RESUMO
Scar tissue size following myocardial infarction is an independent predictor of cardiovascular outcomes, yet little is known about factors regulating scar size. We demonstrate that collagen V, a minor constituent of heart scars, regulates the size of heart scars after ischemic injury. Depletion of collagen V led to a paradoxical increase in post-infarction scar size with worsening of heart function. A systems genetics approach across 100 in-bred strains of mice demonstrated that collagen V is a critical driver of postinjury heart function. We show that collagen V deficiency alters the mechanical properties of scar tissue, and altered reciprocal feedback between matrix and cells induces expression of mechanosensitive integrins that drive fibroblast activation and increase scar size. Cilengitide, an inhibitor of specific integrins, rescues the phenotype of increased post-injury scarring in collagen-V-deficient mice. These observations demonstrate that collagen V regulates scar size in an integrin-dependent manner.
Assuntos
Cicatriz/metabolismo , Colágeno Tipo V/deficiência , Colágeno Tipo V/metabolismo , Traumatismos Cardíacos/metabolismo , Contração Miocárdica/genética , Miofibroblastos/metabolismo , Animais , Cicatriz/genética , Cicatriz/fisiopatologia , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Colágeno Tipo V/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Feminino , Fibrose/genética , Fibrose/metabolismo , Regulação da Expressão Gênica/genética , Integrinas/antagonistas & inibidores , Integrinas/genética , Integrinas/metabolismo , Isoproterenol/farmacologia , Masculino , Mecanotransdução Celular/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Força Atômica/instrumentação , Microscopia Eletrônica de Transmissão , Contração Miocárdica/efeitos dos fármacos , Miofibroblastos/citologia , Miofibroblastos/patologia , Miofibroblastos/ultraestrutura , Análise de Componente Principal , Proteômica , RNA-Seq , Análise de Célula ÚnicaRESUMO
BACKGROUND AND AIMS: Liver-associated complications still frequently lead to mortality in people with HIV (PWH), even though combined antiretroviral treatment (cART) has significantly improved overall survival. The quantification of circulating collagen fragments released during collagen formation and degradation correlate with the turnover of extracellular matrix (ECM) in liver disease. Here, we analysed the levels of ECM turnover markers PC3X, PRO-C5, and PRO-C6 in PWH and correlated these with hepatic fibrosis and steatosis. METHODS: This monocentre, retrospective study included 141 PWH. Liver stiffness and liver fat content were determined using transient elastography (Fibroscan) with integrated CAP function. Serum levels of formation of cross-linked type III collagen (PC3X), formation of type V collagen (PRO-C5) and formation type VI collagen (PRO-C6), also known as the hormone endotrophin, were measured with ELISA. RESULTS: Twenty-five (17.7%) of 141 PWH had clinical significant fibrosis with liver stiffness ≥ 7.1 kPa, and 62 PWH (44.0%) had steatosis with a CAP value > 238 dB/m. Study participants with fibrosis were older (p = 0.004) and had higher levels of AST (p = 0.037) and lower number of thrombocytes compared to individuals without fibrosis (p = 0.0001). PC3X and PRO-C6 were markedly elevated in PWH with fibrosis. Multivariable cox regression analysis confirmed PC3X as independently associated with hepatic fibrosis. PRO-C5 was significantly elevated in participants with presence of hepatic steatosis. CONCLUSION: Serological levels of cross-linked type III collagen formation and endotrophin were significantly associated with liver fibrosis in PWH receiving cART and thus may be suitable as a non-invasive evaluation of liver fibrosis in HIV disease.
Assuntos
Colágeno Tipo III , Colágeno Tipo VI , Colágeno Tipo V , Fígado Gorduroso , Infecções por HIV , Cirrose Hepática , Humanos , Biomarcadores/sangue , Biomarcadores/metabolismo , Colágeno Tipo III/sangue , Colágeno Tipo III/metabolismo , Colágeno Tipo VI/sangue , Colágeno Tipo VI/metabolismo , Fígado Gorduroso/sangue , Fígado Gorduroso/complicações , Fígado Gorduroso/diagnóstico por imagem , Fígado Gorduroso/metabolismo , Infecções por HIV/sangue , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Infecções por HIV/metabolismo , Fígado/diagnóstico por imagem , Fígado/metabolismo , Cirrose Hepática/sangue , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Estudos Retrospectivos , Matriz Extracelular/metabolismo , Terapia Antirretroviral de Alta Atividade , Colágeno Tipo V/sangue , Colágeno Tipo V/metabolismo , Pró-Colágeno/sangue , Pró-Colágeno/metabolismoRESUMO
Long noncoding RNAs (lncRNAs) are known to participate in the progression of several cancers, including esophageal carcinoma (EC), a common malignancy of the digestive system. Although the role of the lncRNA-miRNA-mRNA regulatory network is crucial for the growth and progression of EC, the regulation of lncRNA BBOX1-AS1 (BBOX1 antisense RNA1) remains unclear. We performed reverse transcription-quantitative PCR (RT-qPCR) and western blotting to evaluate miR-361-3p, collagen type V alpha 1 chain (COL5A1), and BBOX1-AS1 expression levels in EC cells and tissues. The colony formation assay (CFA) and Cell Counting Kit-8 (CCK-8) were employed to identify EC cell proliferation, while western blotting was used to examine EC cell apoptosis and Bax and Bcl-2 expression levels. The effect of BBOX1-AS1 on EC proliferation was determined using an in vivo carcinogenesis assay. Correlation between COL5A1, BBOX1-AS1, and miR-361-3p was examined using the luciferase reporter system and RNA immunoprecipitation assay (RIP). Herein, we observed that BBOX1-AS1 expression levels were upregulated in EC cells and tissues. BBOX1-AS1 knockdown inhibited EC cell proliferation and conferred a pro-apoptotic effect. These results indicated a positive interaction between BBOX1-AS1 and miR-361-3p in EC and a negative association with miR-361-3p. COL5A1 was recognized as a downstream miR-361-3p target and was inversely related to miR-361-3p in EC. Therefore, BBOX1-AS1 expression suppressed cell apoptosis and promoted cell proliferation via the downregulation of miR-361-3p and upregulation of COL5A1 expression. Overall, BBOX1-AS1 facilitates EC progression via the miR-361-3p or COL5A1 axis, indicating that BBOX1-AS1 might be a potential therapeutic target for EC therapy.
Assuntos
Carcinoma , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Colágeno/metabolismo , Carcinoma/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Colágeno Tipo V/genética , Colágeno Tipo V/metabolismoRESUMO
Gastric cancer is a type of digestive tract cancer with a high morbidity and mortality, which leads to a major health burden worldwide. More research into the functions of the immune system will improve therapy and survival in gastric cancer patients. We attempted to identify potential biomarkers or targets in gastric cancer via bioinformatical analysis approaches. Three gene expression profile datasets (GSE79973, GSE103236, and GSE118916) of gastric tissue samples were obtained from the Gene Expression Omnibus database. There were 65 overlapping differentially expressed genes (DEGs) identified from three microarrays. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway were carried out for the key functions and pathways enriched in the DEGs. Then, ten hub genes were identified by protein-protein interaction network. In addition, we observed that collagen type V alpha 2 (COL5A2) was linked to gastric cancer prognosis as well as M2 macrophage infiltration. Furthermore, COL5A2 enhanced gastric cancer cell proliferation through the PI3K-AKT signaling pathway and polarized M2 macrophage cells. Therefore, in this study, we found that COL5A2 was associated with the development of gastric cancer which might function as a potential therapeutic target for the disease.
Assuntos
Colágeno Tipo V , Perfilação da Expressão Gênica , Neoplasias Gástricas , Humanos , Biomarcadores Tumorais/genética , Colágeno Tipo V/genética , Colágeno Tipo V/metabolismo , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Macrófagos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Gástricas/genéticaRESUMO
Collagen is the most abundant protein in humans. It has a characteristic triple-helix structure and is heavily posttranslationally modified. The complex biosynthesis of collagen involves processing by many enzymes and chaperones in the rough endoplasmic reticulum. Lysyl hydroxylase 1 (LH1) is required to hydroxylate lysine for cross-linking and carbohydrate attachment within collagen triple helical sequences. Additionally, a recent study of prolyl 3-hydroxylase 3 (P3H3) demonstrated that this enzyme may be critical for LH1 activity; however, the details surrounding its involvement remain unclear. If P3H3 is an LH1 chaperone that is critical for LH1 activity, P3H3 and LH1 null mice should display a similar deficiency in lysyl hydroxylation. To test this hypothesis, we compared the amount and location of hydroxylysine in the triple helical domains of type V and I collagen from P3H3 null, LH1 null, and wild-type mice. The amount of hydroxylysine in type V collagen was reduced in P3H3 null mice, but surprisingly type V collagen from LH1 null mice contained as much hydroxylysine as type V collagen from wild-type mice. In type I collagen, our results indicate that LH1 plays a global enzymatic role in lysyl hydroxylation. P3H3 is also involved in lysyl hydroxylation, particularly at cross-link formation sites, but is not required for all lysyl hydroxylation sites. In summary, our study suggests that LH1 and P3H3 likely have two distinct mechanisms to recognize different collagen types and to distinguish cross-link formation sites from other sites in type I collagen.
Assuntos
Colágeno Tipo I/metabolismo , Colágeno Tipo V/metabolismo , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Animais , Colágeno/genética , Colágeno/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo V/genética , Retículo Endoplasmático Rugoso/metabolismo , Hidroxilação , Hidroxilisina/metabolismo , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pró-Colágeno-Prolina Dioxigenase/genética , Conformação Proteica , Processamento de Proteína Pós-Traducional/genéticaRESUMO
Ovarian cancer (OC) remains the leading cause of cancer-related death among gynecological cancers. The present study examined the role of collagen type V alpha 1 (COL5A1) and the characteristics of COL5A1 as an oncogenic protein in OC. The association of COL5A1 with paclitaxel (PTX)-resistance and stemness in OC was also studied and the multidatabase and big data analyses of the prognostic value, coexpression network, genetic alterations, and tumor-infiltrating immune cells of COL5A1 were elucidated. We found that COL5A1 expression was high in OC cells and tissues. Knockdown of COL5A1 inhibited the proliferation and migration of OC cells. Further study also showed that COL5A1 was overexpressed in PTX-resistant OC cells compared to respective PTX-sensitive cells. Additionally, COL5A1 was more enriched in OC stem cell-like cells. Silencing COL5A1 expression decreased the OC cell resistance to PTX and inhibited the ability of OC-spheroid formation. Survival analysis predicted that the elevated COL5A1 expression was associated with a worse survival outcome and correlated to the tumor stage of OC patients. The estimating relative subsets of RNA transcripts (CIBERSORT) algorithm analysis also unveiled the correlation of several tumor-infiltrating immune cells with the expression of COL5A1. Taken together, our data demonstrate that COL5A1 is a biomarker to predict OC progression and PTX-resistance and represents a promising target for OC treatment.
Assuntos
Antineoplásicos/farmacologia , Colágeno Tipo V/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Neoplasias Ovarianas/metabolismo , Paclitaxel/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colágeno Tipo V/genética , Bases de Dados Genéticas , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Linfócitos do Interstício Tumoral/metabolismo , Invasividade Neoplásica , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia , Microambiente Tumoral , Regulação para CimaRESUMO
Keloids are characterized by fibroblast activation and altered architecture of extracellular matrix (ECM). Excessive deposition of ECM molecules and irregular organization of collagen fibers have been observed in keloids. However, the ultrastructural alteration of collagen has not been fully investigated. In this study, the differences in tissue structure, collagen ultrastructure, matrix components, mechanical properties and collagen assembling molecules between keloids and their extra-lesional skins (ELSs) were explored using histology, transmission electron microscope (TEM), qPCR, Western blot, immunohistochemistry and bioinformatics. Histological evaluation showed thinner fibers in keloids with increased contents of collagen III and proteoglycans, which were supported by TEM findings of thinner collagen fibrils and less developed D-band periodicity in keloids than in ELSs (p < 0.05). In addition, total collagen and water contents were significantly increased (p < 0.05) along with richer proteoglycan production in keloids vs ELSs, which also led to increased stiffness and decreased maximal load in keloids compared with ELSs. Mechanism study showed that multiple molecules related to matrix assembly were significantly upregulated in keloids (p < 0.05). In particular, lumican and collagen V showed high degrees in co-expression analysis and their upregulation levels were revealed from microarray data, which were also verified in keloids at both gene and protein levels (p < 0.05). Nevertheless, siRNA knockdown of lumican failed to affect in vitro collagen assembly, but caused upregulated collagen V expression along with the upregulation of focal adhesion kinase, TGF-ß1, TGF-ß3 and PDGF, among which some are known for capable of enhancing collagen V expression. In conclusion, this study demonstrates impaired collagen assembly along with enhanced expression of lumican and collagen V, both are known for interfering with collagen fibril assembly.
Assuntos
Colágeno Tipo V/genética , Colágeno Tipo V/metabolismo , Regulação da Expressão Gênica , Queloide/genética , Queloide/metabolismo , Lumicana/genética , Adulto , Colágeno Tipo V/química , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
OBJECTIVE: Arteriogenesis, describing the process of collateral artery growth, is activated by fluid shear stress (FSS). Since this vascular mechanotransduction may involve microRNAs (miRNAs), we investigated the FSS-induced expression of vascular cell miRNAs and their functional impact on collateral artery growth during arteriogenesis. Approach and Results: To this end, rats underwent femoral artery ligation and arteriovenous anastomosis to increase collateral blood flow to maximize FSS and trigger collateral vessel remodeling. Five days after surgery, a miRNA expression profile was obtained from collateral tissue, and upregulation of 4 miRNAs (miR-24-3p, miR-143-3p, miR-146a-5p, and miR-195-5p) was verified by quantitative polymerase chain reaction. Knockdown of miRNAs at the same time of the surgery in an in vivo mouse ligation and recovery model demonstrated that inhibition of miR-143-3p only severely impaired blood flow recovery due to decreased arteriogenesis. In situ hybridization revealed distinct localization of miR-143-3p in the vessel wall of growing collateral arteries predominantly in smooth muscle cells. To investigate the mechanotransduction of FSS leading to the increased miR-143-3p expression, cultured endothelial cells were exposed to FSS. This provoked the expression and release of TGF-ß (transforming growth factor-ß), which increased the expression of miR-143-3p in smooth muscle cells in the presence of SRF (serum response factor) and myocardin. COL5A2 (collagen type V-α2)-a target gene of miR-143-3p predicted by in silico analysis-was found to be downregulated in growing collaterals. CONCLUSIONS: These results indicate that the increased miR-143-3p expression in response to FSS might contribute to the reorganization of the extracellular matrix, which is important for vascular remodeling processes, by inhibiting collagen V-α2 biosynthesis.
Assuntos
Colágeno Tipo V/metabolismo , Circulação Colateral , Artéria Femoral/cirurgia , Mecanotransdução Celular , MicroRNAs/metabolismo , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica , Animais , Derivação Arteriovenosa Cirúrgica , Velocidade do Fluxo Sanguíneo , Células Cultivadas , Colágeno Tipo V/genética , Artéria Femoral/metabolismo , Artéria Femoral/fisiopatologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Ligadura , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Miócitos de Músculo Liso/metabolismo , Ratos Sprague-Dawley , Fluxo Sanguíneo Regional , Estresse MecânicoRESUMO
Exosomes isolated from plasma of lung transplant recipients with allograft injury contain donor-derived lung self-antigens (collagen V and Kα1 tubulin) and human leukocyte antigen (HLA) molecules. We present a case of a 76-year-old, female lung transplant recipient treated for acute cellular rejection with methylprednisolone and anti-thymocyte globulin, who subsequently contracted SARS-CoV-2 and developed a sharp increase in the mean fluorescent intensity of anti-HLA antibodies. Analysis of circulating exosomes during rejection, but before SARS-CoV-2 infection, revealed the presence of lung self-antigens and HLA class II molecules. After the patient contracted SARS-CoV-2, exosomes with the SARS-CoV-2 spike protein were also found. After resolution of infectious symptoms, exosomes with SARS-CoV-2 spike protein were no longer detected; however, exosomes with lung self-antigens and HLA class II molecules persisted, which coincided with a progressive decline in spirometric flows, suggesting chronic lung allograft dysfunction. We propose that the analysis of circulating exosomes may be used to detect allograft injury mediated by both rejection and infection. Furthermore, the detection of exosomes containing viral proteins may be helpful in identifying allograft injury driven by viral pathogens.
Assuntos
COVID-19/metabolismo , Exossomos/metabolismo , Rejeição de Enxerto/tratamento farmacológico , Antígenos de Histocompatibilidade Classe II/metabolismo , Imunossupressores/efeitos adversos , Transplante de Pulmão , Glicoproteína da Espícula de Coronavírus/metabolismo , Idoso , Soro Antilinfocitário/uso terapêutico , Autoantígenos/imunologia , Autoantígenos/metabolismo , Bronquiolite Obliterante , COVID-19/imunologia , Colágeno Tipo V/imunologia , Colágeno Tipo V/metabolismo , Progressão da Doença , Feminino , Glucocorticoides/efeitos adversos , Glucocorticoides/uso terapêutico , Antígenos HLA/imunologia , Antígenos HLA/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Imunossupressores/uso terapêutico , Metilprednisolona/efeitos adversos , Metilprednisolona/uso terapêutico , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Tubulina (Proteína)/imunologia , Tubulina (Proteína)/metabolismoRESUMO
The mammary gland structurally and functionally remodels during pregnancy, during lactation and after weaning. There are three types of fibrillar collagens, types I, III, and V, in mammary stromal tissue. While the importance of the fibrillar structure of collagens for mammary morphogenesis has been suggested, the expression patterns of each type of fibrillar collagen in conjunction with mammary remodeling remain unclear. In this study, we investigated their expression patterns during pregnancy, parturition, lactation and involution. Type I collagen showed a well-developed fibril structure during pregnancy, but the fibrillar structure of type I collagen then became sparse at parturition and during lactation, which was concurrent with the downregulation of its mRNA and protein levels. The well-developed fibrillar structure of type I collagen reappeared after weaning. On the other hand, type V collagen showed a well-developed fibrillar structure and upregulation in the lactation period but not in the periods of pregnancy and involution. Type III collagen transiently developed a dense fibrillar network at the time of parturition and exhibited drastic increases in mRNA expression. These results indicate that each type of fibrillar collagen is distinctly involved in structural and functional remodeling in mammary glands during pregnancy, parturition, lactation, and involution after weaning. Furthermore, in vitro studies of mammary epithelial cells showed regulatory effects of type I collagen on cell adhesion, cell proliferation, ductal branching, and ß-casein secretion. Each type of fibrillar collagen may have different roles in defining the cellular microenvironment in conjunction with structural and functional mammary gland remodeling.
Assuntos
Células Epiteliais/metabolismo , Lactação/fisiologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Parto/fisiologia , Animais , Adesão Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Colágeno Tipo I/análise , Colágeno Tipo I/metabolismo , Colágeno Tipo III/análise , Colágeno Tipo III/metabolismo , Colágeno Tipo V/análise , Colágeno Tipo V/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Camundongos , Modelos Animais , Gravidez , Cultura Primária de Células , DesmameRESUMO
The replacement of normal endometrial epithelium by fibrotic tissue is the pathological feature of intrauterine adhesion (IUA), which is caused by trauma to the basal layer of the endometrium. COL5A2 is a molecular subtype of collagen V that regulates collagen production in fibrotic tissue. Here, we investigated the roles of Foxf2 and Smad6 in regulating the transcription of COL5A2 and their involvement in the pathogenesis of IUA. Small interference-mediated Foxf2 (si-Foxf2) silencing and pcDNA3.1-mediated Smad6 (pcDNA3.1-Smad6) up-regulation were performed in a TGF-ß1-induced human endometrial stromal cell line (HESC) fibrosis model. Assessment of collagen expression by Western blotting, immunofluorescence and qRT-PCR showed that COL5A2, COL1A1 and FN were significantly down-regulated in response to si-Foxf2 and pcDNA3.1-Smad6. Transfection of lentivirus vector-Foxf2 (LV-Foxf2) and pcDNA3.1-Smad6 into HESCs and qRT-PCR showed that Foxf2 promoted COL5A2 expression and Smad6 inhibited Foxf2-induced COL5A2 expression. Co-immunoprecipitation, chromatin immunoprecipitation and dual-luciferase reporter assays to detect the interaction between Foxf2 and Smad6 and their role in COL5A2 transcription showed that Foxf2 interacted with Smad6 and bond the same promoter region of COL5A2. In a rat IUA model, injection of ADV2-Foxf2-1810 and ADV4-Smad6 into the uterine wall showed that Foxf2 down-regulation and Smad6 up-regulation decreased fibrosis and the expression of COL5A2 and COL1A1, as detected by haematoxylin/eosin, Masson trichrome staining and immunohistochemistry. Taken together, these results suggested that Foxf2 interacted with Smad6 and co-regulated COL5A2 transcription in the pathogenesis of IUA, whereas they played opposite roles in fibrosis.
Assuntos
Colágeno Tipo V/genética , Fatores de Transcrição Forkhead/metabolismo , Proteína Smad6/metabolismo , Aderências Teciduais/genética , Doenças Uterinas/genética , Animais , Ciclo Celular/genética , Linhagem Celular , Proliferação de Células/genética , Colágeno Tipo V/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/genética , Endométrio/metabolismo , Endométrio/patologia , Feminino , Fibrose , Fatores de Transcrição Forkhead/genética , Humanos , Ratos Sprague-Dawley , Proteína Smad6/genética , Células Estromais/metabolismo , Aderências Teciduais/patologia , Transcrição Gênica , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima/genética , Doenças Uterinas/patologiaRESUMO
Chronic hypoxia (CH)-induced pulmonary hypertension (PH) results, in part, from T helper-17 (TH17) cell-mediated perivascular inflammation. However, the antigen(s) involved is unknown. Cellular immunity to collagen type V (col V) develops after ischemia-reperfusion injury during lung transplant and is mediated by naturally occurring (n)TH17 cells. Col5a1 gene codifies for the α1-helix of col V, which is normally hidden from the immune system within type I collagen in the extracellular matrix. COL5A1 promoter analysis revealed nuclear factor of activated T cells, cytoplasmic 3 (NFATc3) binding sites. Therefore, we hypothesized that smooth muscle NFATc3 upregulates col V expression, leading to nTH17 cell-mediated autoimmunity to col V in response to CH, representing an upstream mechanism in PH development. To test our hypothesis, we measured indexes of PH in inducible smooth muscle cell (SMC)-specific NFATc3 knockout (KO) mice exposed to either CH (380 mmHg) or normoxia and compared them with wild-type (WT) mice. KO mice did not develop PH. In addition, COL5A1 was one of the 1,792 genes differentially affected by both CH and SMC NFATc3 in isolated intrapulmonary arteries, which was confirmed by RT-PCR and immunostaining. Cellular immunity to col V was determined using a trans vivo delayed-type hypersensitivity assay (Tv-DTH). Tv-DTH response was evident only when splenocytes were used from control mice exposed to CH but not from KO mice, and mediated by nTH17 cells. Our results suggest that SMC NFATc3 is important for CH-induced PH in adult mice, in part, by regulating the expression of the lung self-antigen COL5A1 protein contributing to col V-reactive nTH17-mediated inflammation and hypertension.
Assuntos
Colágeno Tipo V/metabolismo , Hipertensão Pulmonar/metabolismo , Miócitos de Músculo Liso/metabolismo , Fatores de Transcrição NFATC/metabolismo , Animais , Núcleo Celular/metabolismo , Imunidade Celular/fisiologia , Transplante de Pulmão/métodosRESUMO
PURPOSE: To date, heterozygous or homozygous COL12A1 variants have been reported in 13 patients presenting with a clinical phenotype overlapping with collagen VI-related myopathies and Ehlers-Danlos syndrome (EDS). The small number of reported patients limits thorough investigation of this newly identified syndrome, currently coined as myopathic EDS. METHODS: DNA from 78 genetically unresolved patients fulfilling the clinical criteria for myopathic EDS was sequenced using a next-generation panel of COL12A1, COL6A1, COL6A2, and COL6A3. RESULTS: Among this cohort, we identified four pathogenic heterozygous in-frame exon skipping (∆) defects in COL12A1, clustering to the thrombospondin N-terminal region and the adjacent collagenous domain (Δ52, Δ53, Δ54, and Δ56 respectively), one heterozygous COL12A1 arginine-to-cysteine substitution of unclear significance (p.(Arg1863Cys)), and compound heterozygous pathogenic COL6A1 variants (c.[98-6G>A];[301C>T]) in one proband. Variant-specific intracellular accumulation of collagen XII chains, extracellular overmodification of the long isoform and near-absence of the short isoform of collagen XII, and extracellular decrease of decorin and tenascin-X were observed for the COL12A1 variants. In contrast, the COL6A1 variants abolished collagen VI and V deposition and increased tenascin-X levels. CONCLUSION: Our data further support the significant clinical overlap between myopathic EDS and collagen VI-related myopathies, and emphasize the variant-specific consequences of collagen XII defects.
Assuntos
Colágeno Tipo VI/genética , Colágeno Tipo XII/genética , Síndrome de Ehlers-Danlos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Doenças Musculares/genética , Mutação , Adolescente , Adulto , Células Cultivadas , Criança , Pré-Escolar , Colágeno Tipo V/metabolismo , Colágeno Tipo VI/química , Colágeno Tipo XII/química , Decorina/metabolismo , Síndrome de Ehlers-Danlos/metabolismo , Matriz Extracelular/metabolismo , Feminino , Humanos , Masculino , Doenças Musculares/metabolismo , Linhagem , Domínios Proteicos , Análise de Sequência de DNA , Tenascina/metabolismoRESUMO
BACKGROUND: Emerging studies have shown that HOTAIR acts as an oncogene in gastric cancer (GC). However, its role in the extracellular matrix and in tumor immune infiltration remains unknown. METHODS: HOTAIR and COL5A1 levels were analyzed by bioinformatics analysis and validated by qRT-PCR, western blotting and immunohistochemistry assays. The regulatory relationships between components of the HOTAIR/miR-1277-5p/COL5A1 axis and the role of this axis in GC were predicted by bioinformatics analysis, and validated by in vitro and in vivo experiments. The correlation between COL5A1 and GC immune infiltration was assessed by bioinformatics analysis and a COL5A1-based predictive nomogram was established using the Stomach Adenocarcinoma dataset from The Cancer Genome Atlas. RESULTS: We found that HOTAIR and COL5A1 were overexpressed in GC compared to normal controls, which predicted poor prognosis. The regulatory relationship of the HOTAIR/miR-1277-5p/COL5A1 axis in GC was demonstrated, and HOTAIR and COL5A1 were found to promote GC growth while miR-1277-5p exerted the reverse effects. In addition, COL5A1 was negatively associated with tumor purity but positively associated with immune infiltration, which suggested that COL5A1-mediated GC growth may be partially mediated by the regulation of immune infiltration. Additionally, the established COL5A1-based nomogram showed that COL5A1 can serve as a prognostic biomarker in GC. CONCLUSIONS: HOTAIR regulates GC growth by sponging miR-1277-5p and upregulating COL5A1, and COL5A1-mediated GC cell proliferation may be mediated by effects on the tumor microenvironment, which provides novel targets for GC treatment.
Assuntos
Colágeno Tipo V/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas/genética , Regulação para Cima/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , Metástase Neoplásica/genética , Microambiente Tumoral/genéticaRESUMO
Obesity is a low-grade inflammatory disease that is getting increasingly common among adults and children and causes different complications. Insulin resistance, Type II diabetes, atherosclerosis, metabolic syndrome and hypertension are among the major health problems, that are associated with obesity. Some medications are used to treat obese individuals and metabolic surgery is recommended, if appropriate, for individuals with a BMI ≥ 40. Due to the fact that medications and metabolic surgery are not tolerated by all, researchers focus on alternative therapies. Medicinal plants comprise the most important group of these alternative treatments. Hypericum perforatum L. is the medicinal plant, which we focused on in this study. Hypericum perforatum L. has been recognized as a medicinally valuable plant for over 2000 years. It has been used for generations to treat anxiety, depression, insomnia, gastritis, hemorrhoids, wounds, and burns. Recent studies have indeed shown promising effects for the treatment of obesity. In this study, 3T3-L1 adipocytes were used to mimic the adipocyte differentiation associated with obesity in cellular terms. Lipoprotein lipase (Lpl), Diacylglycerol-O-acyltransferase 1 (Dgat1), Fatty acid synthase (Fasn) markers were used to study the lipid accumulation, and Collagen V (ColV) was used to study cell elasticity to investigate the relationship of the effects of the administration of Hypericum perforatum L. with obesity.
Assuntos
Diferenciação Celular/efeitos dos fármacos , Hypericum/química , Metabolismo dos Lipídeos/efeitos dos fármacos , Obesidade/tratamento farmacológico , Extratos Vegetais , Células 3T3-L1 , Animais , Colágeno Tipo V/metabolismo , Camundongos , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Plantas Medicinais/químicaRESUMO
Purpose: Maintenance of a transparent corneal stroma is imperative for proper vision. The corneal stroma is composed of primarily collagen fibrils, small leucine-rich proteoglycans (SLRPs), as well as sparsely distributed cells called keratocytes. The lattice arrangement and spacing of the collagen fibrils that allows for transparency may be disrupted due to genetic mutations and injuries. The purpose of this study is to examine the therapeutic efficacy of human umbilical cord mesenchymal stem/stromal cells (UMSCs) in treating congenital and acquired corneal opacity associated with the loss of collagen V. Methods: Experimental mice, i.e., wild-type, Col5a1f/f and Kera-Cre/Col5a1f/f (Col5a1∆st/∆st , collagen V null in the corneal stroma) mice in a C57BL/6J genetic background, were subjected to a lamellar keratectomy, and treated with or without UMSC (104 cells/cornea) transplantation via an intrastromal injection or a fibrin plug. In vivo Heidelberg retinal tomograph (HRT II) confocal microscopy, second harmonic generated (SHG) confocal microscopy, histology, and immunofluorescence microscopy were used to assess the corneal transparency of the regenerated corneas. Results: Col5a1∆st/∆st mice display a cloudy cornea phenotype that is ameliorated following intrastromal transplantation of UMSCs. Loss of collagen V in Col5a1∆st/∆st corneas augments the formation of cornea scarring following the keratectomy. UMSC transplantation with a fibrin plug improves the healing of injured corneas and regeneration of transparent corneas, as determined with in vivo HRT II confocal microscopy. Second harmonic confocal microscopy revealed the improved collagen fibril lamellar architecture in the UMSC-transplanted cornea in comparison to the control keratectomized corneas. Conclusions: UMSC transplantation was successful in recovering some corneal transparency in injured corneas of wild-type, Col5a1f/f and Col5a1∆st/∆st mice. The production of collagen V by transplanted UMSCs may account for the regeneration of corneal transparency, as exemplified by better collagen fiber organization, as revealed with SHG signals.
Assuntos
Opacidade da Córnea/congênito , Opacidade da Córnea/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Animais , Colágeno Tipo V/metabolismo , Opacidade da Córnea/patologia , Substância Própria/patologia , Colágenos Fibrilares/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Resultado do Tratamento , Cordão Umbilical/citologiaRESUMO
Extracellular matrix (ECM) molecules have multiple functions; prevention of cytotoxicity, provision of mechanical support, cell adhesive substrates and structural integrity in addition to mediation of cellular signaling. In this study, we report that the proliferation of INS-1 cells cultured on collagen I-coated dishes is enhanced, but it is inhibited on collagen V-coated dishes. Inhibitory proliferation on collagen V-coated is not due to apoptosis induction. Silibinin decreases hepatic glucose production and protects pancreatic ß-cells, as a potential medicine for type II diabetes. Silibinin up-regulates the proliferation of cells cultured on both collagen I- and V-coated dishes. Collagen-coating regulates gene expression of collagen in a collagen type-related manner. Silibinin increases mRNA expression of collagen I in the cells on collagen I- and V-coated dishes; however, silibinin decreases collagen V mRNA expression on collagen I- and V-coated dishes. Collagen I-coating significantly enhances nuclear translocation of ß-catenin, while collagen V-coating reduces it. Differential effects of silibinin on collagen I mRNA and collagen V mRNA can be accounted for by the finding that silibinin enhances nuclear translocation of ß-catenin on both collagen I- and V-coated dishes, since phenomenologically nuclear translocation of ß-catenin enhances collagen I mRNA but represses collagen V mRNA. These results demonstrate that nuclear translocation of ß-catenin up-regulates proliferation and collagen I gene expression, whereas it down-regulates collagen V gene expression of INS-1 cells. Differential gene expressions of collagen I and V by nuclear ß-catenin could be important for understanding fibrosis where collagen I and V may have differential effects.
Assuntos
Núcleo Celular/metabolismo , Colágeno Tipo I/farmacologia , Colágeno Tipo V/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Silibina/farmacologia , beta Catenina/metabolismo , Animais , Bovinos , Núcleo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo V/genética , Colágeno Tipo V/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RatosRESUMO
Classic Ehlers-Danlos syndrome (cEDS) is characterized by fragile, hyperextensible skin and hypermobile joints. cEDS can be caused by heterozygosity for missense mutations in genes COL5A2 and COL5A1, which encode the α2(V) and α1(V) chains, respectively, of collagen V, and is most often caused by COL5A1 null alleles. However, COL5A2 null alleles have yet to be associated with cEDS or other human pathologies. We previously showed that mice homozygous null for the α2(V) gene Col5a2 are early embryonic lethal, whereas haploinsufficiency caused aberrancies of adult skin, but not a frank cEDS-like phenotype, as skin hyperextensibility at low strain and dermal cauliflower-contoured collagen fibril aggregates, two cEDS hallmarks, were absent. Herein, we show that ubiquitous postnatal Col5a2 knockdown results in pathognomonic dermal cauliflower-contoured collagen fibril aggregates, but absence of skin hyperextensibility, demonstrating these cEDS hallmarks to arise separately from loss of collagen V roles in control of collagen fibril growth and nucleation events, respectively. Col5a2 knockdown also led to loss of dermal white adipose tissue (WAT) and markedly decreased abdominal WAT that was characterized by miniadipocytes and increased collagen deposition, suggesting α2(V) to be important to WAT development/maintenance. More important, Col5a2 haploinsufficiency markedly increased the incidence and severity of abdominal aortic aneurysms, and caused aortic arch ruptures and dissections, indicating that α2(V) chain deficits may play roles in these pathologies in humans.
Assuntos
Tecido Adiposo/anormalidades , Aneurisma da Aorta Torácica/genética , Colágeno Tipo V/deficiência , Colágeno/deficiência , Predisposição Genética para Doença , Anormalidades da Pele/metabolismo , Pele/patologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/patologia , Animais , Aneurisma da Aorta Torácica/patologia , Colágeno/metabolismo , Colágeno Tipo V/metabolismo , Derme/patologia , Modelos Animais de Doenças , Síndrome de Ehlers-Danlos/patologia , Colágenos Fibrilares/metabolismo , Deleção de Genes , Técnicas de Silenciamento de Genes , Integrases/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reprodutibilidade dos Testes , Pele/efeitos dos fármacos , Pele/ultraestrutura , Anormalidades da Pele/patologia , Tamoxifeno/farmacologia , Cicatrização/efeitos dos fármacosRESUMO
Collagenolysis is essential in extracellular matrix homeostasis, but its structural basis has long been shrouded in mystery. We have developed a novel docking strategy guided by paramagnetic NMR that positions a triple-helical collagen V mimic (synthesized with nitroxide spin labels) in the active site of the catalytic domain of matrix metalloproteinase-12 (MMP-12 or macrophage metalloelastase) primed for catalysis. The collagenolytically productive complex forms by utilizing seven distinct subsites that traverse the entire length of the active site. These subsites bury â¼1,080 Å(2)of surface area, over half of which is contributed by the trailing strand of the synthetic collagen V mimic, which also appears to ligate the catalytic zinc through the glycine carbonyl oxygen of its scissile Gâ¼VV triplet. Notably, the middle strand also occupies the full length of the active site where it contributes extensive interfacial contacts with five subsites. This work identifies, for the first time, the productive and specific interactions of a collagen triple helix with an MMP catalytic site. The results uniquely demonstrate that the active site of the MMPs is wide enough to accommodate two strands from collagen triple helices. Paramagnetic relaxation enhancements also reveal an extensive array of encounter complexes that form over a large part of the catalytic domain. These transient complexes could possibly facilitate the formation of collagenolytically active complexes via directional Brownian tumbling.
Assuntos
Colágeno Tipo V/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Colágeno Tipo V/química , Cristalografia por Raios X , Humanos , Espectroscopia de Ressonância Magnética , Metaloproteinase 12 da Matriz/química , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Mapas de Interação de Proteínas , Estrutura Secundária de ProteínaRESUMO
Classical Ehlers-Danlos syndrome (cEDS) is characterized by marked cutaneous involvement, according to the Villefranche nosology and its 2017 revision. However, the diagnostic flow-chart that prompts molecular testing is still based on experts' opinion rather than systematic published data. Here we report on 62 molecularly characterized cEDS patients with focus on skin, mucosal, facial, and articular manifestations. The major and minor Villefranche criteria, additional 11 mucocutaneous signs and 15 facial dysmorphic traits were ascertained and feature rates compared by sex and age. In our cohort, we did not observe any mandatory clinical sign. Skin hyperextensibility plus atrophic scars was the most frequent combination, whereas generalized joint hypermobility according to the Beighton score decreased with age. Skin was more commonly hyperextensible on elbows, neck, and knees. The sites more frequently affected by abnormal atrophic scarring were knees, face (especially forehead), pretibial area, and elbows. Facial dysmorphism commonly affected midface/orbital areas with epicanthal folds and infraorbital creases more commonly observed in young patients. Our findings suggest that the combination of ≥1 eye dysmorphism and facial/forehead scars may support the diagnosis in children. Minor acquired traits, such as molluscoid pseudotumors, subcutaneous spheroids, and signs of premature skin aging are equally useful in adults.