Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 300(6): 107346, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718859

RESUMO

Lethal neurodegenerative prion diseases result from the continuous accumulation of infectious and variably protease-resistant prion protein aggregates (PrPD) which are misfolded forms of the normally detergent soluble and protease-sensitive cellular prion protein. Molecular chaperones like Grp78 have been found to reduce the accumulation of PrPD, but how different cellular environments and other chaperones influence the ability of Grp78 to modify PrPD is poorly understood. In this work, we investigated how pH and protease-mediated structural changes in PrPD from two mouse-adapted scrapie prion strains, 22L and 87V, influenced processing by Grp78 in the presence or absence of chaperones Hsp90, DnaJC1, and Stip1. We developed a cell-free in vitro system to monitor chaperone-mediated structural changes to, and disaggregation of, PrPD. For both strains, Grp78 was most effective at structurally altering PrPD at low pH, especially when additional chaperones were present. While Grp78, DnaJC1, Stip1, and Hsp90 were unable to disaggregate the majority of PrPD from either strain, pretreatment of PrPD with proteases increased disaggregation of 22L PrPD compared to 87V, indicating strain-specific differences in aggregate structure were impacting chaperone activity. Hsp90 also induced structural changes in 87V PrPD as indicated by an increase in the susceptibility of its n-terminus to proteases. Our data suggest that, while chaperones like Grp78, DnaJC1, Stip1, and Hsp90 disaggregate only a small fraction of PrPD, they may still facilitate its clearance by altering aggregate structure and sensitizing PrPD to proteases in a strain and pH-dependent manner.


Assuntos
Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico , Chaperonas Moleculares , Chaperona BiP do Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático/genética , Animais , Concentração de Íons de Hidrogênio , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Camundongos , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/química , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/química , Agregados Proteicos
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167348, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38986817

RESUMO

Hereditary Spastic Paraplegia (HSP) is a group of rare inherited disorders characterized by progressive weakness and spasticity of the legs. Recent newly discovered biallelic variants in the gene FICD were found in patients with a highly similar phenotype to early onset HSP. FICD encodes filamentation induced by cAMP domain protein. FICD is involved in the AMPylation and deAMPylation protein modifications of the endoplasmic reticulum (ER) chaperone BIP, a major constituent of the ER that regulates the unfolded protein response. Although several biochemical properties of FICD have been characterized, the neurological function of FICD and the pathological mechanism underlying HSP are unknown. We established a Drosophila model to gain mechanistic understanding of the function of FICD in HSP pathogenesis, and specifically the role of BIP in neuromuscular physiology. Our studies on Drosophila Fic null mutants uncovered that loss of Fic resulted in locomotor impairment and reduced levels of BIP in the motor neuron circuitry, as well as increased reactive oxygen species (ROS) in the ventral nerve cord of Fic null mutants. Finally, feeding Drosophila Fic null mutants with chemical chaperones PBA or TUDCA, or treatment of patient fibroblasts with PBA, reduced the ROS accumulation. The neuronal phenotypes of Fic null mutants recapitulate several clinical features of HSP patients and further reveal cellular patho-mechanisms. By modeling FICD in Drosophila, we provide potential targets for intervention for HSP, and advance fundamental biology that is important for understanding related rare and common neuromuscular diseases.


Assuntos
Modelos Animais de Doenças , Proteínas de Drosophila , Paraplegia Espástica Hereditária , Animais , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo , Paraplegia Espástica Hereditária/patologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Humanos , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Espécies Reativas de Oxigênio/metabolismo , Chaperona BiP do Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático/genética , Drosophila
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa