RESUMO
In many eukaryotes, Argonaute proteins, guided by short RNA sequences, defend cells against transposons and viruses. In the eubacterium Thermus thermophilus, the DNA-guided Argonaute TtAgo defends against transformation by DNA plasmids. Here, we report that TtAgo also participates in DNA replication. In vivo, TtAgo binds 15- to 18-nt DNA guides derived from the chromosomal region where replication terminates and associates with proteins known to act in DNA replication. When gyrase, the sole T. thermophilus type II topoisomerase, is inhibited, TtAgo allows the bacterium to finish replicating its circular genome. In contrast, loss of gyrase and TtAgo activity slows growth and produces long sausage-like filaments in which the individual bacteria are linked by DNA. Finally, wild-type T. thermophilus outcompetes an otherwise isogenic strain lacking TtAgo. We propose that the primary role of TtAgo is to help T. thermophilus disentangle the catenated circular chromosomes generated by DNA replication.
Assuntos
Proteínas Argonautas/metabolismo , Proteínas de Bactérias/metabolismo , DNA Girase/metabolismo , Replicação do DNA/genética , DNA/metabolismo , Thermus thermophilus/metabolismo , Proteínas Argonautas/genética , Proteínas de Bactérias/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Cromossomos/metabolismo , Ciprofloxacina/farmacologia , DNA/genética , Replicação do DNA/efeitos dos fármacos , Endonucleases/metabolismo , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Proteínas Recombinantes , Recombinação Genética/efeitos dos fármacos , Recombinação Genética/genética , Imagem Individual de Molécula , Espectrometria de Massas em Tandem , Thermus thermophilus/genética , Thermus thermophilus/crescimento & desenvolvimento , Thermus thermophilus/ultraestrutura , Inibidores da Topoisomerase II/farmacologiaRESUMO
Transcription of highly expressed genes has been shown to occur in stochastic bursts. But the origin of such ubiquitous phenomenon has not been understood. Here, we present the mechanism in bacteria. We developed a high-throughput, in vitro, single-molecule assay to follow transcription on individual DNA templates in real time. We showed that positive supercoiling buildup on a DNA segment by transcription slows down transcription elongation and eventually stops transcription initiation. Transcription can be resumed upon gyrase binding to the DNA segment. Furthermore, using single-cell mRNA counting fluorescence in situ hybridization (FISH), we found that duty cycles of transcriptional bursting depend on the intracellular gyrase concentration. Together, these findings prove that transcriptional bursting of highly expressed genes in bacteria is primarily caused by reversible gyrase dissociation from and rebinding to a DNA segment, changing the supercoiling level of the segment.
Assuntos
Escherichia coli/genética , Transcrição Gênica , DNA Girase/metabolismo , DNA Super-Helicoidal/genética , Hibridização in Situ Fluorescente , Modelos Genéticos , Regiões Promotoras Genéticas , Elongação da Transcrição Genética , Iniciação da Transcrição GenéticaRESUMO
Type II topoisomerases (topos) are a ubiquitous and essential class of enzymes that form transient enzyme-bound double-stranded breaks on DNA called cleavage complexes. The location and frequency of these cleavage complexes on DNA is important for cellular function, genomic stability and a number of clinically important anticancer and antibacterial drugs, e.g. quinolones. We developed a simple high-accuracy end-sequencing (SHAN-seq) method to sensitively map type II topo cleavage complexes on DNA in vitro. Using SHAN-seq, we detected Escherichia coli gyrase and topoisomerase IV cleavage complexes at hundreds of sites on supercoiled pBR322 DNA, approximately one site every ten bp, with frequencies that varied by two-to-three orders of magnitude. These sites included previously identified sites and 20-50-fold more new sites. We show that the location and frequency of cleavage complexes at these sites are enzyme-specific and vary substantially in the presence of the quinolone, ciprofloxacin, but not with DNA supercoil chirality, i.e. negative versus positive supercoiling. SHAN-seq's exquisite sensitivity provides an unprecedented single-nucleotide resolution view of the distribution of gyrase and topoisomerase IV cleavage complexes on DNA. Moreover, the discovery that these enzymes can cleave DNA at orders of magnitude more sites than the relatively few previously known sites resolves the apparent paradox of how these enzymes resolve topological problems throughout the genome.
Assuntos
Clivagem do DNA , DNA Girase , DNA Topoisomerase IV , DNA Topoisomerases Tipo II , Escherichia coli , Escherichia coli/genética , Escherichia coli/enzimologia , DNA Girase/metabolismo , DNA Girase/genética , DNA Girase/química , DNA Topoisomerase IV/metabolismo , DNA Topoisomerase IV/genética , DNA Topoisomerase IV/química , DNA Topoisomerases Tipo II/metabolismo , DNA Topoisomerases Tipo II/genética , Análise de Sequência de DNA/métodos , DNA Super-Helicoidal/metabolismo , DNA Super-Helicoidal/química , Ciprofloxacina/farmacologia , Sequenciamento de Nucleotídeos em Larga Escala , DNA/metabolismo , DNA/químicaRESUMO
Mycobacterium tuberculosis, the causative agent of tuberculosis, is a growing threat to global health, with recent efforts towards its eradication being reversed in the wake of the COVID-19 pandemic. Increasing resistance to gyrase-targeting second-line fluoroquinolone antibiotics indicates the necessity to develop both novel therapeutics and our understanding of M. tuberculosis growth during infection. ParDE toxin-antitoxin systems also target gyrase and are regulated in response to both host-associated and drug-induced stress during infection. Here, we present microbiological, biochemical, structural, and biophysical analyses exploring the ParDE1 and ParDE2 systems of M. tuberculosis H37Rv. The structures reveal conserved modes of toxin-antitoxin recognition, with complex-specific interactions. ParDE1 forms a novel heterohexameric ParDE complex, supported by antitoxin chains taking on two distinct folds. Curiously, ParDE1 exists in solution as a dynamic equilibrium between heterotetrameric and heterohexameric complexes. Conditional remodelling into higher order complexes can be thermally driven in vitro. Remodelling induces toxin release, tracked through concomitant inhibition and poisoning of gyrase activity. Our work aids our understanding of gyrase inhibition, allowing wider exploration of toxin-antitoxin systems as inspiration for potential therapeutic agents.
Assuntos
Antitoxinas , Toxinas Bacterianas , Mycobacterium tuberculosis , Tuberculose , Humanos , Antitoxinas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , DNA Girase/genética , Fluoroquinolonas , Pandemias , Tuberculose/microbiologia , Toxinas Bacterianas/metabolismoRESUMO
The bacterial toxin CcdB (Controller of Cell death or division B) targets DNA Gyrase, an essential bacterial topoisomerase, which is also the molecular target for fluoroquinolones. Here, we present a short cell-penetrating 24-mer peptide, CP1-WT, derived from the Gyrase-binding region of CcdB and examine its effect on growth of Escherichia coli, Salmonella Typhimurium, Staphylococcus aureus and a carbapenem- and tigecycline-resistant strain of Acinetobacter baumannii in both axenic cultures and mouse models of infection. The CP1-WT peptide shows significant improvement over ciprofloxacin in terms of its in vivo therapeutic efficacy in treating established infections of S. Typhimurium, S. aureus and A. baumannii. The molecular mechanism likely involves inhibition of Gyrase or Topoisomerase IV, depending on the strain used. The study validates the CcdB binding site on bacterial DNA Gyrase as a viable and alternative target to the fluoroquinolone binding site.
Assuntos
Antibacterianos , Staphylococcus aureus , Animais , Camundongos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Antibacterianos/farmacologia , DNA Girase/química , DNA Girase/genética , DNA Girase/metabolismo , DNA Topoisomerase IV/genética , DNA Topoisomerase IV/metabolismo , DNA Topoisomerase IV/farmacologia , Peptídeos/farmacologiaRESUMO
New antibiotics are needed to combat rising levels of resistance, with new Mycobacterium tuberculosis (Mtb) drugs having the highest priority. However, conventional whole-cell and biochemical antibiotic screens have failed. Here we develop a strategy termed PROSPECT (primary screening of strains to prioritize expanded chemistry and targets), in which we screen compounds against pools of strains depleted of essential bacterial targets. We engineered strains that target 474 essential Mtb genes and screened pools of 100-150 strains against activity-enriched and unbiased compound libraries, probing more than 8.5 million chemical-genetic interactions. Primary screens identified over tenfold more hits than screening wild-type Mtb alone, with chemical-genetic interactions providing immediate, direct target insights. We identified over 40 compounds that target DNA gyrase, the cell wall, tryptophan, folate biosynthesis and RNA polymerase, as well as inhibitors that target EfpA. Chemical optimization yielded EfpA inhibitors with potent wild-type activity, thus demonstrating the ability of PROSPECT to yield inhibitors against targets that would have eluded conventional drug discovery.
Assuntos
Antituberculosos/classificação , Antituberculosos/isolamento & purificação , Descoberta de Drogas/métodos , Deleção de Genes , Testes de Sensibilidade Microbiana/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Antituberculosos/farmacologia , DNA Girase/metabolismo , Resistência Microbiana a Medicamentos , Ácido Fólico/biossíntese , Terapia de Alvo Molecular , Mycobacterium tuberculosis/citologia , Mycobacterium tuberculosis/enzimologia , Ácidos Micólicos/metabolismo , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas/classificação , Bibliotecas de Moléculas Pequenas/isolamento & purificação , Especificidade por Substrato , Inibidores da Topoisomerase II/isolamento & purificação , Inibidores da Topoisomerase II/farmacologia , Triptofano/biossíntese , Tuberculose/tratamento farmacológico , Tuberculose/microbiologiaRESUMO
Bacterial persisters are rare phenotypic variants that are suspected to be culprits of recurrent infections. Fluoroquinolones (FQs) are a class of antibiotics that facilitate bacterial killing by stabilizing bacterial type II topoisomerases when they are in a complex with cleaved DNA. In Escherichia coli, DNA gyrase is the primary FQ target, and previous work has demonstrated that persisters are not spared from FQ-induced DNA damage. Since DNA gyrase cleavage sites (GCSs) largely govern the sites of DNA damage from FQ treatment, we hypothesized that GCS characteristics (e.g. number, strength, location) may influence persistence. To test this hypothesis, we measured genome-wide GCS distributions after treatment with a panel of FQs in stationary-phase cultures. We found drug-specific effects on the GCS distribution and discovered a strong negative correlation between the genomic cleavage strength and FQ persister levels. Further experiments and analyses suggested that persistence was unlikely to be governed by cleavage to individual sites, but rather survival was a function of the genomic GCS distribution. Together, these findings demonstrate FQ-specific differences in GCS distribution that correlate with persister levels and suggest that FQs that better stabilize DNA gyrase in cleaved complexes with DNA will lead to lower levels of persistence.
Assuntos
DNA Girase , Fluoroquinolonas , DNA Girase/genética , Antibacterianos/farmacologia , Bactérias/genética , Dano ao DNA , Farmacorresistência Bacteriana/genética , DNA Bacteriano/genéticaRESUMO
DNA gyrases catalyze negative supercoiling of DNA, are essential for bacterial DNA replication, transcription, and recombination, and are important antibacterial targets in multiple pathogens, including Mycobacterium tuberculosis, which in 2021 caused >1.5 million deaths worldwide. DNA gyrase is a tetrameric (A2B2) protein formed from two subunit types: gyrase A (GyrA) carries the breakage-reunion active site, whereas gyrase B (GyrB) catalyzes ATP hydrolysis required for energy transduction and DNA translocation. The GyrB ATPase domains dimerize in the presence of ATP to trap the translocated DNA (T-DNA) segment as a first step in strand passage, for which hydrolysis of one of the two ATPs and release of the resulting inorganic phosphate is rate-limiting. Here, dynamical-nonequilibrium molecular dynamics (D-NEMD) simulations of the dimeric 43 kDa N-terminal fragment of M. tuberculosis GyrB show how events at the ATPase site (dissociation/hydrolysis of bound nucleotides) are propagated through communication pathways to other functionally important regions of the GyrB ATPase domain. Specifically, our simulations identify two distinct pathways that respectively connect the GyrB ATPase site to the corynebacteria-specific C-loop, thought to interact with GyrA prior to DNA capture, and to the C-terminus of the GyrB transduction domain, which in turn contacts the C-terminal GyrB topoisomerase-primase (TOPRIM) domain responsible for interactions with GyrA and the centrally bound G-segment DNA. The connection between the ATPase site and the C-loop of dimeric GyrB is consistent with the unusual properties of M. tuberculosis DNA gyrase relative to those from other bacterial species.
Assuntos
Adenosina Trifosfatases , DNA Girase , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , DNA Girase/metabolismo , DNA Girase/química , DNA Girase/genética , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Domínios Proteicos , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Transdução de SinaisRESUMO
Macromolecular crowding, manifested by high concentrations of proteins and nucleic acids in living cells, significantly influences biological processes such as enzymatic reactions. Studying these reactions in vitro, using agents such as polyetthylene glycols (PEGs) and polyvinyl alcohols (PVAs) to mimic intracellular crowding conditions, is essential due to the notable differences from enzyme behaviors observed in diluted aqueous solutions. In this article, we studied Mycobacterium tuberculosis (Mtb) DNA gyrase under macromolecular crowding conditions by incorporating PEGs and PVAs into the DNA supercoiling reactions. We discovered that high concentrations of potassium glutamate, glycine betaine, PEGs, and PVA substantially stimulated the DNA supercoiling activity of Mtb DNA gyrase. Steady-state kinetic studies showed that glycine betaine and PEG400 significantly reduced the KM of Mtb DNA gyrase and simultaneously increased the Vmax or kcat of Mtb DNA gyrase for ATP and the plasmid DNA molecule. Molecular dynamics simulation studies demonstrated that PEG molecules kept the ATP lid of DNA gyrase subunit B in a closed or semiclosed conformation, which prevented ATP molecules from leaving the ATP-binding pocket of DNA gyrase subunit B. The stimulation of the DNA supercoiling activity of Mtb DNA gyrase by these molecular crowding agents likely results from a decrease in water activity and an increase in excluded volume.
Assuntos
DNA Girase , Mycobacterium tuberculosis , DNA Girase/metabolismo , Mycobacterium tuberculosis/metabolismo , Betaína , Cinética , Trifosfato de Adenosina/metabolismo , DNA , DNA Super-HelicoidalRESUMO
DNA gyrase is an essential nucleoprotein motor present in all bacteria and is a major target for antibiotic treatment of Mycobacterium tuberculosis (MTB) infection. Gyrase hydrolyzes ATP to add negative supercoils to DNA using a strand passage mechanism that has been investigated using biophysical and biochemical approaches. To analyze the dynamics of substeps leading to strand passage, single-molecule rotor bead tracking (RBT) has been used previously to follow real-time supercoiling and conformational transitions in Escherichia coli (EC) gyrase. However, RBT has not yet been applied to gyrase from other pathogenically relevant bacteria, and it is not known whether substeps are conserved across evolutionarily distant species. Here, we compare gyrase supercoiling dynamics between two evolutionarily distant bacterial species, MTB and EC. We used RBT to measure supercoiling rates, processivities, and the geometries and transition kinetics of conformational states of purified gyrase proteins in complex with DNA. Our results show that E. coli and MTB gyrases are both processive, with the MTB enzyme displaying velocities â¼5.5× slower than the EC enzyme. Compared with EC gyrase, MTB gyrase also more readily populates an intermediate state with DNA chirally wrapped around the enzyme, in both the presence and absence of ATP. Our substep measurements reveal common features in conformational states of EC and MTB gyrases interacting with DNA but also suggest differences in populations and transition rates that may reflect distinct cellular needs between these two species.
Assuntos
DNA Girase , Escherichia coli , Mycobacterium tuberculosis , Trifosfato de Adenosina/metabolismo , DNA , DNA Girase/química , DNA Girase/metabolismo , DNA Super-Helicoidal , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/metabolismo , Simulação de Dinâmica MolecularRESUMO
DNA gyrase, the sole negative supercoiling type II topoisomerase, is composed of two subunits, GyrA and GyrB, encoded by the gyrA and gyrB genes, respectively, that form a quaternary complex of A2 B2 . In this study, we have investigated the assembly of mycobacterial DNA gyrase from its individual subunits, a step prerequisite for its activity. Using analytical size-exclusion chromatography, we show that GyrA from Mycobacterium tuberculosis and Mycobacterium smegmatis forms tetramers (A4 ) in solution unlike in Escherichia coli and other bacteria where GyrA exists as a dimer. GyrB, however, persists as a monomer, resembling the pattern found in E. coli. GyrB in both mycobacterial species interacts with GyrA and triggers the dissociation of the GyrA tetramer to facilitate the formation of catalytically active A2 B2 . Despite oligomerisation, the GyrA tetramer retained its DNA binding ability, and DNA binding had no effect on GyrA's oligomeric state in both species. Moreover, the presence of DNA facilitated the assembly of holoenzyme in the case of M. smegmatis by stabilising the GyrA2 B2 tetramer but with little effect in M. tuberculosis. Thus, in addition to the distinct organisation and regulation of the gyr locus in mycobacteria, the enzyme assembly also follows a different pattern.
Assuntos
DNA Girase , Mycobacterium tuberculosis , DNA Girase/genética , DNA Girase/metabolismo , Escherichia coli/metabolismo , Mycobacterium tuberculosis/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , DNA Super-HelicoidalRESUMO
Transcription is a noisy and stochastic process that produces sibling-to-sibling variations in physiology across a population of genetically identical cells. This pattern of diversity reflects, in part, the burst-like nature of transcription. Transcription bursting has many causes and a failure to remove the supercoils that accumulate in DNA during transcription elongation is an important contributor. Positive supercoiling of the DNA ahead of the transcription elongation complex can result in RNA polymerase stalling if this DNA topological roadblock is not removed. The relaxation of these positive supercoils is performed by the ATP-dependent type II topoisomerases DNA gyrase and topoisomerase IV. Interference with the action of these topoisomerases involving, inter alia, topoisomerase poisons, fluctuations in the [ATP]/[ADP] ratio, and/or the intervention of nucleoid-associated proteins with GapR-like or YejK-like activities, may have consequences for the smooth operation of the transcriptional machinery. Antibiotic-tolerant (but not resistant) persister cells are among the phenotypic outliers that may emerge. However, interference with type II topoisomerase activity can have much broader consequences, making it an important epigenetic driver of physiological diversity in the bacterial population.
Assuntos
DNA Girase , DNA , DNA Girase/genética , DNA Girase/metabolismo , DNA Topoisomerase IV/genética , Bactérias/genética , Bactérias/metabolismo , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Trifosfato de Adenosina/metabolismo , Epigênese Genética , DNA Super-Helicoidal , DNA Bacteriano/genética , DNA Bacteriano/metabolismoRESUMO
Mycobacterium abscessus (M. abscessus) inherently displays resistance to most antibiotics, with the underlying drug resistance mechanisms remaining largely unexplored. Efflux pump is believed to play an important role in mediating drug resistance. The current study examined the potential of efflux pump inhibitors to reverse levofloxacin (LFX) resistance in M. abscessus. The reference strain of M. abscessus (ATCC19977) and 60 clinical isolates, including 41 M. abscessus subsp. abscessus and 19 M. abscessus subsp. massilense, were investigated. The drug sensitivity of M. abscessus against LFX alone or in conjunction with efflux pump inhibitors, including verapamil (VP), reserpine (RSP), carbonyl cyanide 3-chlorophenylhydrazone (CCCP), or dicyclohexylcarbodiimide (DCC), were determined by AlarmarBlue microplate assay. Drug-resistant regions of the gyrA and gyrB genes from the drug-resistant strains were sequenced. The transcription level of the efflux pump genes was monitored using qRT-PCR. All the tested strains were resistant to LFX. The drug-resistant regions from the gyrA and gyrB genes showed no mutation associated with LFX resistance. CCCP, DCC, VP, and RSP increased the susceptibility of 93.3% (56/60), 91.7% (55/60), 85% (51/60), and 83.3% (50/60) isolates to LFX by 2 to 32-fold, respectively. Elevated transcription of seven efflux pump genes was observed in isolates with a high reduction in LFX MIC values in the presence of efflux pump inhibitors. Efflux pump inhibitors can improve the antibacterial activity of LFX against M. abscessus in vitro. The overexpression of efflux-related genes in LFX-resistant isolates suggests that efflux pumps are associated with the development of LFX resistance in M. abscessus.
Assuntos
Antibacterianos , Levofloxacino , Testes de Sensibilidade Microbiana , Mycobacterium abscessus , Reserpina , Levofloxacino/farmacologia , Antibacterianos/farmacologia , Mycobacterium abscessus/efeitos dos fármacos , Mycobacterium abscessus/genética , Reserpina/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , DNA Girase/genética , DNA Girase/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Farmacorresistência Bacteriana/genética , Humanos , Verapamil/farmacologiaRESUMO
BACKGROUND: Increasing antibiotic resistance in Helicobacter pylori necessitates research on new active molecules. In 2017, delafloxacin, a new fluoroquinolone with chemical properties of activity under acidic conditions, was approved for treatment of community-acquired bacterial pneumonia and acute bacterial skin and soft-tissue infections. Mutations in gyrA are responsible for fluoroquinolone resistance, but certain clinical isolates of H. pylori appear to display a dual phenotype: resistance to levofloxacin associated with very low delafloxacin MICs. OBJECTIVES: To estimate epidemiological cut-off (ECOFF) values and to identify mutations in the gyrA gene, specific to FQ resistance, without increasing the MICs of delafloxacin. METHODS: Clinical strains (nâ=â231) were collected in the bacteriology laboratory of Poitiers University Hospital over a 2 year period to determine the ECOFF of delafloxacin. Retrospectively, 101 clinical strains with an levofloxacin-resistant phenotype (MICâ>â1 mg/L) were selected from 2018 to 2022 for delafloxacin MIC determination and QRDR (gyrA) sequencing. RESULTS: The estimated ECOFF of delafloxacin was ≤0.125 mg/L. No H. pylori isolate showed a levofloxacin-sensitive phenotype with a delafloxacin MIC of >0.125 mg/L. Among the levofloxacin-resistant H. pylori isolates, 53.5% had delafloxacin MICs of ≤0.125 mg/L. The N87I mutation was associated with dual levofloxacin/delafloxacin resistance (Pâ<â0.001) in contrast to the N87K and D91N mutations (Pâ>â0.05). Mutations D91G and D91Y were not associated with a delafloxacin resistance phenotype (Pâ>â0.05). CONCLUSIONS: Delafloxacin seems to be a therapeutic alternative for levofloxacin-resistant strains with greater in vitro activity. However, further clinical/biological investigations are required to determine its efficacy in H. pylori eradication.
Assuntos
Antibacterianos , DNA Girase , Farmacorresistência Bacteriana , Fluoroquinolonas , Infecções por Helicobacter , Helicobacter pylori , Levofloxacino , Testes de Sensibilidade Microbiana , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/genética , Helicobacter pylori/isolamento & purificação , Humanos , Levofloxacino/farmacologia , Antibacterianos/farmacologia , Fluoroquinolonas/farmacologia , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/tratamento farmacológico , Farmacorresistência Bacteriana/genética , DNA Girase/genética , Estudos Retrospectivos , Mutação , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , IdosoRESUMO
OBJECTIVES: The novel dual-target triazaacenaphthylene, gepotidacin, recently showed promising results in its Phase III randomized controlled trial for the treatment of gonorrhoea. We investigated alterations in the gepotidacin GyrA and ParC targets in gonococci by in silico mining of publicly available global genomes (nâ=â33â213) and determined gepotidacin MICs in isolates with GyrA A92 alterations combined with other GyrA and/or ParC alterations. METHODS: We examined gonococcal gyrA and parC alleles available at the European Nucleotide Archive. MICs were determined using the agar dilution method (gepotidacin) or Etest (four antimicrobials). Models of DNA gyrase and topoisomerase IV were obtained from AlphaFold and used to model gepotidacin in the binding site. RESULTS: GyrA A92 alterations were identified in 0.24% of genomes: GyrA A92P/S/Vâ+âS91Fâ+âD95Y/A/N (0.208%), A92Pâ+âS91F (0.024%) and A92P (0.003%), but no A92T (previously associated with gepotidacin resistance) was found. ParC D86 alterations were found in 10.6% of genomes: ParC D86N/G (10.5%), D86Nâ+âS87I (0.051%), D86Nâ+âS88P (0.012%) and D86Gâ+âE91G (0.003%). One isolate had GyrA A92Pâ+âParC D86N alterations, but remained susceptible to gepotidacin (MICâ=â0.125 mg/L). No GyrA plus ParC alterations resulted in a gepotidacin MICâ>â4 mg/L. Modelling of gepotidacin binding to GyrA A92/A92T/A92P suggested that gepotidacin resistance due to GyrA A92T might be linked to the formation of a new polar contact with DNA. CONCLUSIONS: In silico mining of 33â213 global gonococcal genomes (isolates from 1928 to 2023) showed that A92 is highly conserved in GyrA, while alterations in D86 of ParC are common. No GyrA plus ParC alterations caused gepotidacin resistance. MIC determination and genomic surveillance of potential antimicrobial resistance determinants are imperative.
Assuntos
Acenaftenos , Antibacterianos , DNA Girase , DNA Topoisomerase IV , Genoma Bacteriano , Testes de Sensibilidade Microbiana , Neisseria gonorrhoeae , Neisseria gonorrhoeae/efeitos dos fármacos , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/isolamento & purificação , DNA Topoisomerase IV/genética , Acenaftenos/farmacologia , DNA Girase/genética , Antibacterianos/farmacologia , Humanos , Compostos Heterocíclicos com 3 Anéis/farmacologia , Gonorreia/microbiologia , Gonorreia/tratamento farmacológico , Simulação por Computador , Farmacorresistência Bacteriana/genéticaRESUMO
BACKGROUND: The emergence of fluoroquinolone resistance in clinical isolates of Klebsiella pneumoniae is a growing concern. To investigate the mechanisms behind this resistance, we studied a total of 215 K. pneumoniae isolates from hospitals in Bushehr province, Iran, collected between 2017 and 2019. Antimicrobial susceptibility test for fluoroquinolones was determined. The presence of plasmid mediated quinolone resistance (PMQR) and mutations in quinolone resistance-determining region (QRDR) of gyrA and parC genes in ciprofloxacin-resistant K. pneumoniae isolates were identified by PCR and sequencing. RESULTS: Out of 215 K. pneumoniae isolates, 40 were resistant to ciprofloxacin as determined by E-test method. PCR analysis revealed that among these ciprofloxacin-resistant isolates, 13 (32.5%), 7 (17.5%), 40 (100%), and 25 (62.5%) isolates harbored qnrB, qnrS, oqxA and aac(6')-Ib-cr genes, respectively. Mutation analysis of gyrA and parC genes showed that 35 (87.5%) and 34 (85%) of the ciprofloxacin-resistant isolates had mutations in these genes, respectively. The most frequent mutations were observed in codon 83 of gyrA and codon 80 of parC gene. Single gyrA substitution, Ser83â Ile and Asp87âGly, and double substitutions, Ser83âPhe plus Asp87âAla, Ser83âTyr plus Asp87âAla, Ser83âIle plus Asp87âTyr, Ser83âPhe plus Asp87âAsn and Ser83âIle plus Asp87âGly were detected. In addition, Ser80âIle and Glu84âLys single substitution were found in parC gene. CONCLUSIONS: Our results indicated that 90% of isolates have at least one mutation in QRDR of gyrA orparC genes, thus the frequency of mutations was very significant and alarming in our region.
Assuntos
Antibacterianos , DNA Girase , DNA Topoisomerase IV , Farmacorresistência Bacteriana , Infecções por Klebsiella , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Mutação , Plasmídeos , Quinolonas , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , DNA Girase/genética , Plasmídeos/genética , DNA Topoisomerase IV/genética , Humanos , Antibacterianos/farmacologia , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/epidemiologia , Farmacorresistência Bacteriana/genética , Quinolonas/farmacologia , Ciprofloxacina/farmacologia , Irã (Geográfico) , Proteínas de Bactérias/genética , Prevalência , Fluoroquinolonas/farmacologiaRESUMO
BACKGROUND: The emergence of antimicrobial resistance in bacterial pathogens is a growing concern worldwide due to its impact on the treatment of bacterial infections. The "Trojan Horse" strategy has been proposed as a potential solution to overcome drug resistance caused by permeability issues. OBJECTIVE: The objective of our research was to investigate the bactericidal activity and mechanism of action of the "Trojan Horse" strategy using enterobactin conjugated with Ciprofloxacin and Fosfomycin against the antibiotic-resistant Escherichia coli strain OQ866153. METHODOLOGY: Enterobactin, a mixed ligand of E. coli OQ866153, was conjugated with Ciprofloxacin and Fosfomycin individually to aid active absorption via specific enterobactin binding proteins (FepABCDG). The effectiveness of the conjugates was assessed by measuring their bactericidal activity against E. coli OQ866153, as well as their ability to inhibit DNA gyrase enzyme and biofilm formation. RESULTS: The Fe+3-enterobactin-Ciprofloxacin conjugate effectively inhibited the DNA gyrase enzyme (Docking score = -8.597 kcal/mol) and resulted in a lower concentration (25 µg/ml) required to eliminate supercoiled DNA plasmids compared to the parent drug (35 µg/ml; Docking score = -6.264 kcal/mol). The Fe+3-Enterobactin-Fosfomycin conjugate showed a higher inhibition percentage (100%) of biofilm formation compared to Fosfomycin (21.58%) at a concentration of 2 mg/ml, with docking scores of -5.481 and -3.756 kcal/mol against UDP-N acetylglucosamine 1-carboxyvinyltransferase MurA. CONCLUSION: The findings of this study suggest that the "Trojan Horse" strategy using enterobactin conjugated with Ciprofloxacin and Fosfomycin can effectively overcome permeability issues caused by efflux proteins and enhance the bactericidal activity of these drugs against antibiotic-resistant strains of E. coli.
Assuntos
Antibacterianos , Fosfomicina , Antibacterianos/química , Fosfomicina/farmacologia , Ciprofloxacina/farmacologia , Escherichia coli , Enterobactina/química , Enterobactina/metabolismo , Enterobactina/farmacologia , DNA Girase , Testes de Sensibilidade MicrobianaRESUMO
BACKGROUND: The usage of fluoroquinolones in Norwegian livestock production is very low, including in broiler production. Historically, quinolone-resistant Escherichia coli (QREC) isolated from Norwegian production animals rarely occur. However, with the introduction of a selective screening method for QREC in the Norwegian monitoring programme for antimicrobial resistance in the veterinary sector in 2014; 89.5% of broiler caecal samples and 70.7% of broiler meat samples were positive. This triggered the concern if there could be possible links between broiler and human reservoirs of QREC. We are addressing this by characterizing genomes of QREC from humans (healthy carriers and patients) and broiler isolates (meat and caecum). RESULTS: The most frequent mechanism for quinolone resistance in both broiler and human E. coli isolates were mutations in the chromosomally located gyrA and parC genes, although plasmid mediated quinolone resistance (PMQR) was also identified. There was some relatedness of the isolates within human and broiler groups, but little between these two groups. Further, some overlap was seen for isolates with the same sequence type isolated from broiler and humans, but overall, the SNP distance was high. CONCLUSION: Based on data from this study, QREC from broiler makes a limited contribution to the incidence of QREC in humans in Norway.
Assuntos
Antibacterianos , Galinhas , Farmacorresistência Bacteriana , Infecções por Escherichia coli , Escherichia coli , Quinolonas , Animais , Galinhas/microbiologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Humanos , Noruega , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Farmacorresistência Bacteriana/genética , Quinolonas/farmacologia , Antibacterianos/farmacologia , Genômica , Plasmídeos/genética , Doenças das Aves Domésticas/microbiologia , Testes de Sensibilidade Microbiana , Genoma Bacteriano/genética , DNA Girase/genética , DNA Topoisomerase IV/genética , Carne/microbiologia , Mutação , Proteínas de Escherichia coli/genética , Ceco/microbiologiaRESUMO
The antimicrobial resistance crisis requires the introduction of novel antibiotics. The use of conventional broad-spectrum compounds selects for resistance in off-target pathogens and harms the microbiome. This is especially true for Mycobacterium tuberculosis, where treatment requires a 6-month course of antibiotics. Here we show that a novel antimicrobial from Photorhabdus noenieputensis, which we named evybactin, is a potent and selective antibiotic acting against M. tuberculosis. Evybactin targets DNA gyrase and binds to a site overlapping with synthetic thiophene poisons. Given the conserved nature of DNA gyrase, the observed selectivity against M. tuberculosis is puzzling. We found that evybactin is smuggled into the cell by a promiscuous transporter of hydrophilic compounds, BacA. Evybactin is the first, but likely not the only, antimicrobial compound found to employ this unusual mechanism of selectivity.
Assuntos
Mycobacterium tuberculosis , Venenos , Tuberculose , Humanos , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/metabolismo , Mycobacterium tuberculosis/metabolismo , DNA Girase/genética , Antibacterianos/farmacologia , Tiofenos/metabolismo , Venenos/metabolismo , Antituberculosos/farmacologiaRESUMO
BACKGROUND: The current standard treatment for Helicobacter pylori infection, which involves a combination of two broad-spectrum antibiotics, faces significant challenges due to its detrimental impact on the gut microbiota and the emergence of drug-resistant strains. This underscores the urgent requirement for the development of novel anti-H. pylori drugs. Zoliflodacin, a novel bacterial gyrase inhibitor, is currently undergoing global phase III clinical trials for treating uncomplicated Neisseria gonorrhoeae. However, there is no available data regarding its activity against H. pylori. MATERIALS AND METHODS: We evaluated the in vitro activity of zoliflodacin against H. pylori clinical isolates (n = 123) with diverse multidrug resistance. We performed DNA gyrase supercoiling and microscale thermophoresis assays to identify the target of zoliflodacin in H. pylori. We analyzed 2262 H. pylori whole genome sequences to identify Asp424Asn and Lys445Asn mutations in DNA gyrase subunit B (GyrB) that are associated with zoliflodacin resistance. RESULTS: Zoliflodacin exhibits potent activity against all tested isolates, with minimal inhibitory concentration (MIC) values ranging from 0.008 to 1 µg/mL (MIC50: 0.125 µg/mL; MIC90: 0.25 µg/mL). Importantly, there was no evidence of cross-resistance to any of the four first-line antibiotics commonly used against H. pylori. We identified GyrB as the primary target of zoliflodacin, with Asp424Asn or Lys445Asn substitutions conferring resistance. Screening of 2262 available H. pylori genomes for the two mutations revealed only one clinical isolate carrying Asp424Asn substitution. CONCLUSION: These findings support the potential of zoliflodacin as a promising candidate for H. pylori treatment, warranting further development and evaluation.