RESUMO
Neuroimmune interactions mediate intercellular communication and underlie critical brain functions. Microglia, CNS-resident macrophages, modulate the brain through direct physical interactions and the secretion of molecules. One such secreted factor, the complement protein C1q, contributes to complement-mediated synapse elimination in both developmental and disease models, yet brain C1q protein levels increase significantly throughout aging. Here, we report that C1q interacts with neuronal ribonucleoprotein (RNP) complexes in an age-dependent manner. Purified C1q protein undergoes RNA-dependent liquid-liquid phase separation (LLPS) in vitro, and the interaction of C1q with neuronal RNP complexes in vivo is dependent on RNA and endocytosis. Mice lacking C1q have age-specific alterations in neuronal protein synthesis in vivo and impaired fear memory extinction. Together, our findings reveal a biophysical property of C1q that underlies RNA- and age-dependent neuronal interactions and demonstrate a role of C1q in critical intracellular neuronal processes.
Assuntos
Envelhecimento , Encéfalo , Complemento C1q , Homeostase , Microglia , Neurônios , Ribonucleoproteínas , Animais , Complemento C1q/metabolismo , Camundongos , Microglia/metabolismo , Envelhecimento/metabolismo , Encéfalo/metabolismo , Ribonucleoproteínas/metabolismo , Neurônios/metabolismo , Camundongos Endogâmicos C57BL , HumanosRESUMO
RTN4-binding proteins were widely studied as "NoGo" receptors, but their physiological interactors and roles remain elusive. Similarly, BAI adhesion-GPCRs were associated with numerous activities, but their ligands and functions remain unclear. Using unbiased approaches, we observed an unexpected convergence: RTN4 receptors are high-affinity ligands for BAI adhesion-GPCRs. A single thrombospondin type 1-repeat (TSR) domain of BAIs binds to the leucine-rich repeat domain of all three RTN4-receptor isoforms with nanomolar affinity. In the 1.65 Å crystal structure of the BAI1/RTN4-receptor complex, C-mannosylation of tryptophan and O-fucosylation of threonine in the BAI TSR-domains creates a RTN4-receptor/BAI interface shaped by unusual glycoconjugates that enables high-affinity interactions. In human neurons, RTN4 receptors regulate dendritic arborization, axonal elongation, and synapse formation by differential binding to glial versus neuronal BAIs, thereby controlling neural network activity. Thus, BAI binding to RTN4/NoGo receptors represents a receptor-ligand axis that, enabled by rare post-translational modifications, controls development of synaptic circuits.
Assuntos
Inibidores da Angiogênese/metabolismo , Encéfalo/metabolismo , Neurogênese , Neurônios/metabolismo , Proteínas Nogo/metabolismo , Receptores Nogo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Adipocinas/metabolismo , Sequência de Aminoácidos , Animais , Axônios/metabolismo , Adesão Celular , Moléculas de Adesão Celular Neuronais/metabolismo , Complemento C1q/metabolismo , Dendritos/metabolismo , Glicosilação , Células HEK293 , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Ligantes , Camundongos Endogâmicos C57BL , Rede Nervosa/metabolismo , Polissacarídeos/metabolismo , Ligação Proteica , Domínios Proteicos , Deleção de Sequência , Sinapses/metabolismo , Transmissão Sináptica/fisiologiaRESUMO
Triggering receptor expressed on myeloid cells 2 (TREM2) is strongly linked to Alzheimer's disease (AD) risk, but its functions are not fully understood. Here, we found that TREM2 specifically attenuated the activation of classical complement cascade via high-affinity binding to its initiator C1q. In the human AD brains, the formation of TREM2-C1q complexes was detected, and the increased density of the complexes was associated with lower deposition of C3 but higher amounts of synaptic proteins. In mice expressing mutant human tau, Trem2 haploinsufficiency increased complement-mediated microglial engulfment of synapses and accelerated synaptic loss. Administration of a 41-amino-acid TREM2 peptide, which we identified to be responsible for TREM2 binding to C1q, rescued synaptic impairments in AD mouse models. We thus demonstrate a critical role for microglial TREM2 in restricting complement-mediated synaptic elimination during neurodegeneration, providing mechanistic insights into the protective roles of TREM2 against AD pathogenesis.
Assuntos
Doença de Alzheimer , Complemento C1q , Camundongos , Animais , Humanos , Complemento C1q/genética , Complemento C1q/metabolismo , Encéfalo/metabolismo , Sinapses/metabolismo , Ativação do Complemento , Microglia/metabolismo , Doença de Alzheimer/complicações , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismoRESUMO
Microglia maintain homeostasis in the brain, but whether aberrant microglial activation can cause neurodegeneration remains controversial. Here, we use transcriptome profiling to demonstrate that deficiency in frontotemporal dementia (FTD) gene progranulin (Grn) leads to an age-dependent, progressive upregulation of lysosomal and innate immunity genes, increased complement production, and enhanced synaptic pruning in microglia. During aging, Grn(-/-) mice show profound microglia infiltration and preferential elimination of inhibitory synapses in the ventral thalamus, which lead to hyperexcitability in the thalamocortical circuits and obsessive-compulsive disorder (OCD)-like grooming behaviors. Remarkably, deleting C1qa gene significantly reduces synaptic pruning by Grn(-/-) microglia and mitigates neurodegeneration, behavioral phenotypes, and premature mortality in Grn(-/-) mice. Together, our results uncover a previously unrecognized role of progranulin in suppressing aberrant microglia activation during aging. These results represent an important conceptual advance that complement activation and microglia-mediated synaptic pruning are major drivers, rather than consequences, of neurodegeneration caused by progranulin deficiency.
Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Ativação do Complemento , Complemento C1q/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Microglia/metabolismo , Envelhecimento/imunologia , Animais , Líquido Cefalorraquidiano , Complemento C1q/genética , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Granulinas , Humanos , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/genética , Lisossomos/metabolismo , Redes e Vias Metabólicas , Camundongos , Transtorno Obsessivo-Compulsivo/genética , Transtorno Obsessivo-Compulsivo/metabolismo , Progranulinas , Sinapses/metabolismo , Tálamo/metabolismoRESUMO
Immunoglobulin G3 (IgG3) has an uncertain role in the response to infection with and vaccination against human immunodeficiency virus (HIV). Here we describe a regulatory role for IgG3 in dampening the immune system-activating effects of chronic HIV viremia on B cells. Secreted IgG3 was bound to IgM-expressing B cells in vivo in HIV-infected chronically viremic individuals but not in early-viremic or aviremic individuals. Tissue-like memory (TLM) B cells, a population expanded by persistent HIV viremia, bound large amounts of IgG3. IgG3 induced clustering of B cell antigen receptors (BCRs) on the IgM+ B cells, which was mediated by direct interactions between soluble IgG3 and membrane IgM of the BCR (IgM-BCR). The inhibitory IgG receptor CD32b (FcγRIIb), complement component C1q and inflammatory biomarker CRP contributed to the binding of secreted IgG3 onto IgM-expressing B cells of HIV-infected individuals. Notably, IgG3-bound TLM B cells were refractory to IgM-BCR stimulation, thus demonstrating that IgG3 can regulate B cells during chronic activation of the immune system.
Assuntos
Linfócitos B/imunologia , Infecções por HIV/imunologia , HIV-1/fisiologia , Imunoglobulina G/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Adulto , Proteína C-Reativa/metabolismo , Células Cultivadas , Complemento C1q/metabolismo , Feminino , Humanos , Imunoglobulina M/metabolismo , Memória Imunológica , Imunomodulação , Masculino , Pessoa de Meia-Idade , Ligação Proteica , Agregação de Receptores , Receptores de IgG/metabolismo , Adulto JovemRESUMO
Engineered crystallizable fragment (Fc) regions of antibody domains, which assume a unique and unprecedented asymmetric structure within the homodimeric Fc polypeptide, enable completely selective binding to the complement component C1q and activation of complement via the classical pathway without any concomitant engagement of the Fcγ receptor (FcγR). We used the engineered Fc domains to demonstrate in vitro and in mouse models that for therapeutic antibodies, complement-dependent cell-mediated cytotoxicity (CDCC) and complement-dependent cell-mediated phagocytosis (CDCP) by immunological effector molecules mediated the clearance of target cells with kinetics and efficacy comparable to those of the FcγR-dependent effector functions that are much better studied, while they circumvented certain adverse reactions associated with FcγR engagement. Collectively, our data highlight the importance of CDCC and CDCP in monoclonal-antibody function and provide an experimental approach for delineating the effect of complement-dependent effector-cell engagement in various therapeutic settings.
Assuntos
Complemento C1q/imunologia , Citotoxicidade Imunológica/imunologia , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Imunoterapia , Neoplasias/tratamento farmacológico , Fagocitose/imunologia , Receptores de IgG/imunologia , Animais , Anticorpos Monoclonais , Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/imunologia , Linhagem Celular Tumoral , Cromatografia em Gel , Cromatografia Líquida , Complemento C1q/metabolismo , Cristalização , Cristalografia por Raios X , Ensaio de Imunoadsorção Enzimática , Humanos , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/metabolismo , Técnicas In Vitro , Linfoma de Células B/tratamento farmacológico , Linfoma de Células B/imunologia , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/imunologia , Espectrometria de Massas , Camundongos , Neoplasias/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Receptores de IgG/metabolismo , Ressonância de Plasmônio de Superfície , Espectrometria de Massas em TandemRESUMO
Extrahepatic, cell-autonomous, and/or intracellularly active complement components are increasingly recognized as key orchestrators of cell physiological processes. A recent study by Scott-Hewitt et al. demonstrates that microglia-derived C1q unexpectedly associates with the ribosomes of neurons in the aging murine brain, where it impacts protein translation and impairs the extinction of conditioned fear responses.
Assuntos
Complemento C1q , Neurônios , Proteostase , Animais , Complemento C1q/metabolismo , Complemento C1q/imunologia , Neurônios/metabolismo , Humanos , Camundongos , Microglia/imunologia , Microglia/metabolismo , Ribossomos/metabolismo , Encéfalo/metabolismo , Encéfalo/imunologia , Encéfalo/fisiologia , Biossíntese de Proteínas , Envelhecimento/imunologiaRESUMO
Wnt signaling plays critical roles in development of various organs and pathogenesis of many diseases, and augmented Wnt signaling has recently been implicated in mammalian aging and aging-related phenotypes. We here report that complement C1q activates canonical Wnt signaling and promotes aging-associated decline in tissue regeneration. Serum C1q concentration is increased with aging, and Wnt signaling activity is augmented during aging in the serum and in multiple tissues of wild-type mice, but not in those of C1qa-deficient mice. C1q activates canonical Wnt signaling by binding to Frizzled receptors and subsequently inducing C1s-dependent cleavage of the ectodomain of Wnt coreceptor low-density lipoprotein receptor-related protein 6. Skeletal muscle regeneration in young mice is inhibited by exogenous C1q treatment, whereas aging-associated impairment of muscle regeneration is restored by C1s inhibition or C1qa gene disruption. Our findings therefore suggest the unexpected role of complement C1q in Wnt signal transduction and modulation of mammalian aging.
Assuntos
Envelhecimento/metabolismo , Complemento C1q/metabolismo , Via de Sinalização Wnt , Animais , Complemento C1s/metabolismo , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Soro/metabolismoRESUMO
Multiple sclerosis (MS) lesions that do not resolve in the months after they form harbour ongoing demyelination and axon degeneration, and are identifiable in vivo by their paramagnetic rims on MRI scans1-3. Here, to define mechanisms underlying this disabling, progressive neurodegenerative state4-6 and foster development of new therapeutic agents, we used MRI-informed single-nucleus RNA sequencing to profile the edge of demyelinated white matter lesions at various stages of inflammation. We uncovered notable glial and immune cell diversity, especially at the chronically inflamed lesion edge. We define 'microglia inflamed in MS' (MIMS) and 'astrocytes inflamed in MS', glial phenotypes that demonstrate neurodegenerative programming. The MIMS transcriptional profile overlaps with that of microglia in other neurodegenerative diseases, suggesting that primary and secondary neurodegeneration share common mechanisms and could benefit from similar therapeutic approaches. We identify complement component 1q (C1q) as a critical mediator of MIMS activation, validated immunohistochemically in MS tissue, genetically by microglia-specific C1q ablation in mice with experimental autoimmune encephalomyelitis, and therapeutically by treating chronic experimental autoimmune encephalomyelitis with C1q blockade. C1q inhibition is a potential therapeutic avenue to address chronic white matter inflammation, which could be monitored by longitudinal assessment of its dynamic biomarker, paramagnetic rim lesions, using advanced MRI methods.
Assuntos
Astrócitos/patologia , Linfócitos/patologia , Microglia/patologia , Esclerose Múltipla/patologia , Animais , Encéfalo/patologia , Complemento C1q/antagonistas & inibidores , Complemento C1q/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Humanos , Inflamação/patologia , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico por imagem , RNA-Seq , Transcriptoma , Substância Branca/patologiaRESUMO
Complement pathways, traditionally regarded as separate entities in vitro, are increasingly noted for cross-communication and bypass mechanisms. Among these, the MBL/ficolin/CL-associated serine protease (MASP)-3, a component of lectin pathway pattern recognition molecules, has shown the ability to process critical substrates such as pro-factor D and insulin growth factor binding protein-5. Given shared features between lectin pathway pattern recognition molecules and C1q from the classical pathway, we hypothesized that C1q might be a viable in vivo binding partner for the MASPs. We used microscale thermophoresis, ELISA, and immunoprecipitation assays to detect C1q/MASP complexes and functionally assessed the complexes through enzymatic cleavage assays. C1q/MASP-3 complexes were detected in human serum and correlated well with MASP-3 serum levels in healthy individuals. The binding affinity between MASP-3 and C1q in vitro was in the nanomolar range, and the interaction was calcium-dependent, as demonstrated by their dissociation in the presence of EDTA. Furthermore, most of the circulating C1q-bound MASP-3 was activated. Based on immunoprecipitation, also C1q/MASP-2 complexes appeared to be present in serum. Finally, C1q/MASP-2 and C1q/MASP-3 in vitro complexes were able to cleave C4 and pro-factor D, respectively. Our study reveals the existence of C1q/MASP complexes in the circulation of healthy individuals, and both C1q/MASP-2 and C1q/MASP-3 complexes display proteolytic activity. Hence, this study uncovers a crosstalk route between complement pathways not previously described.
Assuntos
Complemento C1q , Lectina de Ligação a Manose da Via do Complemento , Serina Proteases Associadas a Proteína de Ligação a Manose , Ligação Proteica , Humanos , Complemento C1q/metabolismo , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Via Clássica do Complemento , Masculino , FemininoRESUMO
For many years complement activation in systemic lupus erythematosus (SLE) was viewed as a major cause of tissue injury. However, human and murine studies showed that complement plays a protective as well as a proinflammatory role in tissue damage. A hierarchy is apparent with early classical pathway components, particularly C1q, exerting the greatest influence. Understanding the mechanisms underlying the protective function(s) of complement remains an important challenge for the future and has implications for the use of complement therapy in SLE. We review recent advances in the field and give a new perspective on the complement conundrum in SLE.
Assuntos
Ativação do Complemento , Proteínas do Sistema Complemento , Lúpus Eritematoso Sistêmico , Lúpus Eritematoso Sistêmico/imunologia , Humanos , Animais , Ativação do Complemento/imunologia , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Complemento C1q/imunologia , Complemento C1q/metabolismo , Camundongos , Via Clássica do Complemento/imunologiaRESUMO
The clearance of apoptotic cells is critical for the control of tissue homeostasis; however, the full range of receptors on phagocytes responsible for the recognition of apoptotic cells remains to be identified. Here we found that dendritic cells (DCs), macrophages and endothelial cells used the scavenger receptor SCARF1 to recognize and engulf apoptotic cells via the complement component C1q. Loss of SCARF1 impaired the uptake of apoptotic cells. Consequently, in SCARF1-deficient mice, dying cells accumulated in tissues, which led to a lupus-like disease, with the spontaneous generation of autoantibodies to DNA-containing antigens, activation of cells of the immune system, dermatitis and nephritis. The discovery of such interactions of SCARF1 with C1q and apoptotic cells provides insight into the molecular mechanisms involved in the maintenance of tolerance and prevention of autoimmune disease.
Assuntos
Apoptose/genética , Apoptose/imunologia , Autoimunidade/genética , Receptores Depuradores Classe F/genética , Receptores Depuradores Classe F/imunologia , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Complemento C1q/química , Complemento C1q/imunologia , Complemento C1q/metabolismo , Feminino , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Knockout , Nefrite/genética , Nefrite/imunologia , Nefrite/patologia , Fagocitose/genética , Fagocitose/imunologia , Fosforilação , Ligação Proteica , Receptores Depuradores Classe F/metabolismo , Serina/metabolismoRESUMO
Immunoglobulin G (IgG) molecules that bind antigens on the membrane of target cells spontaneously form hexameric rings, thus recruiting C1 to initiate the complement pathway. However, our previous report indicated that a mouse IgG mutant lacking the Cγ1 domain activates the pathway independently of antigen presence through its monomeric interaction with C1q via the CL domain, as well as Fc. In this study, we investigated the potential interaction between C1q and human CL isoforms. Quantitative single-molecule observations using high-speed atomic force microscopy revealed that human Cκ exhibited comparable C1q binding capabilities with its mouse counterpart, surpassing the Cλ types, which have a higher isoelectric point than the Cκ domains. Nuclear magnetic resonance and mutation experiments indicated that the human and mouse Cκ domains share a common primary binding site for C1q, centred on Glu194, a residue conserved in the Cκ domains but absent in the Cλ domains. Additionally, the Cγ1 domain, with its high isoelectric point, can cause electrostatic repulsion to the C1q head and impede the C1q-interaction adjustability of the Cκ domain in Fab. The removal of the Cγ1 domain is considered to eliminate these factors and thus promote Cκ interaction with C1q with the potential risk of uncontrolled activation of the complement pathway in vivo in the absence of antigen. However, this research underscores the presence of potential subsites in Fab for C1q binding, offering promising targets for antibody engineering to refine therapeutic antibody design.
Assuntos
Complemento C1q , Humanos , Animais , Complemento C1q/imunologia , Complemento C1q/metabolismo , Complemento C1q/química , Camundongos , Sítios de Ligação , Ligação Proteica , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Imunoglobulina G/químicaRESUMO
Activation of the complement system represents an important effector mechanism of endogenous and therapeutic Abs. However, efficient complement activation is restricted to a subset of Abs due to the requirement of multivalent interactions between the Ab Fc regions and the C1 complex. In the present study, we demonstrate that Fc-independent recruitment of C1 by modular bispecific single-domain Abs that simultaneously bind C1q and a surface Ag can potently activate the complement system. Using Ags from hematological and solid tumors, we show that these bispecific Abs are cytotoxic to human tumor cell lines that express the Ag and that the modular design allows a functional exchange of the targeting moiety. Direct comparison with clinically approved Abs demonstrates a superior ability of the bispecific Abs to induce complement-dependent cytotoxicity. The efficacy of the bispecific Abs to activate complement strongly depends on the epitope of the C1q binding Ab, demonstrating that the spatial orientation of the C1 complex upon Ag engagement is a critical factor for efficient complement activation. Collectively, our data provide insight into the mechanism of complement activation and provide a new platform for the development of immunotherapies.
Assuntos
Antineoplásicos , Complemento C1q , Humanos , Complemento C1q/metabolismo , Proteínas do Sistema Complemento , Ativação do Complemento , Linhagem Celular TumoralRESUMO
The classical complement system represents a central effector mechanism of Abs initiated by the binding of C1q to target bound IgG. Human C1q contains six heterotrimeric globular head groups that mediate IgG interaction, resulting in an avidity-driven binding event involving multiple IgG molecules binding a single C1q. Accordingly, surface bound IgG molecules are thought to assemble into noncovalent hexameric rings for optimal binding to the six-headed C1q. To study the C1q-Fc interaction of various Abs and screen for altered C1q binding mutants, we developed, to our knowledge, a novel HPLC-based method. Employing a single-chain form of C1q representing one C1q head group, our HPLC methodology was able to detect the interaction between the single-chain monomeric form of C1q and various ligands. We show that, despite a narrow window of specific binding owing to the low affinity of the monomeric C1q-IgG interaction, this approach clearly distinguished between IgG subclasses with established C1q binding properties. IgG3 displayed the strongest binding, followed by IgG1, with IgG2 and IgG4 showing the weakest binding. Fc mutants known to have increased C1q binding through oligomerization or enhanced C1q interaction showed greatly increased column retention, and IgG glycovariants displayed a consistent trend of increasing retention upon increasing galactosylation and sialylation. Furthermore, the column retention of IgG isotypes and glycovariants matches both the cell surface recruitment of C1q and complement-mediated cytotoxicity induced by each variant on an anti-CD20 Ab backbone. This methodology therefore provides a valuable tool for testing IgG Ab (glyco)variants for C1q binding, with clear relevance for therapeutic Ab development.
Assuntos
Complemento C1q , Imunoglobulina G , Humanos , Complemento C1q/metabolismo , Imunoglobulina G/metabolismo , Proteínas do Sistema Complemento , Cromatografia de AfinidadeRESUMO
Respiratory viral infections remain a leading cause of morbidity and mortality. Using a murine model of human metapneumovirus, we identified recruitment of a C1q-expressing inflammatory monocyte population concomitant with viral clearance by adaptive immune cells. Genetic ablation of C1q led to reduced CD8+ T-cell function. Production of C1q by a myeloid lineage was necessary to enhance CD8+ T-cell function. Activated and dividing CD8+ T cells expressed a C1q receptor, gC1qR. Perturbation of gC1qR signaling led to altered CD8+ T-cell IFN-γ production, metabolic capacity, and cell proliferation. Autopsy specimens from fatal respiratory viral infections in children exhibited diffuse production of C1q by an interstitial population. Humans with severe coronavirus disease (COVID-19) infection also exhibited upregulation of gC1qR on activated and rapidly dividing CD8+ T cells. Collectively, these studies implicate C1q production from monocytes as a critical regulator of CD8+ T-cell function following respiratory viral infection.
Assuntos
Linfócitos T CD8-Positivos , Monócitos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Animais , Monócitos/imunologia , Monócitos/metabolismo , Humanos , Camundongos , Metapneumovirus/imunologia , COVID-19/imunologia , COVID-19/virologia , COVID-19/patologia , COVID-19/metabolismo , Complemento C1q/metabolismo , Complemento C1q/genética , SARS-CoV-2/imunologia , Camundongos Endogâmicos C57BL , Interferon gama/metabolismo , Ativação Linfocitária/imunologia , Infecções Respiratórias/imunologia , Infecções Respiratórias/virologia , Infecções Respiratórias/patologia , Infecções Respiratórias/metabolismo , Infecções por Paramyxoviridae/imunologia , Infecções por Paramyxoviridae/virologia , Infecções por Paramyxoviridae/metabolismoRESUMO
Microglia continuously remodel synapses, which are embedded in the extracellular matrix (ECM). However, the mechanisms, which govern this process remain elusive. To investigate the influence of the neural ECM in synaptic remodeling by microglia, we disrupted ECM integrity by injection of chondroitinase ABC (ChABC) into the retrosplenial cortex of healthy adult mice. Using in vivo two-photon microscopy we found that ChABC treatment increased microglial branching complexity and ECM phagocytic capacity and decreased spine elimination rate under basal conditions. Moreover, ECM attenuation largely prevented synaptic remodeling following synaptic stress induced by photodamage of single synaptic elements. These changes were associated with less stable and smaller microglial contacts at the synaptic damage sites, diminished deposition of calreticulin and complement proteins C1q and C3 at synapses and impaired expression of microglial CR3 receptor. Thus, our findings provide novel insights into the function of the neural ECM in deposition of complement proteins and synaptic remodeling by microglia.
Assuntos
Condroitina ABC Liase , Complemento C1q , Matriz Extracelular , Camundongos Endogâmicos C57BL , Microglia , Sinapses , Animais , Microglia/metabolismo , Microglia/efeitos dos fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Complemento C1q/metabolismo , Condroitina ABC Liase/farmacologia , Camundongos , Plasticidade Neuronal/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Complemento C3/metabolismo , Calreticulina/metabolismo , Masculino , Fagocitose/fisiologia , Fagocitose/efeitos dos fármacos , Camundongos Transgênicos , Antígeno de Macrófago 1/metabolismoRESUMO
Microglia, the immune cells of the central nervous system, are dynamic and heterogenous cells. While single cell RNA sequencing has become the conventional methodology for evaluating microglial state, transcriptomics do not provide insight into functional changes, identifying a critical gap in the field. Here, we propose a novel organelle phenotyping approach in which we treat live human induced pluripotent stem cell-derived microglia (iMGL) with organelle dyes staining mitochondria, lipids, lysosomes and acquire data by live-cell spectral microscopy. Dimensionality reduction techniques and unbiased cluster identification allow for recognition of microglial subpopulations with single-cell resolution based on organelle function. We validated this methodology using lipopolysaccharide and IL-10 treatment to polarize iMGL to an "inflammatory" and "anti-inflammatory" state, respectively, and then applied it to identify a novel regulator of iMGL function, complement protein C1q. While C1q is traditionally known as the initiator of the complement cascade, here we use organelle phenotyping to identify a role for C1q in regulating iMGL polarization via fatty acid storage and mitochondria membrane potential. Follow up evaluation of microglia using traditional read outs of activation state confirm that C1q drives an increase in microglia pro-inflammatory gene production and migration, while suppressing microglial proliferation. These data together validate the use of a novel organelle phenotyping approach and enable better mechanistic investigation of molecular regulators of microglial state.
Assuntos
Complemento C1q , Células-Tronco Pluripotentes Induzidas , Microglia , Fenótipo , Microglia/metabolismo , Complemento C1q/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Organelas/metabolismo , Mitocôndrias/metabolismo , Microscopia/métodos , Células CultivadasRESUMO
Neuronal circuit assembly requires the fine balance between synapse formation and elimination. Microglia, through the elimination of supernumerary synapses, have an established role in this process. While the microglial receptor TREM2 and the soluble complement proteins C1q and C3 are recognized as key players, the neuronal molecular components that specify synapses to be eliminated are still undefined. Here, we show that exposed phosphatidylserine (PS) represents a neuronal "eat-me" signal involved in microglial-mediated pruning. In hippocampal neuron and microglia co-cultures, synapse elimination can be partially prevented by blocking accessibility of exposed PS using Annexin V or through microglial loss of TREM2. In vivo, PS exposure at both hippocampal and retinogeniculate synapses and engulfment of PS-labeled material by microglia occurs during established developmental periods of microglial-mediated synapse elimination. Mice deficient in C1q, which fail to properly refine retinogeniculate connections, have elevated presynaptic PS exposure and reduced PS engulfment by microglia. These data provide mechanistic insight into microglial-mediated synapse pruning and identify a novel role of developmentally regulated neuronal PS exposure that is common among developing brain structures.
Assuntos
Hipocampo/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Fosfatidilserinas/metabolismo , Sinapses/metabolismo , Animais , Técnicas de Cocultura , Complemento C1q/genética , Complemento C1q/metabolismo , Complemento C3/genética , Complemento C3/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Fosfatidilserinas/genética , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Sinapses/genéticaRESUMO
Hereditary C1q deficiency (C1QDef) is a rare monogenic disorder leading to defective complement pathway activation and systemic lupus erythematosus (SLE)-like manifestations. The link between impairment of the complement cascade and autoimmunity remains incompletely understood. Here, we assessed type 1 interferon pathway activation in patients with C1QDef. Twelve patients with genetically confirmed C1QDef were recruited through an international collaboration. Clinical, biological and radiological data were collected retrospectively. The expression of a standardized panel of interferon stimulated genes (ISGs) in peripheral blood was measured, and the level of interferon alpha (IFNα) protein in cerebrospinal fluid (CSF) determined using SIMOA technology. Central nervous system (encompassing basal ganglia calcification, encephalitis, vasculitis, chronic pachymeningitis), mucocutaneous and renal involvement were present, respectively, in 10, 11 and 2 of 12 patients, and severe infections recorded in 2/12 patients. Elevated ISG expression was observed in all patients tested (n = 10/10), and serum and CSF IFNα elevated in 2/2 patients. Three patients were treated with Janus-kinase inhibitors (JAKi), with variable outcome; one displaying an apparently favourable response in respect of cutaneous and neurological features, and two others experiencing persistent disease despite JAKi therapy. To our knowledge, we report the largest original series of genetically confirmed C1QDef yet described. Additionally, we present a review of all previously described genetically confirmed cases of C1QDef. Overall, individuals with C1QDef demonstrate many characteristics of recognized monogenic interferonopathies: particularly, cutaneous involvement (malar rash, acral vasculitic/papular rash, chilblains), SLE-like disease, basal ganglia calcification, increased expression of ISGs in peripheral blood, and elevated levels of CSF IFNα.