Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.001
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 70(2): 265-273.e8, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29656923

RESUMO

SF3B is a multi-protein complex essential for branch site (BS) recognition and selection during pre-mRNA splicing. Several splicing modulators with antitumor activity bind SF3B and thereby modulate splicing. Here we report the crystal structure of a human SF3B core in complex with pladienolide B (PB), a macrocyclic splicing modulator and potent inhibitor of tumor cell proliferation. PB stalls SF3B in an open conformation by acting like a wedge within a hinge, modulating SF3B's transition to the closed conformation needed to form the BS adenosine-binding pocket and stably accommodate the BS/U2 duplex. This work explains the structural basis for the splicing modulation activity of PB and related compounds, and reveals key interactions between SF3B and a common pharmacophore, providing a framework for future structure-based drug design.


Assuntos
Antineoplásicos/farmacologia , Compostos de Epóxi/farmacologia , Macrolídeos/farmacologia , Fosfoproteínas/metabolismo , Fatores de Processamento de RNA/metabolismo , Splicing de RNA/efeitos dos fármacos , Adenosina/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Sítios de Ligação , Proteínas de Transporte/metabolismo , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Compostos de Epóxi/química , Compostos de Epóxi/metabolismo , Células HCT116 , Células HeLa , Humanos , Macrolídeos/química , Macrolídeos/metabolismo , Modelos Moleculares , Complexos Multiproteicos , Fosfoproteínas/química , Fosfoproteínas/genética , Ligação Proteica , Conformação Proteica , Precursores de RNA/genética , Precursores de RNA/metabolismo , Fatores de Processamento de RNA/química , Fatores de Processamento de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA , Células Sf9 , Relação Estrutura-Atividade , Transativadores
2.
Genes Dev ; 32(3-4): 309-320, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29491137

RESUMO

Somatic mutations in spliceosome proteins lead to dysregulated RNA splicing and are observed in a variety of cancers. These genetic aberrations may offer a potential intervention point for targeted therapeutics. SF3B1, part of the U2 small nuclear RNP (snRNP), is targeted by splicing modulators, including E7107, the first to enter clinical trials, and, more recently, H3B-8800. Modulating splicing represents a first-in-class opportunity in drug discovery, and elucidating the structural basis for the mode of action opens up new possibilities for structure-based drug design. Here, we present the cryogenic electron microscopy (cryo-EM) structure of the SF3b subcomplex (SF3B1, SF3B3, PHF5A, and SF3B5) bound to E7107 at 3.95 Å. This structure shows that E7107 binds in the branch point adenosine-binding pocket, forming close contacts with key residues that confer resistance upon mutation: SF3B1R1074H and PHF5AY36C The structure suggests a model in which splicing modulators interfere with branch point adenosine recognition and supports a substrate competitive mechanism of action (MOA). Using several related chemical probes, we validate the pose of the compound and support their substrate competitive MOA by comparing their activity against both strong and weak pre-mRNA substrates. Finally, we present functional data and structure-activity relationship (SAR) on the PHF5AR38C mutation that sensitizes cells to some chemical probes but not others. Developing small molecule splicing modulators represents a promising therapeutic approach for a variety of diseases, and this work provides a significant step in enabling structure-based drug design for these elaborate natural products. Importantly, this work also demonstrates that the utilization of cryo-EM in drug discovery is coming of age.


Assuntos
Compostos de Epóxi/química , Macrolídeos/química , Fosfoproteínas/química , Fatores de Processamento de RNA/química , Splicing de RNA/efeitos dos fármacos , Spliceossomos/efeitos dos fármacos , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/isolamento & purificação , Microscopia Crioeletrônica , Modelos Moleculares , Mutação , Fosfoproteínas/isolamento & purificação , Precursores de RNA/metabolismo , Fatores de Processamento de RNA/isolamento & purificação , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA , Transativadores
3.
J Am Chem Soc ; 146(12): 8456-8463, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38479352

RESUMO

Here we report the first total synthesis of the marine macrolide salarin C, a potent anticancer agent, and demonstrate the biomimetic oxidation-Wasserman rearrangement to access salarin A. This synthesis relies on L-proline catalysis to install a chlorohydrin function that masks the sensitive C16-C17 epoxide and potentially mimics the biosynthesis of these compounds where a related chlorohydrin may yield both THF- and epoxide-containing salarins. Additional and key features of the synthesis include (i) macrocycle formation via ring-closing metathesis, (ii) macrocyclic substrate-controlled epoxidation of the C12-C13 allylic alcohol, and (iii) a late-stage Julia-Kocienski olefination to install the side chain. Importantly, this work provides a platform for the synthesis of other salarins and analogues of these potentially important anticancer natural products.


Assuntos
Antineoplásicos , Cloridrinas , Estereoisomerismo , Macrolídeos/química , Compostos de Epóxi/química
4.
J Am Chem Soc ; 146(23): 16173-16183, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38819260

RESUMO

Genetically encoding a proximal reactive warhead into the protein binder/drug has emerged as an efficient strategy for covalently binding to protein targets, enabling broad applications. To expand the reactivity scope for targeting the diverse natural residues under physiological conditions, the development of a genetically encoded reactive warhead with excellent stability and broad reactivity is highly desired. Herein, we reported the genetic encoding of epoxide-containing tyrosine (EPOY) for developing covalent protein drugs. Our study demonstrates that EPOY, when incorporated into a nanobody (KN035), can cross-link with different side chains (mutations) at the same position of PD-L1 protein. Significantly, a single genetically encoded reactive warhead that is capable of covalent and site-specific targeting to 10 different nucleophilic residues was achieved for the first time. This would largely expand the scope of covalent warhead and inspire the development of covalent warheads for both small-molecule drugs and protein drugs. Furthermore, we incorporate the EPOY into a designed ankyrin repeat protein (DarpinK13) to create the covalent binders of KRAS. This covalent KRAS binder holds the potential to achieve pan-covalent targeting of KRAS based on the structural similarity among all oncogenic KRAS mutants while avoiding off-target binding to NRAS/HRAS through a covalent interaction with KRAS-specific residues (H95 and E107). We envision that covalently targeting to H95 will be a promising strategy for the development of covalent pan-KRAS inhibitors in the future.


Assuntos
Compostos de Epóxi , Humanos , Compostos de Epóxi/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Tirosina/química , Antígeno B7-H1/química , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/metabolismo
5.
Anal Chem ; 96(28): 11189-11197, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38965741

RESUMO

Lipids play integral roles in biological processes, with carbon-carbon double bonds (C═C) markedly influencing their structure and function. Precise characterization and quantification of unsaturated lipids are crucial for understanding lipid physiology and discovering disease biomarkers. However, using mass spectrometry for these purposes presents significant challenges. In this study, we developed a microwave-assisted magnesium monoperoxyphthalate hexahydrate (MMPP) epoxidation reaction, coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS), to analyze unsaturated lipids. Microwave irradiation expedited the MMPP epoxidation, achieving complete derivatization in 10 min without byproducts. A diagnostic ion pair, displaying a 16 Da mass difference, effectively identified the location of the C═C bond in mass spectra. Microwave irradiation also significantly facilitated the epoxidation reaction of polyunsaturated lipids, achieving yields greater than 85% and yielding a complete epoxidation product. This simplifies chromatographic separation and aids in accurate quantification. Additionally, a purification process was implemented to remove excess derivatization reagents, significantly reducing mass spectrometry response suppression and enhancing analytical reproducibility. The method's effectiveness was validated by analyzing unsaturated lipids in rat plasma from a type I diabetes model. We quantified nine unsaturated lipids and characterized 42 fatty acids and glycerophospholipids. The results indicated that unsaturated fatty acids increased in diabetic plasma while unsaturated glycerophospholipids decreased. Furthermore, the relative abundances of Δ9/Δ11 isomer pairs also exhibited a close association with diabetes. In conclusion, microwave-assisted MMPP epoxidation coupled with LC-MS/MS provides an effective strategy for characterization and quantification of polyunsaturated lipids, offering deeper insight into the physiological impact of unsaturated lipids in related diseases.


Assuntos
Micro-Ondas , Espectrometria de Massas em Tandem , Animais , Ratos , Espectrometria de Massas em Tandem/métodos , Compostos de Epóxi/química , Masculino , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/análise , Ácidos Graxos Insaturados/sangue , Cromatografia Líquida/métodos , Ratos Sprague-Dawley
6.
Arch Biochem Biophys ; 756: 109993, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636691

RESUMO

5,6-Epoxy-cholesterols has been recently revealed to control metabolic pathway in breast cancer, which makes investigating their binding interaction with human serum albumin (HSA) an attractive field of research. The main aim of this article is to examine the binding interaction of 5,6 α-epoxy-cholesterol (5,6 α EC) and 5,6 ß-epoxy-cholesterol (5,6 ß- EC) with HSA using different spectroscopic methods and molecular modeling. These compounds interact with HSA via hydrophobic interactions and hydrogen bonds with binding constants 6.3 × 105 M-1 for 5,6 α-epoxy-cholesterol and 6.9 × 105 M-1 for 5,6 ß-epoxy-cholesterol besides, the mechanism of the interaction can be attributed to static quenching. Circular dichroism data indicated that the α-helical content of HSA increased from 50.5 to 59.8 and 61.1 % after the addition of 5,6 α-ECs and 5,6 ß-EC, respectively, with a ratio of 1:2. Thermodynamic analysis revealed that binding between 5,6-epoxy-cholesterols and HSA is spontaneous and entropy-driven. The molecular docking and esterase-like activity experiments were performed to envision a link between the experimental and theoretical results. The optimal binding site of 5,6-epoxy-cholesterols with HSA was located in subdomain IIA. Moreover, theoretical calculations were performed using the B3LYP function with the 6-311++G (d,p) basis set, indicating the HOMO-LUMO energy gap of 7.874 eV for 5,6 α-epoxy-cholesterol and 7.873 eV for 5,6 ß-epoxy-cholesterol. The obtained findings are assumed to provide basic data for understanding the binding interactions of HSA with oxysterol compounds, which could help explore the pharmacokinetics and pharmacodynamics of oxysterol compounds.


Assuntos
Colesterol , Simulação de Acoplamento Molecular , Ligação Proteica , Albumina Sérica Humana , Humanos , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Colesterol/metabolismo , Colesterol/química , Termodinâmica , Interações Hidrofóbicas e Hidrofílicas , Sítios de Ligação , Dicroísmo Circular , Ligação de Hidrogênio , Compostos de Epóxi/química , Compostos de Epóxi/metabolismo
7.
Chem Res Toxicol ; 37(6): 935-943, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38761382

RESUMO

Amitriptyline (ATL), a tricyclic antidepressant, has been reported to cause various adverse effects, particularly hepatotoxicity. The mechanisms of ATL-induced hepatotoxicity remain unknown. The study was performed to identify the olefin epoxidation metabolite of ATL and determine the possible toxicity mechanism. Two glutathione (GSH) conjugates (M1 and M2) and two N-acetylcysteine (NAC) conjugates (M3 and M4) were detected in rat liver microsomal incubations supplemented with GSH and NAC, respectively. Moreover, M1/M2 and M3/M4 were respectively found in ATL-treated rat primary hepatocytes and in bile and urine of rats given ATL. Recombinant P450 enzyme incubations demonstrated that CYP3A4 was the primary enzyme involved in the olefin epoxidation of ATL. Treatment of hepatocytes with ATL resulted in significant cell death. Inhibition of CYP3A attenuated the susceptibility to the observed cytotoxicity of ATL. The metabolic activation of ATL most likely participates in the cytotoxicity of ATL.


Assuntos
Amitriptilina , Citocromo P-450 CYP3A , Compostos de Epóxi , Hepatócitos , Microssomos Hepáticos , Ratos Sprague-Dawley , Animais , Amitriptilina/metabolismo , Ratos , Citocromo P-450 CYP3A/metabolismo , Microssomos Hepáticos/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Masculino , Compostos de Epóxi/metabolismo , Compostos de Epóxi/toxicidade , Compostos de Epóxi/química , Glutationa/metabolismo , Células Cultivadas
8.
Biomacromolecules ; 25(5): 2925-2933, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38691827

RESUMO

A "one-step" strategy has been demonstrated for the tunable synthesis of multifunctional aliphatic polycarbonates (APCs) with ethylene oxide (EO), ethylene carbonate (EC), and cyclohexene oxide (CHO) side groups by the copolymerization of 4-vinyl-1-cyclohexene diepoxide with carbon dioxide under an aminotriphenolate iron/PPNBz (PPN = bis(triphenylphosphine)-iminium, Bz = benzoate) binary catalyst. By adjusting the PPNBz-to-iron complex ratio and incorporating auxiliary solvents, the content of functional side groups can be tuned within the ranges of 53-75% for EO, 18-47% for EC, and <1-7% for CHO. The yield and molecular weight distribution of the resulting multifunctional APCs are affected by the viscosity of the polymerization system. The use of tetrahydrofuran as an auxiliary solvent enables the preparation of narrow-distribution polycarbonates at high conversion. This work presents a novel perspective for the preparation of tailorable multifunctional APCs.


Assuntos
Dióxido de Carbono , Cimento de Policarboxilato , Polimerização , Dióxido de Carbono/química , Cimento de Policarboxilato/química , Compostos de Epóxi/química , Óxido de Etileno/química , Cicloexenos/química , Catálise , Viscosidade , Dioxolanos
9.
Biomacromolecules ; 25(6): 3583-3595, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38703359

RESUMO

Polyglycidol or polyglycerol (PG), a polyether widely used in biomedical applications, has not been extensively studied in its branched cyclic form (bcPG), despite extensive research on hyperbranched PG (HPG). This study explores the biomedical promise of bcPG, particularly its ability to cross the blood-brain barrier (BBB). We evaluate in vitro biocompatibility, endothelial permeability, and formation of branched linear PG (blPG) as topological impurities in the presence of water. Small angle X-ray scattering in solution revealed a fractal dimension of approximately two for bcPG and the mixture bc+blPG, suggesting random branching. Comparisons of cytotoxicity and endothelial permeability between bcPG, bc+blPG, and HPG in a BBB model using hCMEC/D3 cells showed different biocompatibility profiles and higher endothelial permeability for HPG. bcPG showed a tendency to accumulate around cell nuclei, in contrast to the behavior of HPG. This study contributes to the understanding of the influence of polymer topology on biological behavior.


Assuntos
Materiais Biocompatíveis , Barreira Hematoencefálica , Humanos , Barreira Hematoencefálica/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Polimerização , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Polímeros/química , Polímeros/farmacologia , Glicerol/química , Compostos de Epóxi/química , Linhagem Celular , Permeabilidade , Propilenoglicóis/química , Propanóis/química
10.
J Chem Inf Model ; 64(11): 4530-4541, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38808649

RESUMO

By performing molecular dynamics (MD), quantum mechanical/molecular mechanical (QM/MM) calculations, and QM cluster calculations, the origin of chemoselectivity of halohydrin dehalogenase (HHDH)-catalyzed ring-opening reactions of epoxide with the nucleophilic reagent NO2- has been explored. Four possible chemoselective pathways were considered, and the computed results indicate that the pathway associated with the nucleophilic attack on the Cα position of epoxide by NO2- is most energetically favorable and has an energy barrier of 12.9 kcal/mol, which is close to 14.1 kcal/mol derived from experimental kinetic data. A hydrogen bonding network formed by residues Ser140, Tyr153, and Arg157 can strengthen the electrophilicity of the active site of the epoxide substrate to affect chemoselectivity. To predict the energy barrier trends of the chemoselective transition states, multiple analyses including distortion analysis and electrophilic Parr function (Pk+) analysis were carried out with or without an enzyme environment. The obtained insights should be valuable for the rational design of enzyme-catalyzed and biomimetic organocatalytic epoxide ring-opening reactions with special chemoselectivity.


Assuntos
Biocatálise , Compostos de Epóxi , Hidrolases , Hidrolases/metabolismo , Hidrolases/química , Compostos de Epóxi/química , Compostos de Epóxi/metabolismo , Simulação de Dinâmica Molecular , Teoria Quântica , Domínio Catalítico , Especificidade por Substrato
11.
Environ Sci Technol ; 58(24): 10675-10684, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38843196

RESUMO

Isoprene has the highest atmospheric emissions of any nonmethane hydrocarbon, and isoprene epoxydiols (IEPOX) are well-established oxidation products and the primary contributors forming isoprene-derived secondary organic aerosol (SOA). Highly acidic particles (pH 0-3) widespread across the lower troposphere enable acid-driven multiphase chemistry of IEPOX, such as epoxide ring-opening reactions forming methyltetrol sulfates through nucleophilic attack of sulfate (SO42-). Herein, we systematically demonstrate an unexpected decrease in SOA formation from IEPOX on highly acidic particles (pH < 1). While IEPOX-SOA formation is commonly assumed to increase at low pH when more [H+] is available to protonate epoxides, we observe maximum SOA formation at pH 1 and less SOA formation at pH 0.0 and 0.4. This is attributed to limited availability of SO42- at pH values below the acid dissociation constant (pKa) of SO42- and bisulfate (HSO4-). The nucleophilicity of HSO4- is 100× lower than SO42-, decreasing SOA formation and shifting particulate products from low-volatility organosulfates to higher-volatility polyols. Current model parameterizations predicting SOA yields for IEPOX-SOA do not properly account for the SO42-/HSO4- equilibrium, leading to overpredictions of SOA formation at low pH. Accounting for this underexplored acidity-dependent behavior is critical for accurately predicting SOA concentrations and resolving SOA impacts on air quality.


Assuntos
Aerossóis , Compostos de Epóxi/química , Concentração de Íons de Hidrogênio , Equilíbrio Ácido-Base
12.
Macromol Rapid Commun ; 45(2): e2300512, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37837340

RESUMO

Epoxidized natural rubber (ENR) crosslinked using borax, which exhibits self-healing and self-repairing properties, is successfully developed. The crosslink formation of ENR by using borax under neutral and alkaline conditions is investigated. Fourier transform infrared spectroscopy (FTIR) shows that the borate-ester bond is formed in ENR prepared under both neutral and alkaline conditions, whereas boron nuclear magnetic resonance (11 B-NMR) results exhibit that the ENR prepared under alkaline conditions more actively forms crosslink networks with borax. Moreover, the crosslink density and gel content increase significantly with the presence of borax in alkaline conditions. The crosslink density and gel content of ENR with 10 phr borax are higher by 155% and 36%, respectively, than those of neat ENR. Furthermore, the formation of the crosslinking ENR by borax enhances self-healing and self-repairing properties. The healing efficiency significantly increases from 1.09% to 85.90%, when ENR is developed under alkaline conditions with 30 phr borax. These results represent the first successful demonstration of the efficient use of borax as a crosslinker in ENR, which exhibits its promising self-healing and self-repairing properties under atmospheric conditions without the need for external stimuli. The ENR prepared in this work holds great promise for various self-healing rubber applications.


Assuntos
Boratos , Borracha , Borracha/química , Compostos de Epóxi/química , Concentração de Íons de Hidrogênio
13.
Phys Chem Chem Phys ; 26(23): 16521-16528, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38809594

RESUMO

Indole monooxygenases (IMOs) are enzymes from the family of Group E monooxygenases, requiring flavin adenine dinucleotide (FAD) for their activities. IMOs play important roles in both sulfoxidation and epoxidation reactions. The broad substrate range and high selectivity of IMOs make them promising biocatalytic tools for synthesizing chiral compounds. In the present study, quantum chemical calculations using the cluster approach were performed to investigate the reaction mechanism and the enantioselectivity of the IMO from Variovorax paradoxus EPS (VpIndA1). The sulfoxidation of methyl phenyl sulfide (MPS) and the epoxidation of indene were chosen as the representative reactions. The calculations confirmed that the FADOOH intermediate is the catalytic species in the VpIndA1 reactions. The oxidation of MPS adopts a one-step mechanism involving the direct oxygen-transfer from FADOOH to the substrate and the proton transfer from the -OH group back to FAD, while the oxidation of indene follows a stepwise mechanism involving a carbocation intermediate. It was computationally predicted that VpIndA1 prefers the formation of (S)-product for the MPS sulfoxidation and (1S,2R)-product for the indene epoxidation, consistent with the experimental observations. Importantly, the factors controlling the stereo-preference of the two reactions are identified. The findings in the present study provide valuable insights into the VpIndA1-catalyzed reactions, which are essential for the rational design of this enzyme and other IMOs for industrial applications. It is also worth emphasizing that the quantum chemical cluster approach is again demonstrated to be powerful in studying the enantioselectivity of enzymatic reactions.


Assuntos
Oxigenases de Função Mista , Oxirredução , Estereoisomerismo , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/química , Teoria Quântica , Sulfetos/química , Sulfetos/metabolismo , Indóis/química , Indóis/metabolismo , Modelos Químicos , Compostos de Epóxi/química , Compostos de Epóxi/metabolismo , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/metabolismo , Modelos Moleculares
14.
Molecules ; 29(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38731627

RESUMO

A concise synthesis of the sex pheromones of elm spanworm as well as painted apple moth has been achieved. The key steps were the alkylation of acetylide ion, Sharpless asymmetric epoxidation and Brown's P2-Ni reduction. This approach provided the sex pheromone of the elm spanworm (1) in 31% total yield and those of the painted apple moth (2, 3) in 26% and 32% total yields. The ee values of three final products were up to 99%. The synthesized pheromones hold promising potential for use in the management and control of these pests.


Assuntos
Compostos de Epóxi , Mariposas , Atrativos Sexuais , Animais , Atrativos Sexuais/síntese química , Atrativos Sexuais/química , Compostos de Epóxi/química , Estrutura Molecular
15.
Angew Chem Int Ed Engl ; 63(20): e202401411, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38500479

RESUMO

A succinct synthetic approach to mugineic acids and 2'-hydroxynicotianamine was established. Unlike all other synthetic methods, this approach utilized epoxide ring-opening reactions to form two C-N bonds and is characterized by the absence of redox reactions. Mugineic acid was synthesized from three readily available fragments on a gram scale in 6 steps. The protected 2'-hydroxynicotianamine was also synthesized in 4 steps, and the dansyl group, serving as a fluorophore, was introduced through a click reaction after propargylation of the 2'-hydroxy group. The dansyl-labeled nicotianamine (NA) iron complexes were internalized by oocytes overexpressing ZmYS1 (from maize) or PAT1 (from human) transporters, indicating successful transport of the synthesized NA-probe through these transporters.


Assuntos
Ácido Azetidinocarboxílico/análogos & derivados , Compostos de Epóxi , Compostos de Epóxi/química , Compostos de Epóxi/metabolismo , Humanos , Estrutura Molecular , Ácido Azetidinocarboxílico/metabolismo , Ácido Azetidinocarboxílico/química
16.
Acc Chem Res ; 55(15): 1997-2010, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35863044

RESUMO

The development of sustainable plastic materials is an essential target of chemistry in the 21st century. Key objectives toward this goal include utilizing sustainable monomers and the development of polymers that can be chemically recycled/degraded. Polycarbonates synthesized from the ring-opening copolymerization (ROCOP) of epoxides and CO2, and polyesters synthesized from the ROCOP of epoxides and anhydrides, meet these criteria. Despite this, designing efficient catalysts for these processes remains challenging. Typical issues include the requirement for high catalyst loading; low catalytic activities in comparison with other commercialized polymerizations; and the requirement of costly, toxic cocatalysts. The development of efficient catalysts for both types of ROCOP is highly desirable. This Account details our work on the development of catalysts for these two related polymerizations and, in particular, focuses on dinuclear complexes, which are typically applied without any cocatalyst. We have developed mechanistic hypotheses in tandem with our catalysts, and throughout the Account, we describe the kinetic, computational, and structure-activity studies that underpin the performance of these catalysts. Our initial research on homodinuclear M(II)M(II) complexes for cyclohexene oxide (CHO)/CO2 ROCOP provided data to support a chain shuttling catalytic mechanism, which implied different roles for the two metals in the catalysis. This mechanistic hypothesis inspired the development of mixed-metal, heterodinuclear catalysts. The first of this class of catalysts was a heterodinuclear Zn(II)Mg(II) complex, which showed higher rates than either of the homodinuclear [Zn(II)Zn(II) and Mg(II)Mg(II)] analogues for CHO/CO2 ROCOP. Expanding on this finding, we subsequently developed a Co(II)Mg(II) complex that showed field leading rates for CHO/CO2 ROCOP and allowed for unique insight into the role of the two metals in this complex, where it was established that the Mg(II) center reduced transition state entropy and the Co(II) center reduced transition state enthalpy. Following these discoveries, we subsequently developed a range of heterodinuclear M(III)M(I) catalysts that were capable of catalyzing a broad range of copolymerizations, including the ring-opening copolymerization of CHO/CO2, propylene oxide (PO)/CO2, and CHO/phthalic anhydride (PA). Catalysts featuring Co(III)K(I) and Al(III)K(I) were found to be exceptionally effective for PO/CO2 and CHO/PA ROCOP, respectively. Such M(III)M(I) complexes operate through a dinuclear metalate mechanism, where the M(III) binds and activates monomers while the M(I) species binds the polymer change in close proximity to allow for insertion into the activated monomer. Our research illustrates how careful catalyst design can yield highly efficient systems and how the development of mechanistic understanding aids this process. Avenues of future research are also discussed, including the applicability of these heterodinuclear catalysts in the synthesis of sustainable materials.


Assuntos
Anidridos , Dióxido de Carbono , Dióxido de Carbono/química , Catálise , Compostos de Epóxi/química , Metais/química , Polimerização , Polímeros/química
17.
Chemistry ; 29(31): e202300697, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-36893219

RESUMO

Multi-enzymatic cascades exploiting engineered enzymes are a powerful tool for the tailor-made synthesis of complex molecules from simple inexpensive building blocks. In this work, we engineered the promiscuous enzyme 4-oxalocrotonate tautomerase (4-OT) into an effective aldolase with 160-fold increased activity compared to 4-OT wild type. Subsequently, we applied the evolved 4-OT variant to perform an aldol condensation, followed by an epoxidation reaction catalyzed by a previously engineered 4-OT mutant, in a one-pot two-step cascade for the synthesis of enantioenriched epoxides (up to 98 % ee) from biomass-derived starting materials. For three chosen substrates, the reaction was performed at milligram scale with product yields up to 68 % and remarkably high enantioselectivity. Furthermore, we developed a three-step enzymatic cascade involving an epoxide hydrolase for the production of chiral aromatic 1,2,3-prim,sec,sec-triols with high enantiopurity and good isolated yields. The reported one-pot, three-step cascade, with no intermediate isolation and being completely cofactor-less, provides an attractive route for the synthesis of chiral aromatic triols from biomass-based synthons.


Assuntos
Aldeído Liases , Compostos de Epóxi , Compostos de Epóxi/química , Biomassa , Biocatálise , Aldeído Liases/química , Frutose-Bifosfato Aldolase/química
18.
Chem Res Toxicol ; 36(2): 281-290, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36652206

RESUMO

Epoxy resin systems (ERSs) are a class of thermosetting resins that become thermostable and insoluble polymers upon curing. They are widely used as components of protective surfaces, adhesives, and paints and in the manufacturing of composites in the plastics industry. The diglycidyl ether of bisphenol A (DGEBA) is used in 75-90% of ERSs and is thus by far the most used epoxy resin monomer (ERM). Unfortunately, DGEBA is a strong skin sensitizer and it is one of the most common causes of occupational contact dermatitis. Furthermore, DGEBA is synthesized from bisphenol A (BPA), which is a petroleum-derived chemical with endocrine-disruptive properties. In this work, we have used isosorbide, a renewable and nontoxic sugar-based material, as an alternative to BPA in the design of ERMs. Three different bis-epoxide isosorbide derivatives were synthesized: the diglycidyl ether of isosorbide (1) and two novel isosorbide-based bis-epoxides containing either a benzoic ester (2) or a benzyl ether linkage (3). Assessment of the in vivo sensitizing potency of the isosorbide bis-epoxides in the murine local lymph node assay (LLNA) showed that all three compounds were significantly less sensitizing than DGEBA, especially 2 which was nonsensitizing up to 25% w/v. The peptide reactivity showed the same order of reactivity as the LLNA, i.e., 2 being the least reactive, followed by 3 and then 1, which displayed similar peptide reactivity as DGEBA. Skin permeation of 2 and 3 was compared to DGEBA using ex vivo pig skin and static Franz cells. The preliminary investigations of the technical properties of the polymers formed from 1-3 were promising. Although further investigations of the technical properties are needed, all isosorbide bis-epoxides have the potential to be less sensitizing renewable replacements of DGEBA, especially 2 that had the lowest sensitizing potency in vivo as well as the lowest peptide reactivity.


Assuntos
Resinas Epóxi , Isossorbida , Animais , Camundongos , Suínos , Resinas Epóxi/química , Compostos Benzidrílicos , Compostos de Epóxi/química
19.
Chem Res Toxicol ; 36(8): 1409-1418, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37477250

RESUMO

Human exposure to known carcinogen 1,3-butadiene (BD) is common due to its high concentrations in automobile exhaust, cigarette smoke, and forest fires, as well as its widespread use in the polymer industry. The adverse health effects of BD are mediated by epoxide metabolites such as 3,4-epoxy-1-butene (EB), which reacts with DNA to form 1-hydroxyl-3-buten-1-yl adducts on DNA nucleobases. EB-derived mercapturic acids (1- and 2-(N-acetyl-l-cysteine-S-yl)-1-hydroxybut-3-ene (MHBMA) and N-acetyl-S-(3,4-dihydroxybutyl)-l-cysteine (DHBMA)) and urinary N7-(1-hydroxyl-3-buten-1-yl) guanine DNA adducts (EB-GII) have been used as biomarkers of BD exposure and cancer risk in smokers and occupationally exposed workers. However, low but significant levels of MHBMA, DHBMA, and EB-GII have been reported in unexposed cultured cells, animals, and humans, suggesting that these metabolites and adducts may form endogenously and complicate risk assessment of butadiene exposure. In the present work, stable isotope labeling in combination with high-resolution mass spectrometry was employed to accurately quantify endogenous and exogenous butadiene metabolites and DNA adducts in vivo. Laboratory rats were exposed to 0.3, 0.5, or 3 ppm of BD-d6 by inhalation, and the amounts of endogenous (d0) and exogenous (d6) DNA adducts and metabolites were quantified in tissues and urine by isotope dilution capillary liquid chromatography/high resolution electrospray ionization tandem mass spectrometry (capLC-ESI-HRMS/MS). Our results reveal that EB-GII adducts and MHBMA originate exclusively from exogenous exposure to BD, while substantial amounts of DHBMA are formed endogenously. Urinary EB-GII concentrations were associated with genomic EB-GII levels in tissues of the same animals. Our findings confirm that EB-GII and MHBMA are specific biomarkers of exposure to BD, while endogenous DHBMA predominates at sub-ppm exposures to BD.


Assuntos
Butadienos , Adutos de DNA , Ratos , Animais , Humanos , Butadienos/química , Marcação por Isótopo , Espectrometria de Massas/métodos , DNA , Acetilcisteína/urina , Biomarcadores/urina , Compostos de Epóxi/química
20.
Biotechnol Bioeng ; 120(11): 3210-3223, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37593803

RESUMO

Halohydrin dehalogenase HheG is an industrially interesting biocatalyst for the preparation of different ß-substituted alcohols starting from bulky internal epoxides. We previously demonstrated that the immobilization of different HheG variants in the form of cross-linked enzyme crystals (CLECs) yielded stable and reusable enzyme immobilizes with increased resistance regarding temperature, pH, and the presence of organic solvents. Now, to further establish their preparative applicability, HheG D114C CLECs cross-linked with bis-maleimidoethane have been successfully produced on a larger scale using a stirred crystallization approach, and their application in different chemical reactor types (stirred tank reactor, fluidized bed reactor, and packed bed reactor) was systematically studied and compared for the ring opening of cyclohexene oxide with azide. This revealed the highest obtained space-time yield of 23.9 kgproduct gCLEC -1 h-1 Lreactor volume -1 along with the highest achieved product enantiomeric excess [64%] for application in a packed-bed reactor. Additionally, lyophilization of those CLECs yielded a storage-stable HheG preparation that still retained 67% of initial activity (after lyophilization) after 6 months of storage at room temperature.


Assuntos
Álcoois , Hidrolases , Hidrolases/genética , Hidrolases/química , Solventes , Compostos de Epóxi/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa