamento farmacológico
6.
J Biol Chem ; 298(7): 102110, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35688208

RESUMO

Neurosteroids, modulators of neuronal and glial cell functions, are synthesized in the nervous system from cholesterol. In peripheral steroidogenic tissues, cholesterol is converted to the major steroid precursor pregnenolone by the CYP11A1 enzyme. Although pregnenolone is one of the most abundant neurosteroids in the brain, expression of CYP11A1 is difficult to detect. We found that human glial cells produced pregnenolone, detectable by mass spectrometry and ELISA, despite the absence of observable immunoreactive CYP11A1 protein. Unlike testicular and adrenal cortical cells, pregnenolone production in glial cells was not inhibited by CYP11A1 inhibitors DL-aminoglutethimide and ketoconazole. Furthermore, addition of hydroxycholesterols increased pregnenolone synthesis, suggesting desmolase activity that was not blocked by DL-aminoglutethimide or ketoconazole. We explored three different possibilities for an alternative pathway for glial cell pregnenolone synthesis: (1) regulation by reactive oxygen species, (2) metabolism via a different CYP11A1 isoform, and (3) metabolism via another CYP450 enzyme. First, we found oxidants and antioxidants had no significant effects on pregnenolone synthesis, suggesting it is not regulated by reactive oxygen species. Second, overexpression of CYP11A1 isoform b did not alter synthesis, indicating use of another CYP11A1 isoform is unlikely. Finally, we show nitric oxide and iron chelators deferoxamine and deferiprone significantly inhibited pregnenolone production, indicating involvement of another CYP450 enzyme. Ultimately, knockdown of endoplasmic reticulum cofactor NADPH-cytochrome P450 reductase had no effect, while knockdown of mitochondrial CYP450 cofactor ferredoxin reductase inhibited pregnenolone production. These data suggest that pregnenolone is synthesized by a mitochondrial cytochrome P450 enzyme other than CYP11A1 in human glial cells.


Assuntos
Neuroglia/metabolismo , Neuroesteroides , Pregnenolona/metabolismo , Aminoglutetimida , Colesterol/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Humanos , Cetoconazol/farmacologia , Pregnenolona/biossíntese , Espécies Reativas de Oxigênio
7.
Biochem Biophys Res Commun ; 651: 114-120, 2023 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-36812744

RESUMO

In pharmacokinetics plasma protein binding (PPB) is a well-established parameter impacting drug disposition. The unbound fraction (fu) is arguably regarded the effective concentration at the target site. Pharmacology and toxicology, increasingly use in vitro models. The translation of in vitro concentrations to in vivo doses can be supported by toxicokinetic modelling, e.g. physiologically based toxicokinetic models (PBTK). PPB of a test substance is an input parameter for PBTK. We compared three methods to quantify fu: rapid equilibrium dialysis (RED), ultrafiltration (UF) and ultracentrifugation (UC) using twelve substances covering a wide range of Log Pow (-0.1 to 6.8) and molecular weights (151 and 531 g/mol): Acetaminophen, Bisphenol A, Caffeine, Colchicine, Fenarimol, Flutamide, Genistein, Ketoconazole, α-Methyltestosterone, Tamoxifen, Trenbolone and Warfarin. After RED and UF separation, three polar substances (Log Pow < 2) were largely unbound (fu > 70%), while more lipophilic substances were largely bound (fu < 33%). Compared to RED or UF, UC resulted in a generally higher fu of lipophilic substances. fu obtained after RED and UF were more consistent with published data. For half of the substances, UC resulted in fu higher than the reference data. UF, RED and both UF and UC, resulted in lower fu of Flutamide, Ketoconazole and Colchicine, respectively. For fu quantifications, the separation method should be selected according to the test substance's properties. Based on our data, RED is suitable for a broader range of substances while UC and UF are suitable for polar substances.


Assuntos
Flutamida , Ultrafiltração , Cetoconazol , Diálise Renal , Ligação Proteica , Proteínas Sanguíneas/metabolismo , Ultracentrifugação
8.
J Pharmacol Exp Ther ; 385(3): 180-192, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37019472

RESUMO

Mitragynine, an opioidergic alkaloid present in Mitragyna speciosa (kratom), is metabolized by cytochrome P450 3A (CYP3A) to 7-hydroxymitragynine, a more potent opioid receptor agonist. The extent to which conversion to 7-hydroxymitragynine mediates the in vivo effects of mitragynine is unclear. The current study examined how CYP3A inhibition (ketoconazole) modifies the pharmacokinetics of mitragynine in rat liver microsomes in vitro. The study further examined how ketoconazole modifies the discriminative stimulus and antinociceptive effects of mitragynine in rats. Ketoconazole [30 mg/kg, oral gavage (o.g.)] increased systemic exposure to mitragynine (13.3 mg/kg, o.g.) by 120% and 7-hydroxymitragynine exposure by 130%. The unexpected increase in exposure to 7-hydroxymitragynine suggested that ketoconazole inhibits metabolism of both mitragynine and 7-hydroxymitragynine, a finding confirmed in rat liver microsomes. In rats discriminating 3.2 mg/kg morphine from vehicle under a fixed-ratio schedule of food delivery, ketoconazole pretreatment increased the potency of both mitragynine (4.7-fold) and 7-hydroxymitragynine (9.7-fold). Ketoconazole did not affect morphine's potency. Ketoconazole increased the antinociceptive potency of 7-hydroxymitragynine by 4.1-fold. Mitragynine (up to 56 mg/kg, i.p.) lacked antinociceptive effects both in the presence and absence of ketoconazole. These results suggest that both mitragynine and 7-hydroxymitragynine are cleared via CYP3A and that 7-hydroxymitragynine is formed as a metabolite of mitragynine by other routes. These results have implications for kratom use in combination with numerous medications and citrus juices that inhibit CYP3A. SIGNIFICANCE STATEMENT: Mitragynine is an abundant kratom alkaloid that exhibits low efficacy at the µ-opioid receptor (MOR). Its metabolite, 7-hydroxymitragynine, is also an MOR agonist but with higher affinity and efficacy than mitragynine. Our results in rats demonstrate that cytochrome P450 3A (CYP3A) inhibition can increase the systematic exposure of both mitragynine and 7-hydroxymitragynine and their potency to produce MOR-mediated behavioral effects. These data highlight potential interactions between kratom and CYP3A inhibitors, which include numerous medications and citrus juices.


Assuntos
Citocromo P-450 CYP3A , Alcaloides de Triptamina e Secologanina , Ratos , Animais , Cetoconazol/farmacologia , Alcaloides de Triptamina e Secologanina/metabolismo , Morfina/farmacologia , Analgésicos Opioides/farmacologia
9.
Chem Res Toxicol ; 36(3): 479-491, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36795936

RESUMO

Tolterodine (TOL) is an antimuscarinic drug used for the treatment of patients with overactive bladder presenting urinary frequency, urgency, and urge incontinence. During the clinical use of TOL, adverse events such as liver injury took place. The present study aimed at the investigation of the metabolic activation of TOL possibly associated with its hepatotoxicity. One GSH conjugate, two NAC conjugates, and two cysteine conjugates were found in both mouse and human liver microsomal incubations supplemented with TOL, GSH/NAC/cysteine, and NADPH. The detected conjugates suggest the production of a quinone methide intermediate. The same GSH conjugate was also observed in mouse primary hepatocytes and in the bile of rats receiving TOL. One of the urinary NAC conjugates was observed in rats administered TOL. One of the cysteine conjugates was found in a digestion mixture containing hepatic proteins from animals administered TOL. The observed protein modification was dose-dependent. CYP3A primarily catalyzes the metabolic activation of TOL. Ketoconazole (KTC) pretreatment reduced the generation of the GSH conjugate in mouse liver and cultured primary hepatocytes after TOL treatment. In addition, KTC reduced the susceptibility of primary hepatocytes to TOL cytotoxicity. The quinone methide metabolite may be involved in TOL-induced hepatotoxicity and cytotoxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Citocromo P-450 CYP3A , Humanos , Ratos , Camundongos , Animais , Ativação Metabólica , Citocromo P-450 CYP3A/metabolismo , Tartarato de Tolterodina/metabolismo , Cisteína/metabolismo , Cetoconazol/metabolismo , Microssomos Hepáticos/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Glutationa/metabolismo
10.
Mol Pharm ; 20(8): 4100-4107, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37354097

RESUMO

This study demonstrates in vitro and in vivo control of cocrystal dissolution with drug supersaturation/precipitation based on the solubility product of a cocrystal. As a cocrystal model, KTZ-4ABA (ketoconazole, KTZ, a poorly water-soluble drug cocrystal, with 4-aminobenzoic acid, 4ABA, a coformer) was used. The presence of 4ABA in the dissolution media dramatically reduced the dissolution rate of KTZ-4ABA and regulated the supersaturation/precipitation of KTZ, supported by the solubility product of KTZ-4ABA. In the in vitro dissolution study, the combined solid form of KTZ-4ABA and a ten-fold amount of 4ABA significantly lowered the degree of KTZ supersaturation without precipitation and further cocrystal dissolution. To confirm cocrystal dissolution control in the gastrointestinal tract with the same composition as the in vitro study, an in vivo oral administration study with rats was conducted. When KTZ was coadministered to rats in the cocrystal form, an excess of 4ABA coadministered with KTZ-4ABA in the solid form reduced the maximum plasma KTZ concentration (Cmax), prolonged the time to reach the Cmax, but did not influence the area under the plasma concentration-time curve. These results demonstrate that both in vitro and in vivo cocrystal dissolution can be regulated by adding an appropriate amount of coformer based on the solubility product, which can be one of the promising strategies for the oral use of cocrystal formulations.


Assuntos
Cetoconazol , Água , Ratos , Animais , Cetoconazol/química , Solubilidade , Preparações Farmacêuticas , Água/química , Administração Oral
11.
Pharm Res ; 40(2): 405-418, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36788156

RESUMO

INTRODUCTION: Ketoconazole and posaconazole are two weakly basic broad-spectrum antifungals classified as Biopharmaceutics Classification System class II drugs, indicating that they are highly permeable, but exhibit poor solubility. As a result, oral bioavailability and clinical efficacy can be impacted by the formulation performance in the gastrointestinal system. In this work, we have leveraged in vitro biopharmaceutics and clinical data available in the literature to build physiologically based pharmacokinetic (PBPK) models for ketoconazole and posaconazole, to determine the suitability of forward in vitro-in vivo translation for characterization of in vivo drug precipitation, and to predict food effect. METHODS: A stepwise modeling approach was utilized to derive key parameters related to absorption, such as drug solubility, dissolution, and precipitation kinetics from in vitro data. These parameters were then integrated into PBPK models for the simulation of ketoconazole and posaconazole plasma concentrations in the fasted and fed states. RESULTS: Forward in vitro-in vivo translation of intestinal precipitation kinetics for both model drugs resulted in poor predictions of PK profiles. Therefore, a reverse translation approach was applied, based on limited fitting of precipitation-related parameters to clinical data. Subsequent simulations for ketoconazole and posaconazole demonstrated that fasted and fed state PK profiles for both drugs were adequately recapitulated. CONCLUSION: The two examples presented in this paper show how middle-out modeling approaches can be used to predict the magnitude and direction of food effects provided the model is verified on fasted state PK data.


Assuntos
Trato Gastrointestinal , Cetoconazol , Cetoconazol/farmacocinética , Solubilidade , Biofarmácia/métodos , Antifúngicos/farmacologia , Administração Oral , Simulação por Computador , Absorção Intestinal , Modelos Biológicos
12.
Pharm Res ; 40(9): 2229-2237, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37552386

RESUMO

OBJECTIVES: Amorphous solid dispersions (ASDs), wherein a drug is molecularly dispersed in a polymer, can improve physical stability and oral bioavailability of poorly soluble drugs. Risk of drug crystallization is usually averted using high polymer concentrations. However, we demonstrated recently that the overlap concentration, C*, of polymer in drug melt is the minimum polymer concentration required to maintain drug in the amorphous state following rapid quench. This conclusion was confirmed for several drugs mixed with poly(vinylpyrrolidone) (PVP). Here we assess the solid-state stability of ASDs formulated with a variety of polymers and drugs and at various polymer concentrations (C) and molecular weights (MWs). We further test the hypothesis that degree of drug crystallization decreases with increasing C/C* and vanishes when C>C*, where C* depends on polymer MW and strength of drug-polymer interaction. METHODS: We test our hypothesis with ASDs consisting of ketoconazole admixed with polyacrylic acid, polymethacrylic acid and poly (methacrylic acid-co-ethyl acrylate); and felodipine admixed with PVP and poly (vinylpyrrolidone-co-vinyl acetate). Values of C* for polymers in molten drug are rheologically determined. Crystallization behavior is assessed by measuring enthalpy of fusion, ΔHf  and by X-ray diffraction. RESULTS: We confirm that ΔHf/ΔHf, C = 0 = f(C/C∗), and essentially no crystallization occurs when C>C*. CONCLUSIONS: Our findings will aid researchers in designing or selecting appropriate polymers to inhibit crystallization of poorly soluble drugs. This research also suggests that C* as determined by rheology can be used to compare drug-polymer interactions for similar molecular weight polymers.


Assuntos
Felodipino , Polímeros , Polímeros/química , Cristalização , Cetoconazol/química , Reologia , Solubilidade , Povidona/química
13.
Nanotechnology ; 35(11)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38081071

RESUMO

Ketoconazole (KTZ), an antifungal agent used to treat localized or systemic fungal infections by inhibiting ergosterol synthesis, exhibits restricted efficacy within eukaryotic cells owing to its elevated toxicity and limited solubility in water. This study aims to improve the biological activity and overcome cytotoxic effects in the renal system of the hydrophobic KTZ by incorporating it into poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) utilizing biomaterial nano-engineering techniques. KTZ-loaded PLGA NPs (KTZ-NPs) were prepared by single emulsion solvent evaporation method and characterized by using dynamic light scattering (DLS), electrophoretic light scattering (ELS), Fourier transform-infrared (FT-IR) spectroscopy and scanning light microscopy (SEM). Particle size and zeta potential of KTZ-NPs were determined as 182.0 ± 3.27 nm and -27.4 ± 0.56 mV, respectively. Antifungal activity was analyzed with the time-kill and top agar dilution methods onCandida albicans(C. albicans) andAspergillus flavus(A. flavus). Both KTZ and KTZ-NPs caused a significant decrease inA. flavuscell growth; however, the same effect was only observed in time-killing analysis onC. albicans, indicating a methodological difference in the antifungal analysis. According to the top agar method, the MIC value of KTZ-NPs againstA. flavuswas 9.1µg ml-1, while the minimum inhibition concentration (MIC) value of KTZ was 18.2µg ml-1. The twofold increased antifungal activity indicates that nanoparticular drug delivery systems enhance the water solubility of hydrophobic drugs. In addition, KTZ-NPs were not cytotoxic on human renal proximal tubular epithelial cells (HRPTEpCs) at fungistatic concentration, thus reducing fungal colonization without cytotoxic on renal excretion system cells.


Assuntos
Antifúngicos , Nanopartículas , Humanos , Antifúngicos/farmacologia , Antifúngicos/química , Cetoconazol/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Ágar , Células Epiteliais , Água , Nanopartículas/química , Tamanho da Partícula
14.
Environ Sci Technol ; 57(19): 7431-7441, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37130040

RESUMO

The occurrence of pharmaceuticals in the aquatic environment is a global water quality challenge for several reasons, such as deleterious effects on ecological and human health, antibiotic resistance development, and endocrine-disrupting effects on aquatic organisms. To optimize their removal from the water cycle, understanding the processes during biological wastewater treatment is crucial. Time-of-flight secondary ion mass spectrometry imaging was successfully applied to investigate and analyze the distribution of pharmaceuticals as well as endogenous molecules in the complex biological matrix of biofilms for wastewater treatment. Several compounds and their localization were identified in the biofilm section, including citalopram, ketoconazole, ketoconazole transformation products, and sertraline. The images revealed the pharmaceuticals gathered in distinct sites of the biofilm matrix. While citalopram penetrated the biofilm deeply, sertraline remained confined in its outer layer. Both pharmaceuticals seemed to mainly colocalize with phosphocholine lipids. Ketoconazole concentrated in small areas with high signal intensity. The approach outlined here presents a powerful strategy for visualizing the chemical composition of biofilms for wastewater treatment and demonstrates its promising utility for elucidating the mechanisms behind pharmaceutical and antimicrobial removal in biological wastewater treatment.


Assuntos
Eliminação de Resíduos Líquidos , Poluentes Químicos da Água , Humanos , Eliminação de Resíduos Líquidos/métodos , Citalopram/análise , Citalopram/farmacologia , Cetoconazol/análise , Cetoconazol/farmacologia , Sertralina/análise , Sertralina/farmacologia , Espectrometria de Massa de Íon Secundário , Poluentes Químicos da Água/análise , Águas Residuárias , Biofilmes , Preparações Farmacêuticas
15.
Environ Sci Technol ; 57(1): 539-548, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36573895

RESUMO

Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) are ubiquitous contaminants that can be formed through oxidation of parent PAHs. Our previous studies found 2-hydroxychrysene (2-OHCHR) to be significantly more toxic to Japanese medaka embryos than 6-hydroxychrysene (6-OHCHR), an example of regioselective toxicity. We have also previously identified a sensitive developmental window to 2-OHCHR toxicity that closely coincided with liver development, leading us to hypothesize that differences in metabolism may play a role in the regioselective toxicity. To test this hypothesis, Japanese medaka embryos were treated with each isomer for 24 h during liver development (52-76 hpf). Although 6-OHCHR was absorbed 97.2 ± 0.18% faster than 2-OHCHR, it was eliminated 57.7 ± 0.36% faster as a glucuronide conjugate. Pretreatment with cytochrome P450 inhibitor, ketoconazole, reduced anemia by 96.8 ± 3.19% and mortality by 95.2 ± 4.76% in 2-OHCHR treatments. Formation of chrysene-1,2-diol (1,2-CAT) was also reduced by 64.4 ± 2.14% by ketoconazole pretreatment. While pretreatment with UDP-glucuronosyltransferase inhibitor, nilotinib, reduced glucuronidation of 2-OHCHR by 52.4 ± 2.55% and of 6-OHCHR by 63.7 ± 3.19%, it did not alter toxicity for either compound. These results indicate that CYP-mediated activation, potentially to 1,2-CAT, may explain the isomeric differences in developmental toxicity of 2-OHCHR.


Assuntos
Oryzias , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Oryzias/fisiologia , Cetoconazol/metabolismo , Poluentes Químicos da Água/toxicidade , Embrião não Mamífero/química , Embrião não Mamífero/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade
16.
J Pharmacol Sci ; 153(3): 104-112, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37770151

RESUMO

Statins, which are cholesterol synthesis inhibitors, are well-known therapeutics for dyslipidemia; however, some studies have anticipated their use as anticancer agents. However, epithelial cancer cells show strong resistance to statins through an increased expression of HMG-CoA reductase (HMGCR), an inhibitory target of statins. Castration-resistant prostate cancer (CRPC) cells synthesize androgens from cholesterol on their own. We performed suppression of CYP11A1, a rate-limiting enzyme in androgen synthesis from cholesterol, using siRNA or inhibitors, to examine the effect of steroidogenesis inhibition on statin sensitivity in CRPC cells. Here, we suggested that CYP11A1 silencing sensitized the statin-resistant CRPC cell line DU-145 to atorvastatin via HMGCR downregulation by an increase in intracellular free cholesterol. We further demonstrated that CYP11A1 silencing induced epithelial-mesenchymal transition, which converted DU-145 cells into a statin-sensitive phenotype. This suggests that concomitant use of CYP11A1 inhibitors could be an effective approach for overcoming statin resistance in CRPC. Moreover, we showed that ketoconazole, a CYP11A1 inhibitor, sensitized DU-145 cells to atorvastatin, although not all the molecular events observed in CYP11A1 silencing were reproducible. Although further studies are necessary to clarify the detailed mechanisms, ketoconazole may be effective as a concomitant drug that potentiates the anticancer effect of atorvastatin.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Atorvastatina/farmacologia , Enzima de Clivagem da Cadeia Lateral do Colesterol , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Cetoconazol , Colesterol , Linhagem Celular Tumoral , Hidroximetilglutaril-CoA Redutases/genética
17.
Xenobiotica ; 53(3): 129-139, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37092795

RESUMO

Evodol is one of the furanoids isolated from the fruits of Evodia rutaecarpa that has been widely prescribed for the treatment of gastrointestinal diseases in China. The aim of this study was to investigate the inhibitory effect of evodol on CYP3A.A 30-min preincubation of evodol with human liver microsomes raised an obvious left IC50 shift, 3.9-fold for midazolam 1'-hydroxylation and 3.2-fold for testosterone 6ß-hydroxylation. Evodol inactivated CYP3A in a time-, concentration- and NADPH-dependent manner, with KI and kinact of 5.1 µM and 0.028 min-1 for midazolam 1'-hydroxylation and 3.0 µM and 0.022 min-1 for testosterone 6ß-hydroxylation.Co-incubation of ketoconazole attenuated the inactivation while the inclusion of glutathione (GSH) and catalase/superoxide dismutase displayed no such protection.cis-Butene-1, 4-dial (BDA) intermediate derived from evodol were trapped by glutathione and N-acetyl-lysine in microsomes and characterised by HR-MS spectra. The BDA intermediate was believed to play a key role in CYP3A inactivation. CYP3A4 and 2C9 were the primary enzymes contributing to the bioactivation of evodol.To sum up, for the first time evodol was characterised as a mechanism-based inactivator of CYP3A.


Assuntos
Citocromo P-450 CYP3A , Midazolam , Humanos , Midazolam/farmacologia , Microssomos Hepáticos , Cetoconazol/farmacologia , Testosterona
18.
Arch Toxicol ; 97(3): 849-863, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36653537

RESUMO

Exposure to endocrine-disrupting chemicals (EDCs) during development may cause reproductive disorders in women. Although female reproductive endpoints are assessed in rodent toxicity studies, a concern is that typical endpoints are not sensitive enough to detect chemicals of concern to human health. If so, measured endpoints must be improved or new biomarkers of effects included. Herein, we have characterized the dynamic transcriptional landscape of developing rat ovaries exposed to two well-known EDCs, diethylstilbestrol (DES) and ketoconazole (KTZ), by 3' RNA sequencing. Rats were orally exposed from day 7 of gestation until birth, and from postnatal day 1 until days 6, 14 or 22. Three exposure doses for each chemical were used: 3, 6 and 12 µg/kg bw/day of DES; 3, 6, 12 mg/kg bw/day of KTZ. The transcriptome changed dynamically during perinatal development in control ovaries, with 1137 differentially expressed genes (DEGs) partitioned into 3 broad expression patterns. A cross-species deconvolution strategy based on a mouse ovary developmental cell atlas was used to map any changes to ovarian cellularity across the perinatal period to allow for characterization of actual changes to gene transcript levels. A total of 184 DEGs were observed across dose groups and developmental stages in DES-exposed ovaries, and 111 DEGs in KTZ-exposed ovaries across dose groups and developmental stages. Based on our analyses, we have identified new candidate biomarkers for female reproductive toxicity induced by EDC, including Kcne2, Calb2 and Insl3.


Assuntos
Disruptores Endócrinos , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Humanos , Gravidez , Camundongos , Feminino , Ratos , Animais , Dietilestilbestrol/toxicidade , Ovário , Disruptores Endócrinos/toxicidade , Cetoconazol , Reprodução , Canais de Potássio de Abertura Dependente da Tensão da Membrana/farmacologia
19.
Mycopathologia ; 188(1-2): 119-127, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36449121

RESUMO

Otomycosis is a common mycotic infection of the external auditory canal, and Aspergillus species are one of the most frequent causative agents worldwide. The limited antifungal arsenal, the high toxicity and side effects of antifungal agents, and the growing resistance to the currently available antifungals underscore the need for new therapeutic strategies. The present study aimed to evaluate the combined in vitro efficacy of terbinafine and ketoconazole against Aspergillus species with terbinafine high MIC values isolated from patients with otomycosis.84 Aspergillus species with high MIC values to terbinafine (≥ 4 µg/ml), consisting of A. flavus, A. tubingensis, A. niger, and A. terreus, were included in this study. The checkerboard microdilution method evaluated the in vitro interactions using the CLSI reference technique. Synergistic effects were observed for 66.67% (56/84) of all isolates (FICI ranging from 0.19 to 0.5). However, the interactions of terbinafine and ketoconazole exhibited indifference in 33.33% (28/84) of the isolates, and no antagonism was observed for any combination. The interaction of terbinafine and ketoconazole showed synergistic activity against Aspergillus species with high MIC values, suggesting that this is an alternative and promising approach for treating otomycosis.


Assuntos
Cetoconazol , Otomicose , Humanos , Terbinafina/farmacologia , Cetoconazol/farmacologia , Otomicose/tratamento farmacológico , Otomicose/microbiologia , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Aspergillus
20.
Mycopathologia ; 188(1-2): 21-34, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36495417

RESUMO

Malassezia pachydermatis is part of the normal skin microbiota of various animal species but under certain circumstances becomes an opportunistic pathogen producing otitis and dermatitis. Commonly these Malassezia diseases are effectively treated using azoles. However, some cases of treatment failure have been reported. Alterations in the ERG11 gene have been associated with in vitro azole resistance in M. pachydermatis. In the present study, in vitro antifungal susceptibility of 89 different strains of M. pachydermatis isolated from different animal species and health status was studied. The susceptibility to fluconazole (FLZ), itraconazole (ITZ), ketoconazole and amphotericin B was tested by a disk diffusion method and 17 strains were also subjected to an ITZ E-test. Mueller-Hinton supplemented with 2% glucose and methylene blue was used as culture medium in both susceptibility assays. Multilocus sequence typing was performed in 30 selected strains using D1D2, ITS, CHS2 and ß-tubulin genes. Also, ERG11 gene was sequenced. The four antifungals tested were highly effective against most of the strains. Only two strains showed no inhibition zone to antifungals and a strain showed an increased MIC to ITZ. The study of the ERG11 sequences revealed a high diversity of DNA sequences and a total of 23 amino acid substitutions, from which only two have been previously described. Also, three deleterious substitutions (A302T, G459D and G461D) previously associated with azole resistance in this yeast were recovered. A correlation between certain genotypes and ERG11 mutations was observed. Some of the ERG11 mutations recovered were correlated with a reduced susceptibility to azoles.


Assuntos
Antifúngicos , Malassezia , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Azóis/farmacologia , Malassezia/genética , Cetoconazol/farmacologia , Itraconazol/farmacologia , Testes de Sensibilidade Microbiana , Farmacorresistência Fúngica/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa