Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mikrochim Acta ; 186(12): 759, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31712934

RESUMO

A (glycidyl methacrylate)-co-(ethylene glycol dimethacrylate) polymer (poly(GMA-co-EDMA)) was functionalized with metal-organic frameworks (MOF) and used as a sorbent for solid-phase extraction (SPE). The polymeric sorbent was prepared in-situ by photopolymerization in a previously wall-modified spin column, and then modified with an amino-modified MOF of type NH2-MIL-101(Cr). The sorbents were used for the extraction of nonsteroidal anti-inflammatory drugs (NSAIDs) from human urine samples. The sorbent was compared with the parent monolith and embedded approach, where the MOF particles are admixed in the polymerization mixture before the in-situ polymerization in the modified spin column. SPE is performed by percolating the sample solutions in a centrifuge, which streamlines the SPE steps. The hybrid composites were characterized by scanning electron microscopy and nitrogen intrusion porosimetry. Three NSAIDs (ketoprofen, flurbiprofen, and ibuprofen) were tested. They were eluted from the sorbent with acidified water-acetonitrile mixtures and subsequently analyzed by reversed-phase HPLC with UV detection. The detection limits varied in the range from 0.1 to 7 µg·L-1, and the precisions (relative standard deviation) were <14% in all the cases. The recoveries were between 71.0 and 78.0% in spiked urine samples. Graphical abstractA hybrid monolith modified with amino-modified MOF [named NH2-MIL-101(Cr)] in wall-modified spin columns was prepared. The resulting micro-extraction device was applied to the extraction and preconcentration of non-steroidal anti-inflammatory drugs.


Assuntos
Anti-Inflamatórios não Esteroides/isolamento & purificação , Flurbiprofeno/isolamento & purificação , Ibuprofeno/isolamento & purificação , Cetoprofeno/isolamento & purificação , Estruturas Metalorgânicas/química , Microextração em Fase Sólida/métodos , Adsorção , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/urina , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Flurbiprofeno/química , Flurbiprofeno/urina , Humanos , Ibuprofeno/química , Ibuprofeno/urina , Cetoprofeno/química , Cetoprofeno/urina , Limite de Detecção , Metilmetacrilatos/química
2.
Anal Bioanal Chem ; 409(4): 1135-1144, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27866254

RESUMO

A two-dimensional achiral-chiral LC-LC method in heart-cut mode for ketoprofen and its enantiomeric fraction determination was proposed. A C8 column was used in the first dimension, and the chiral column was an α1-acid glycoprotein. The mobile phase of the chiral system was optimized by a factorial design. The effect of temperature on retention and on enantiomeric resolution was studied. Particular attention was paid to mobile phase compatibility for the two columns and to transferring time, using ketoprofen standards. The R-(-) and S-(+)-ketoprofen retention times were 9 and 11 min, respectively; the resolution was higher than 1.1 and enantiomeric fraction close to 0.5. The method was applied to capsules and gels containing ketoprofen. Factorial design was also used to establish the best conditions for gel sample preparation. Recoveries were 84 and 105 % for capsules and gels, respectively. Graphical abstract Two-dimensional chromatogram for KPF and its enantiomers.


Assuntos
Anti-Inflamatórios não Esteroides/isolamento & purificação , Cromatografia Líquida/métodos , Cetoprofeno/isolamento & purificação , Padrões de Referência , Estereoisomerismo , Temperatura
3.
Electrophoresis ; 37(2): 274-81, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26530782

RESUMO

This study describes a method to determine nonsteroidal anti-inflammatory drugs (NSAIDs) in urine samples based on the use of single-drop microextraction (SDME) in a three-phase design as a preconcentration technique coupled in-line to capillary electrophoresis. Different parameters affecting the extraction efficiency of the SDME process were evaluated (e.g. type of extractant, volume of the microdroplet, and extraction time). The developed method was successfully applied to the analysis of human urine samples with LODs ranging between 1.0 and 2.5 µg/mL for all of the NSAIDs under study. This method shows RSD values ranging from 8.5 to 15.3% in interday analysis. The enrichment factors were calculated, resulting 27-fold for ketoprofen, 14-fold for diclofenac, 12-fold for ibuprofen, and 44-fold naproxen. Samples were analyzed applying the SDME-CE method and the obtained results presented satisfactory recovery values (82-115%). The overall method can be considered a promising approach for the analysis of NSAIDs in urine samples after minimal sample pretreatment.


Assuntos
Anti-Inflamatórios não Esteroides/urina , Eletroforese Capilar/instrumentação , Microextração em Fase Líquida/instrumentação , Adulto , Anti-Inflamatórios não Esteroides/isolamento & purificação , Diclofenaco/isolamento & purificação , Diclofenaco/urina , Desenho de Equipamento , Humanos , Ibuprofeno/isolamento & purificação , Ibuprofeno/urina , Cetoprofeno/isolamento & purificação , Cetoprofeno/urina , Limite de Detecção , Naproxeno/isolamento & purificação , Naproxeno/urina , Urinálise/instrumentação
4.
Anal Bioanal Chem ; 407(10): 2811-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25682297

RESUMO

The new sample preparation concept "Parallel artificial liquid membrane extraction (PALME)" was evaluated for extraction of the acidic drugs ketoprofen, fenoprofen, diclofenac, flurbiprofen, ibuprofen, and gemfibrozil from human plasma samples. Plasma samples (250 µL) were loaded into individual wells in a 96-well donor plate and diluted with HCl to protonate the acidic drugs. The acidic drugs were extracted as protonated species from the individual plasma samples, through corresponding artificial liquid membranes each comprising 2 µL of dihexyl ether, and into corresponding acceptor solutions each comprising 50 µL of 25 mM ammonia solution (pH 10). The liquid membranes and the acceptor solutions were located in a 96-well filter plate, which was sandwiched with the 96-well donor plate during extraction. Parallel extraction of several samples was performed for 15 to 60 min, followed by high-performance liquid chromatography-ultraviolet detection of the individual acceptor solutions. Important PALME parameters including the chemical composition of the liquid membrane, extraction time, and sample pH were optimized, and the extraction performance was evaluated. Except for flurbiprofen, exhaustive extraction was accomplished from plasma. Linearity was obtained for all six drugs in the range 0.025-10 µg/mL, with r (2) values ranging between 0.998 and 1.000. Precision data were in the range 3-22% RSD, and accuracy data were within 72-130% with spiked plasma samples. Based on the current experiences, PALME showed substantial potential for future high-throughput bioanalysis of non-polar acidic drugs.


Assuntos
Extração Líquido-Líquido/métodos , Membranas Artificiais , Preparações Farmacêuticas/isolamento & purificação , Calibragem , Cromatografia Líquida de Alta Pressão , Diclofenaco/química , Diclofenaco/isolamento & purificação , Desenho de Equipamento , Flurbiprofeno/química , Flurbiprofeno/isolamento & purificação , Genfibrozila/química , Genfibrozila/isolamento & purificação , Humanos , Concentração de Íons de Hidrogênio , Ibuprofeno/química , Ibuprofeno/isolamento & purificação , Cetoprofeno/química , Cetoprofeno/isolamento & purificação , Extração Líquido-Líquido/instrumentação , Preparações Farmacêuticas/química , Polipropilenos/química , Polivinil/química
5.
Anal Chem ; 86(2): 1277-81, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24380495

RESUMO

Homochiral metal-organic frameworks with fine-tuned pore sizes/walls and large surface areas are promising porous materials for enantioseparation considering the traditional zeolite molecular sieves have no chirality. Using enantiopure pyridyl-functionalized salen [(N-(4-Pyridylmethyl)-L-leucine·HBr)] as a starting material, we have prepared a noninterpenetrated three-dimensional homochiral metal organic framework {[ZnLBr]·H2O}n, which was further used as a chiral stationary phase for high-performance liquid chromatography to enantioseparate racemic drugs, showing excellent performances in enantioseparation of drugs. The metal-organic framework can be regarded as a novel molecular sieve-like material with a chiral separation function based on the relative sizes of the chiral channels and the resolved molecules.


Assuntos
Benzoína/isolamento & purificação , Álcoois Benzílicos/isolamento & purificação , Cromatografia Líquida de Alta Pressão/instrumentação , Complexos de Coordenação/química , Ibuprofeno/isolamento & purificação , Cetoprofeno/isolamento & purificação , Naproxeno/isolamento & purificação , Cromatografia Líquida de Alta Pressão/métodos , Complexos de Coordenação/síntese química , Etilenodiaminas/química , Porosidade , Piridinas/química , Estereoisomerismo , Zinco/química
6.
Environ Sci Technol ; 48(22): 13197-206, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25353977

RESUMO

Adsorption of three selected pharmaceuticals and personal care products (PPCPs) (ketoprofen (KEP), carbamazepine (CBZ), and bisphenol A (BPA)) by two reduced graphene oxides (rGO1 and rGO2) and one commercial graphene was examined under different solution conditions. Single-walled carbon nanotubes (SWCNTs), multiwalled carbon nanotubes (MWCNTs), and powdered graphite were also investigated for comparison. All adsorption isotherms followed the order of SWCNTs > rGO1 > rGO2 > MWCNTs > graphene > graphite, consistent with the orders of their surface areas and micropore volumes. After surface area normalization, adsorption affinities of the three PPCPs onto graphenes were lower than onto graphite, suggesting incomplete occupation for adsorption sites because of the aggregation of graphene sheets and the presence of oxygen-containing functional groups. The observed pH effects on adsorption correlated well with the pH-regulated distribution of the protonated neutral species of the three PPCPs. Increasing ionic strength from 0 to 20 mM increased KEP adsorption due to the electrostatic screening by Na(+) and Ca(2+). Both humic acid (HA) and sodium dodecylbenzenesulfonate (SDBS) suppressed PPCPs adsorption to all adsorbents, but their impacts onto graphenes were lower than those onto CNTs because of their lower adsorption by graphenes. More severe HA (or SDBS) effect was found on negatively charged KEP at the tested solution pH 6.50 due to the electrostatic repulsion between the same charged KEP and HA (or SDBS). The findings of the present study may have significant implications for the environmental fate assessment of PPCPs and graphene.


Assuntos
Grafite/química , Produtos Domésticos/análise , Nanotubos de Carbono/química , Preparações Farmacêuticas/isolamento & purificação , Adsorção , Benzenossulfonatos/química , Compostos Benzidrílicos/isolamento & purificação , Carbamazepina/isolamento & purificação , Substâncias Húmicas/análise , Concentração de Íons de Hidrogênio , Cetoprofeno/isolamento & purificação , Concentração Osmolar , Oxirredução , Fenóis/isolamento & purificação , Soluções , Espectrofotometria Ultravioleta , Temperatura , Difração de Raios X
7.
J Sep Sci ; 37(19): 2696-703, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25044910

RESUMO

With the present contribution, we demonstrate that the baseline separation of ketoprofen enantiomers can be successfully achieved (α = 1.09; R(S) = 1.60) in the reversed-phase mode of elution with a commercially available anion-exchange-based chiral stationary phase, incorporating the quinine 2,6-diisopropylphenyl carbamate derivative as the enantioresolving unit. Focused modification of the eluent composition indicated a stereoselective role of hydrophobic and π-π interactions between the selector and selectand units, besides the prime ionic intermolecular interaction. The mechanistic hypotheses based on the chromatographic data were confirmed by in silico molecular dynamic simulations, which allowed us to establish the network of selector-selectand interactions underlying the stereorecognition process at a molecular level. The validated method was successfully used to evaluate the drug content and release profile of ketoprofen-loaded polymeric film, showing drug homogeneous distribution into the film and no preferential interactions between the polymer and one of the enantiomers, with the racemate released at each time point.


Assuntos
Alcaloides de Cinchona/química , Cetoprofeno/química , Cetoprofeno/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Simulação de Dinâmica Molecular , Estrutura Molecular , Estereoisomerismo
8.
Chirality ; 25(2): 79-88, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23255364

RESUMO

The enantiomers of ketoprofen were separated by capillary electrophoresis using the (2,3,6-tri-O-methyl)-derivatives of α-, ß-, and γ-cyclodextrin (CyD) as chiral selectors. The affinity pattern of the ketoprofen enantiomers toward these CyDs changed depending on their cavity size. Thus, with hexakis (2,3,6-tri-O-methyl)-α-CyD and heptakis (2,3,6-tri-O-methyl)-ß-CyD, the R enantiomer of the drug migrated first, whereas the enantiomer migration order was reversed in the presence of octakis(2,3,6-tri-O-methyl)-γ-CyD. The change in the migration order was rationalized on the basis of changes in the structure of the complexes between the ketoprofen enantiomers and the chiral selectors as derived from nuclear magnetic resonance spectroscopy experiments.


Assuntos
Ciclodextrinas/química , Eletroforese Capilar/métodos , Cetoprofeno/química , Cetoprofeno/isolamento & purificação , Espectroscopia de Ressonância Magnética , Metilação , Modelos Moleculares , Conformação Molecular , Estereoisomerismo , alfa-Ciclodextrinas/química , beta-Ciclodextrinas/química , gama-Ciclodextrinas/química
9.
Anal Bioanal Chem ; 403(9): 2583-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22555679

RESUMO

A stir membrane liquid phase microextraction procedure working under the three-phase mode is proposed for the first time for the determination of six anti-inflammatory drugs in human urine. The target compounds are isolated and preconcentrated using a special device that integrates the extractant and the stirring element. An alkaline aqueous solution is used as extractant phase while 1-octanol is selected as supported liquid membrane solvent. After the extraction, all the analytes are determined by liquid chromatography (LC) with ultraviolet detection (UV). The analytical method is optimized considering the main involved variables (e.g., pH of donor and acceptor phases, extraction time, stirring rate) and the results indicate that the determination of anti-inflammatory drugs at therapeutic and toxic levels is completely feasible. The limits of detection are in the range from 12.6 (indomethacin) to 30.7 µg/L (naproxen). The repeatability of the method, expressed as relative standard deviation (RSD, n = 5) varies between 3.4% (flurbiprofen) and 5.7% (ketoprofen), while the enrichment factors are in the range from 35.0 (naproxen) to 72.5 (indomethacin).


Assuntos
Anti-Inflamatórios não Esteroides/isolamento & purificação , Anti-Inflamatórios não Esteroides/urina , Cromatografia Líquida/métodos , Microextração em Fase Líquida/métodos , Flurbiprofeno/isolamento & purificação , Flurbiprofeno/urina , Humanos , Indometacina/isolamento & purificação , Indometacina/urina , Cetoprofeno/isolamento & purificação , Cetoprofeno/urina , Limite de Detecção , Naproxeno/isolamento & purificação , Naproxeno/urina
10.
Environ Sci Pollut Res Int ; 29(2): 2122-2135, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34363168

RESUMO

This study used the bark of the forest species Campomanesia guazumifolia modified with H2SO4 to absorb the anti-inflammatory ketoprofen from aqueous solutions. FTIR spectra confirmed that the main bands remained after the chemical treatment, with the appearance of two new bands related to the elongation of the carbonyl group present in hemicellulose. Micrographs confirmed that the surface started to contain a new textural shape after acid activation, having new pores and cavities. The drug adsorption's optimum conditions were obtained by response surface methodology (RSM). The adsorption was favored at acidic pH (2). The dosage of 1 g L-1 was considered ideal, obtaining good indications of removal and capacity. The Elovich model very well represented the kinetic curves. The isotherm studies indicated that the increase in temperature negatively affected the adsorption of ketoprofen. A maximum adsorption capacity of 158.3 mg g-1 was obtained at the lower temperature of 298 K. Langmuir was the best-fit isotherm. Thermodynamic parameters confirmed the exothermic nature of the system (ΔH0 = -8.78 kJ mol-1). In treating a simulated effluent containing different drugs and salts, the removal values were 35, 50, and 80% at 15, 30, and 180 min, respectively. Therefore, the development of adsorbent from the bark of Campomanesia guazumifolia treated with H2SO4 represents a remarkable alternative for use in effluent treatment containing ketoprofen.


Assuntos
Cetoprofeno , Myrtaceae/química , Casca de Planta , Poluentes Químicos da Água , Adsorção , Sulfeto de Hidrogênio , Concentração de Íons de Hidrogênio , Cetoprofeno/isolamento & purificação , Cinética , Casca de Planta/química , Soluções , Termodinâmica , Poluentes Químicos da Água/isolamento & purificação
11.
Environ Technol ; 33(15-16): 1719-27, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22439557

RESUMO

The adsorption of two acidic pharmaceutically active compounds (PhACs), clofibric acid and ketoprofen, onto powdered activated carbon (PAC) was investigated with a particular focus on the influence of natural organic matter (NOM) on the adsorption of the PhACs. Suwannee River humic acids (SRHAs) were used as a substitute for NOM. Batch adsorption experiments were conducted to obtain adsorption kinetics and adsorption isotherms with and without SRHAs in the system. The adsorption isotherms and adsorption kinetics showed that the adsorption ofclofibric acid was not significantly affected by the presence of SRHAs at a concentration of 5 mg (as carbon) L(-1). An adsorption capacity of 70 to 140 mg g(-1) was observed and equilibrium was reached within 48 h. In contrast, the adsorption of ketoprofen was markedly decreased (from about 120 mg g(-1) to 70-100 mg g(-1)) in the presence of SRHAs. Higher initial concentrations of clofibric acid than ketoprofen during testing may explain the different behaviours that were observed. Also, the more hydrophobic ketoprofen molecules may have less affinity for PAC when humic acids (which are hydrophilic) are present. The possible intermolecular forces that could account for the different behaviour of clofibric acid and ketoprofen adsorption onto PAC are discussed. In particular, the relevance of electrostatic forces, electron donor-acceptor interaction, hydrogen bonding and London dispersion forces are discussed


Assuntos
Anticolesterolemiantes/isolamento & purificação , Ácido Clofíbrico/isolamento & purificação , Inibidores de Ciclo-Oxigenase/isolamento & purificação , Cetoprofeno/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Carvão Vegetal/química , Substâncias Húmicas , Cinética , Modelos Químicos , Termodinâmica
12.
Bull Environ Contam Toxicol ; 87(1): 31-5, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21562834

RESUMO

The fate of pharmaceuticals in a wastewater treatment plant (WWTP) in Kumamoto, Japan with activated sludge treatment is reported. Selected pharmaceuticals were detected in influent. Results from the present study confirmed that Acetaminophen, Amoxicillin, Ampicillin and Famotidine were removed at a high rate (>90% efficiency). In contrast, removal efficiency of Ketoprofen, Losartan, Oseltamivir, Carbamazepine, and Diclofenac was relatively low (<50%). The selected pharmaceuticals were also detected in raw sludge. In digestive process, Indomethacin, Atenolol, Famotidine, Trimethoprim and Cyclofosamide were removed at a high (>70% efficiency). On the other hand, removal of Carbamazepine, Ketoprofen and Diclofenac was not efficient (<50%).


Assuntos
Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Acetaminofen/isolamento & purificação , Amoxicilina/isolamento & purificação , Ampicilina/isolamento & purificação , Carbamazepina/isolamento & purificação , Cromatografia Líquida , Diclofenaco/isolamento & purificação , Famotidina/isolamento & purificação , Japão , Cetoprofeno/isolamento & purificação , Losartan/isolamento & purificação , Espectrometria de Massas , Oseltamivir/isolamento & purificação , Esgotos/química , Trimetoprima/isolamento & purificação
13.
Talanta ; 207: 120284, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31594616

RESUMO

Magnetic carbon nanotubes (CNTs) with encapsulated Co nanoparticles (Co@CNTs), was synthesized by exploiting the one-step pyrolysis strategy using ZIF-67 as template. The as-synthesized Co@CNTs is provided with the nanopores, a large specific surface area, and strong magnetic response. The obtained Co@CNTs was used as magnetic solid-phase extraction adsorbents to extract two profens including flurbiprofen and ketoprofen. The parameters of extraction efficiency, involving extraction time, sample solution volume, ionic strength, pH and the conditions of desorption efficiency, were optimized in detail. After determined by high-performance liquid chromatography-ultraviolet (HPLC-UV), the results evinced that Co@CNTs showed a high extraction efficiency with high enrichment factors of 832 and 672. The good linear range of both flurbiprofen and ketoprofen were all 5.0-1000 ng L-1, with the limit of detection were 0.60 ng L-1 and 0.70 ng L-1, respectively. Furthermore, a valid method for the extraction of flurbiprofen and ketoprofen from human serum was established. The spiking recoveries of two profens were between 86.74% and 97.22%, and the relative standard deviation was less than 6.55%. Co@CNTs can be repeatedly used at least 10 times, indicating its excellent regeneration and reusability. The results demonstrated that the Co@CNTs materials exhibits high enrichment ability and extraction efficiency, playing great promise in MSPE.


Assuntos
Flurbiprofeno/isolamento & purificação , Cetoprofeno/isolamento & purificação , Imãs/química , Nanotubos de Carbono/química , Compostos Organometálicos/química , Extração em Fase Sólida/métodos , Adsorção , Cobalto/química , Flurbiprofeno/sangue , Flurbiprofeno/química , Humanos , Imidazóis/química , Cetoprofeno/sangue , Cetoprofeno/química , Nanopartículas Metálicas/química
14.
J Sep Sci ; 32(10): 1696-703, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19370733

RESUMO

Some racemic nonsteroidal anti-inflammatory drugs, namely naproxen, indoprofen, ketoprofen, flurbiprofen, carprofen, cicloprofen, flunoxaprofen and suprofen were separated into their enantiomers by nano-LC. Chiral recognition was achieved adding to the mobile phase heptakis (2,3,6-tri-O-methyl)-beta-cyclodextrin (TM-beta-CD). Capillary columns of 100 microm id, packed with different RP particles were used for experiments. Effect of experimental parameters such as mobile phase composition, stationary phase type and length of packed capillary column on retention factor and chiral resolution of analytes were studied. The stationary phase type played a very important role in the enantiorecognition process. Best results in terms of highest enantioresolution factor and largest number of separated enantiomers were obtained reducing the particles size to 3 microm with RP(18) stationary phase. Most favourable mobile phase for enantiodiscrimination was obtained using relatively low concentrations of ACN (30%, v/v), 30 mM of TM-beta-CD and pH value of 3.0. The retention time of all studied enantiomers decreased by increasing the CD derivative concentration. The retention factors of selected studied compounds, specifically flurbiprofen, naproxen and suprofen, were measured employing TM-beta-CD concentrations in the range 0-40 mM. Assuming a 1:1 enantiomer/CD ratio, the apparent association constants of the studied enantiomers were calculated.


Assuntos
Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação , Cromatografia Líquida/métodos , Nanotecnologia/métodos , beta-Ciclodextrinas/química , Benzoxazóis/química , Benzoxazóis/isolamento & purificação , Carbazóis/química , Carbazóis/isolamento & purificação , Cromatografia Líquida/instrumentação , Flurbiprofeno/química , Flurbiprofeno/isolamento & purificação , Concentração de Íons de Hidrogênio , Indoprofen/química , Indoprofen/isolamento & purificação , Cetoprofeno/química , Cetoprofeno/isolamento & purificação , Metilação , Estrutura Molecular , Nanotecnologia/instrumentação , Naproxeno/química , Naproxeno/isolamento & purificação , Propionatos/química , Propionatos/isolamento & purificação , Estereoisomerismo , Suprofeno/química , Suprofeno/isolamento & purificação , Fatores de Tempo
15.
Talanta ; 199: 290-295, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30952260

RESUMO

A chitosan membrane composed by 60% (w/w) chitosan and 40% (w/w) Aliquat®336 has been proposed as a new biopolymeric support for electromembrane extraction. The new support has been characterized by Scanning Electron Microscopy, resulting a 30-35 µm thickness. Amoxicillin, nicotinic acid, hippuric acid, salicylic acid, anthranilic acid, ketoprofen, naproxen and ibuprofen have been successfully extracted using the proposed support. Better enrichment factors were obtained for the acidic polar analytes than for the non-steroidal anti-inflammatory compounds (ranging from 118 for hippuric acid and 20 for ibuprofen). Electromembrane extraction was developed applying a DC voltage of 100 V, 1-octanol as supported liquid membrane and 20 min of extraction. The target analytes have also been satisfactorily extracted from human urine samples, providing high extraction efficiencies. The chitosan membrane is presented as a promising alternative for supporting liquid membrane compared to commonly used materials for this purpose.


Assuntos
Biopolímeros/química , Quitosana , Técnicas Eletroquímicas , Amoxicilina/química , Amoxicilina/isolamento & purificação , Hipuratos/química , Hipuratos/isolamento & purificação , Humanos , Ibuprofeno/química , Ibuprofeno/isolamento & purificação , Cetoprofeno/química , Cetoprofeno/isolamento & purificação , Naproxeno/química , Naproxeno/isolamento & purificação , Niacina/química , Niacina/isolamento & purificação , Ácido Salicílico/química , Ácido Salicílico/isolamento & purificação , ortoaminobenzoatos/química , ortoaminobenzoatos/isolamento & purificação
16.
J Sep Sci ; 31(13): 2476-85, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18646277

RESUMO

An enzymatic membrane reactor (EMR) for enantioseparation of (R,S)-ketoprofen via Candida antarctica lipase B (CALB) as biocatalyst was investigated. A comparative study of free and immobilized CALB was further conducted. The catalytic behaviour of CALB in an EMR was affected by the process parameters of enzyme load, substrate concentration, substrate molar ratio, lipase solution pH, reaction temperature, and substrate flow rate. Immobilization of CALB in the EMR was able to reduce the amount of enzyme required for the enantioseparation of (R,S)-ketoprofen. Immobilized CALB in the EMR assured higher reaction capacity, better thermal stability, and reusability. It was also found to be more cost effective and practical than free CALB in a batch reactor.


Assuntos
Técnicas de Química Analítica/métodos , Cetoprofeno/isolamento & purificação , Lipase , 1-Butanol , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação , Candida/enzimologia , Engenharia Química , Enzimas Imobilizadas , Esterificação , Proteínas Fúngicas , Concentração de Íons de Hidrogênio , Cetoprofeno/química , Estereoisomerismo , Temperatura
17.
J Sep Sci ; 31(16-17): 2962-70, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18704995

RESUMO

This study is about the preparation of an open tubular capillary column of molecularly imprinted polymer (MIP) and its application to chiral separation by microLC. A non-covalent in-situ molecular imprinting polymerization protocol was used to synthesize the S-ketoprofen MIP. A special procedure was employed to secure formation of an open tubular and rigid MIP layer in a silica capillary of 100 microm id. The capillary was filled with the reaction mixture, sealed, and placed in a water bath at 50 degrees C for 3 h. Then it was flushed with a 0.5 MPa nitrogen flow for 5 min, and was again placed in the water bath for 2 h to complete MIP formation. Methacrylic acid (MAA) has been known to be an inefficient functional monomer in preparation of MIP of an acid molecule. However, MAA was used with ethylene glycol dimethacrylate in preparation of the S-ketoprofen MIP in this study. The open tubular structure and the microLC mode of separation enabled free optimization without any restriction, thus a very good resolution (R=4.7) of ketoprofen enantiomers was achieved when a mobile phase composed of 30% acetonitrile and 70% acetate buffer at pH 4.5 was used with 5 mbar inlet pressure. This may be partially attributed to the open tubular structure of our MIP, enabling low column back-pressure and free optimization of eluent composition, as well as to the small capillary dimensions. Our MIP capillary column also showed some versatility in chiral separation, thus a good chiral separation was observed for naproxen, ibuprofen, and fenoprofen enantiomers.


Assuntos
Cetoprofeno/isolamento & purificação , Impressão Molecular , Polímeros/química , Cromatografia Líquida/instrumentação , Cromatografia Líquida/métodos , Cetoprofeno/química , Metacrilatos/química , Tamanho da Partícula , Polímeros/síntese química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Dióxido de Silício/química , Estereoisomerismo , Propriedades de Superfície , Fatores de Tempo
18.
Water Sci Technol ; 58(5): 1129-35, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18824814

RESUMO

Removal property of nine pharmaceuticals (clofibric acid, diclofenac, fenoprofen, gemfibrozil, ibuprofen, indomethacin, ketoprofen, naproxen and propyphenazone) by chlorination, coagulation-sedimentation and powdered activated carbon treatment was examined by laboratory-scale experiments under the conditions close to actual drinking water treatment processes. Indomethacin and propyphenazone were completely degraded by chlorination within 30 minutes, but others remained around 30% (naproxen and diclofenac) or more than 80% of the initial concentration after 24 hours. A couple of unidentified peaks in a chromatogram of the chlorinated samples suggested the formation of unknown chlorination by-products. Competitive adsorption was observed when the mixed solution of the target pharmaceuticals was subjected to batch adsorption test with powdered activated carbon. Clofibric acid and ibuprofen, which were relatively less hydrophobic among the nine compounds, persisted around 60% of the initial concentration after 3 hours of contact time. Removal performance in actual drinking water treatment would become lower due to existence of other competitive substances in raw water (e.g. natural organic matter). Coagulation-sedimentation using polyaluminium chloride hardly removed most of the pharmaceuticals even under its optimal dose for turbidity removal. It is suggested that the most part of pharmaceuticals in raw water might persist in the course of conventional drinking water treatments.


Assuntos
Carvão Vegetal/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Antipirina/análogos & derivados , Antipirina/química , Antipirina/isolamento & purificação , Ácido Clofíbrico/química , Ácido Clofíbrico/isolamento & purificação , Diclofenaco/química , Diclofenaco/isolamento & purificação , Fenoprofeno/química , Fenoprofeno/isolamento & purificação , Genfibrozila/química , Genfibrozila/isolamento & purificação , Halogenação , Ibuprofeno/química , Ibuprofeno/isolamento & purificação , Indometacina/química , Indometacina/isolamento & purificação , Cetoprofeno/química , Cetoprofeno/isolamento & purificação , Naproxeno/química , Naproxeno/isolamento & purificação , Poluentes Químicos da Água/química , Abastecimento de Água/análise
19.
J Chromatogr A ; 1531: 131-142, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29174135

RESUMO

Gradient operation of a simulated moving bed (SMB) can improve the separation and purification performance by adjusting adsorption strength in each individual zone according to its functional role. The feasibility of an internal temperature gradient (ITG) established by a difference between feed and desorbent temperatures for binary separation of ketoprofen enantiomers was investigated based on simultaneous optimization of purity and productivity of S-ketoprofen, the preferentially adsorbed species and desired product. ITG operation with a temperature difference of 20K has a unit productivity higher than isothermal mode by about 20%. Due to the combined effects of temperature transition and downstream dilution, concentration profile may exhibit a remarkable peak and a pattern of two-step drop in the temperature descending and ascending areas, respectively. Both areas, if properly located under optimal conditions, are favorable for unit productivity, which cannot be predicted by the direct use of triangle theory and average Henry's constants. Modifications of the SMB operations to reduce solvent consumption were also discussed based on analyses of parametric sensitivity and internal concentration profiles.


Assuntos
Cetoprofeno/isolamento & purificação , Cetoprofeno/química , Modelos Teóricos , Solventes/química , Estereoisomerismo , Temperatura
20.
Talanta ; 179: 601-607, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29310282

RESUMO

The use of polymer inclusion membranes (PIMs) as support of 1-octanol liquid membrane in electromembrane extraction (EME) procedure is proposed. Synthesis of PIMs were optimized to a composition of 29% (w/w) of cellulose triacetate as base polymer and 71% (w/w) of Aliquat®336 as cationic carrier. Flat PIMs of 25µm thickness and 6mm diameter were used. EME protocol was implemented for the simultaneous extraction of four non-steroidal anti-inflammatory drugs (NSAIDs) (salicylic acid, ketoprofen, naproxen and ibuprofen) and four highly polar acidic drugs (anthranilic acid, nicotinic acid, amoxicillin and hippuric acid). Posterior HPLC separation of the extracted analytes was developed with diode array detection. Recoveries in the 81-34% range were obtained. EME procedure was applied to human urine samples.


Assuntos
Anti-Inflamatórios não Esteroides/isolamento & purificação , Celulose/análogos & derivados , Técnicas Eletroquímicas , Compostos de Amônio Quaternário/química , Amoxicilina/isolamento & purificação , Amoxicilina/urina , Anti-Inflamatórios não Esteroides/urina , Celulose/química , Hipuratos/isolamento & purificação , Hipuratos/urina , Ibuprofeno/isolamento & purificação , Ibuprofeno/urina , Cetoprofeno/isolamento & purificação , Cetoprofeno/urina , Membranas Artificiais , Naproxeno/isolamento & purificação , Naproxeno/urina , Niacina/isolamento & purificação , Niacina/urina , Ácido Salicílico/isolamento & purificação , Ácido Salicílico/urina , ortoaminobenzoatos/isolamento & purificação , ortoaminobenzoatos/urina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa