Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 796
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Ann Hematol ; 103(1): 29-36, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37971548

RESUMO

OBJECTIVES: This study aimed to investigate the incidence rate and spectrum of gene mutations of Glucose-6-phosphate dehydrogenase (G6PD) deficiency in the Huizhou city of southern China to provide a scientific basis for disease prevention and control in the area. METHODS: From March 2003 to December 2022, newborn screening for G6PD enzyme activity was carried out in Huizhou city using the fluorescence quantitative method. Infants who tested positive during the initial screening were diagnosed using the nitroblue tetrazolium ratio method, while a subset of infants received further gene mutation analysis using the multicolor probe melting curve analysis method. RESULTS: A total of 1,291,274 newborns were screened and the screening rate has increased from 20.39% to almost 100%. In the 20-year period, 57,217 (4.43%) infants testing positive during the initial screening. Out of these infants, 49,779 (87%) were recalled for confirmatory testing. G6PD deficiency was confirmed in 39,261 of the recalled infants, indicating a positive predictive value of 78.87%. The estimated incidence rate of G6PD deficiency in the region was 3.49%, which was significantly higher than the average incidence rate of 2.1% in southern China. On the other hand, seven pathogenic G6PD variants were identified in the analysis of the 99 diagnosed infants with the most common being c.1388 G > A (48.5%), followed by c.95 A > G (19.2%), c.1376 G > T (15.2%), c.871 G > A (9.1%), c.1360 C > T (3.0%), c.392 G > T (3.0%), and c.487 G > A (1.0%). CONCLUSION: The incidence of G6PD deficiency in newborns in the Huizhou city was higher than the southern China average level, while the types and frequencies of gene mutations were found to vary slightly from other regions. Our findings suggested that free government screening and nearby diagnosis strategies could reduce the incidence of G6PD deficiency in the area.


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Lactente , Humanos , Recém-Nascido , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Deficiência de Glucosefosfato Desidrogenase/genética , Taxa de Mutação , Glucosefosfato Desidrogenase/genética , Mutação , Triagem Neonatal , China/epidemiologia
2.
Malar J ; 23(1): 241, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135005

RESUMO

BACKGROUND: Testing for glucose-6-phosphate dehydrogenase (G6PD) deficiency is an important consideration regarding treatment for malaria. G6PD deficiency may lead to haemolytic anaemia during malaria treatment and, therefore, determining G6PD deficiency in malaria treatment strategies is extremely important. METHODS: This report presents the results of a scoping review and evidence and gap map for consideration by the Guideline Development Group for G6PD near patient tests to support radical cure of Plasmodium vivax. This scoping review has investigated common diagnostic tests for G6PD deficiency and important contextual and additional factors for decision-making. These factors include six of the considerations recommended by the World Health Organization (WHO) handbook for guideline development as important to determining the direction and strength of a recommendation, and included 'acceptability', 'feasibility,' 'equity,' 'valuation of outcomes,' 'gender' and 'human rights'. The aim of this scoping review is to inform the direction of future systematic reviews and evidence syntheses, which can then better inform the development of WHO recommendations regarding the use of G6PD deficiency testing as part of malaria treatment strategies. RESULTS: A comprehensive search was performed, including published, peer-reviewed literature for any article, of any study design and methodology that investigated G6PD diagnostic tests and the factors of 'acceptability', 'feasibility,' 'equity,' 'valuation of outcomes,' 'gender' and 'human rights'. There were 1152 studies identified from the search, of which 14 were determined to be eligible for inclusion into this review. The studies contained data from over 21 unique countries that had considered G6PD diagnostic testing as part of a malaria treatment strategy. The relationship between contextual and additional factors, diagnostic tests for G6PD deficiency and study methodology is presented in an overall evidence and gap, which showed that majority of the evidence was for the contextual factors for diagnostic tests, and the 'Standard G6PD (SD Biosensor)' test. CONCLUSIONS: This scoping review has produced a dynamic evidence and gap map that is reactive to emerging evidence within the field of G6PD diagnostic testing. The evidence and gap map has provided a comprehensive depiction of all the available literature that address the contextual and additional factors important for decision-making, regarding specific G6PD diagnostic tests. The majority of data available investigating the contextual factors of interest relates to quantitative G6PD diagnostic tests. While a formal qualitative synthesis of this data as part of a systematic review is possible, the data may be too heterogenous for this to be appropriate. These results can now be used to inform future direction of WHO Guideline Development Groups for G6PD near patient tests to support radical cure of P. vivax malaria.


Assuntos
Testes Diagnósticos de Rotina , Deficiência de Glucosefosfato Desidrogenase , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Humanos , Testes Diagnósticos de Rotina/métodos , Testes Diagnósticos de Rotina/estatística & dados numéricos , Malária Vivax/diagnóstico , Malária Vivax/tratamento farmacológico , Malária/diagnóstico , Malária/tratamento farmacológico
3.
Malar J ; 23(1): 38, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308253

RESUMO

BACKGROUND: It was hypothesized that glucose-6-phosphate dehydrogenase (G6PD) deficiency confers a protective effect against malaria infection, however, safety concerns have been raised regarding haemolytic toxicity caused by radical cure with 8-aminoquinolines in G6PD-deficient individuals. Malaria elimination and control are also complicated by the high prevalence of G6PD deficiency in malaria-endemic areas. Hence, accurate identification of G6PD deficiency is required to identify those who are eligible for malaria treatment using 8-aminoquinolines. METHODS: The prevalence of G6PD deficiency among 408 Thai participants diagnosed with malaria by microscopy (71), and malaria-negative controls (337), was assessed using a phenotypic test based on water-soluble tetrazolium salts. High-resolution melting (HRM) curve analysis was developed from a previous study to enable the detection of 15 common missense, synonymous and intronic G6PD mutations in Asian populations. The identified mutations were subjected to biochemical and structural characterisation to understand the molecular mechanisms underlying enzyme deficiency. RESULTS: Based on phenotypic testing, the prevalence of G6PD deficiency (< 30% activity) was 6.13% (25/408) and intermediate deficiency (30-70% activity) was found in 15.20% (62/408) of participants. Several G6PD genotypes with newly discovered double missense variants were identified by HRM assays, including G6PD Gaohe + Viangchan, G6PD Valladolid + Viangchan and G6PD Canton + Viangchan. A significantly high frequency of synonymous (c.1311C>T) and intronic (c.1365-13T>C and c.486-34delT) mutations was detected with intermediate to normal enzyme activity. The double missense mutations were less catalytically active than their corresponding single missense mutations, resulting in severe enzyme deficiency. While the mutations had a minor effect on binding affinity, structural instability was a key contributor to the enzyme deficiency observed in G6PD-deficient individuals. CONCLUSIONS: With varying degrees of enzyme deficiency, G6PD genotyping can be used as a complement to phenotypic screening to identify those who are eligible for 8-aminoquinolines. The information gained from this study could be useful for management and treatment of malaria, as well as for the prevention of unanticipated reactions to certain medications and foods in the studied population.


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Malária , Humanos , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Deficiência de Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Tailândia/epidemiologia , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/análise , Malária/epidemiologia , Aminoquinolinas/efeitos adversos
4.
Clin Lab ; 70(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38868868

RESUMO

BACKGROUND: Klinefelter syndrome is a common sex chromosome abnormality in males, characterized by an extra X chromosome compared to normal males. Glucose-6-phosphate dehydrogenase deficiency (G6PD) is an X-linked incomplete dominant defect disorder. In this study, we reported the unexpected detection of Klinefelter syndrome in a patient with G6PD. METHODS: G6PD enzyme activity was measured by immunoenzyme assay, and genetic analysis was performed using a fluorescent PCR melting curve method (PCR-melting curve). Sex chromosome number abnormalities were detected by multiplex ligation-dependent probe amplification (MLPA). The patient also underwent peripheral blood chromosome karyotype analysis. RESULTS: The patient's G6PD and 6PGD enzyme activities were 21.34 U/L and 22.85 U/L, respectively, and their ratio was below the reference range (0.93). The PCR-melting curve displayed a c.1388 heterozygous mutation in this boy, and the Sanger sequencing provided the same results. MLPA results suggested the presence of approxi-mately two copies of the X-chromosome in the boy. Finally, chromosome karyotype analysis confirmed that the boy had Klinefelter syndrome with a karyotype of 47, XXY. CONCLUSIONS: Klinefelter syndrome was accidentally detected during G6PD genetic analysis in a male. X-chromosomes can interfere with the results of G6PD genetic analysis and should be noted.


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Glucosefosfato Desidrogenase , Síndrome de Klinefelter , Humanos , Síndrome de Klinefelter/genética , Síndrome de Klinefelter/diagnóstico , Síndrome de Klinefelter/complicações , Masculino , Deficiência de Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/complicações , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Glucosefosfato Desidrogenase/genética , Cariotipagem , Mutação , Testes Genéticos/métodos , Cromossomos Humanos X/genética
5.
Medicina (Kaunas) ; 60(9)2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39336532

RESUMO

Background and Objectives: To evaluate the clinical findings of glucose 6-phosphate dehydrogenase (G6PD) and pyruvate kinase (PK) deficiency in prolonged jaundice and to determine whether the systemic immune inflammation index (SII), neutrophil-to-lymphocyte ratio (NLR), and platelet-to-lymphocyte ratio (PLR) can be used in the diagnosis of neonatal prolonged jaundice. Materials and Methods: Among full-term neonates with hyperbilirubinemia who were admitted to Medicine Hospital between January 2019 and January 2024 with the complaint of jaundice, 167 infants with a serum bilirubin level above 10 mg/dL, whose jaundice persisted after the 10th day, were included in this study. Results: G6PD activity was negatively correlated with NLR, SII, age, and hematocrit (Hct). There was a weak negative correlation between G6PD and NLR and a moderate negative correlation between G6PD activity and SII when adjusted for age and Hct. PK activity showed no significant correlation with G6PD, NLR, PLR, SII, age, and Hct. A linear relationship was observed between G6PD activity and SII and NLR. Conclusions: NLR and SII can be easily calculated in the evaluation of prolonged jaundice in G6PD deficiency has a considerable advantage. NLR and SII levels may contribute by preventing further tests for prolonged jaundice and regulating its treatment. It may be useful to form an opinion in emergencies and in early diagnostic period.


Assuntos
Biomarcadores , Glucosefosfato Desidrogenase , Inflamação , Icterícia Neonatal , Piruvato Quinase , Humanos , Icterícia Neonatal/sangue , Icterícia Neonatal/diagnóstico , Piruvato Quinase/sangue , Piruvato Quinase/deficiência , Piruvato Quinase/análise , Recém-Nascido , Biomarcadores/sangue , Feminino , Masculino , Inflamação/sangue , Glucosefosfato Desidrogenase/sangue , Deficiência de Glucosefosfato Desidrogenase/sangue , Deficiência de Glucosefosfato Desidrogenase/complicações , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Erros Inatos do Metabolismo dos Piruvatos/sangue , Erros Inatos do Metabolismo dos Piruvatos/complicações , Neutrófilos , Anemia Hemolítica Congênita não Esferocítica
6.
Clin Infect Dis ; 77(7): 972-975, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37282346

RESUMO

In this cohort study conducted in a national healthcare organization in Israel, we found that individuals with glucose-6-phosphate dehydrogenase deficiency had an increased risk of coronavirus disease 2019 (COVID-19) infection and severity, with higher rates of hospitalization and diagnosed long COVID.


Assuntos
COVID-19 , Deficiência de Glucosefosfato Desidrogenase , Glucosefosfato Desidrogenase , Humanos , Estudos de Coortes , COVID-19/genética , Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/complicações , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Israel/epidemiologia , Síndrome de COVID-19 Pós-Aguda
7.
Malar J ; 22(1): 372, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062464

RESUMO

BACKGROUND: The use of primaquine for mass drug administration (MDA) is being considered as a key strategy for malaria elimination. In addition to being the only drug active against the dormant and relapsing forms of Plasmodium vivax, primaquine is the sole potent drug against mature/infectious Plasmodium falciparum gametocytes. It may prevent onward transmission and help contain the spread of artemisinin resistance. However, higher dose of primaquine is associated with the risk of acute haemolytic anaemia in individuals with a deficiency in glucose-6-phosphate dehydrogenase. In many P. falciparum endemic areas there is paucity of information about the distribution of individuals at risk of primaquine-induced haemolysis at higher dose 45 mg of primaquine. METHODS: A retrospective cross-sectional study was carried out using archived samples to establish the prevalence of G6PD deficiency in a malaria hotspot area in Misungwi district, located in Mwanza region, Tanzania. Blood samples collected from individuals recruited between August and November 2010 were genotyped for G6PD deficiency and submicroscopic parasites carriage using polymerase chain reaction. RESULTS: A total of 263 individuals aged between 0 and 87 were recruited. The overall prevalence of the X-linked G6PD A- mutation was 83.7% (220/263) wild type, 8% (21/263) heterozygous and 8.4% (22/263) homozygous or hemizygous. Although, assessment of the enzymatic activity to assign the phenotypes according to severity and clinical manifestation as per WHO was not carried out, the overall genotype and allele frequency for the G6PD deficiency was 16.4% and 13. 2%, respectively. There was no statistically significant difference in among the different G6PD genotypes (p > 0.05). Out of 248 samples analysed for submicroscopic parasites carriage, 58.1% (144/248) were P. falciparum positive by PCR. G6PD heterozygous deficiency were associated with carriage of submicroscopic P. falciparum (p = 0.029). CONCLUSIONS: This study showed that 16.4% of the population in this part of North-western Tanzania carry the G6PD A- mutation, within the range of 15-32% seen in other parts of Africa. G6PD gene mutation is widespread and heterogeneous across the study area where primaquine would be valuable for malaria control and elimination. The maps and population estimates presented here reflect potential risk of higher dose of primaquine being associated with the risk of acute haemolytic anaemia (AHA) in individuals with a deficiency in glucose-6-phosphate dehydrogenase and call further research on mapping of G6PD deficiency in Tanzania. Therefore, screening and education programmes for G6PD deficiency is warranted in a programme of malaria elimination using a higher primaquine dose.


Assuntos
Antimaláricos , Deficiência de Glucosefosfato Desidrogenase , Malária Falciparum , Malária Vivax , Malária , Parasitos , Humanos , Animais , Recém-Nascido , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Primaquina/efeitos adversos , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Deficiência de Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Antimaláricos/uso terapêutico , Glucosefosfato Desidrogenase/genética , Tanzânia/epidemiologia , Prevalência , Estudos Transversais , Estudos Retrospectivos , Malária/tratamento farmacológico , Malária Falciparum/prevenção & controle , Hemólise , Malária Vivax/epidemiologia , Malária Vivax/tratamento farmacológico
8.
Infection ; 51(1): 213-222, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35976559

RESUMO

BACKGROUND: Primaquine is essential for the radical cure of Plasmodium vivax malaria, but it poses a potential danger of severe hemolysis in G6PD-deficient (G6PDd) patients. This study aimed to determine whether primaquine is safe in a population with high G6PD prevalence but lacking G6PD diagnosis capacity. METHODS: In Myanmar, 152 vivax patients were gender- and age-matched at 1:3 for G6PDd versus G6PD-normal (G6PDn). Their risk of acute hemolysis was followed for 28 days after treatment with the standard chloroquine and 14-day primaquine (0.25 mg/kg/day) regimen. RESULTS: Patients anemic and non-anemic at enrollment showed a rising and declining trend in the mean hemoglobin level, respectively. In males, the G6PDd group showed substantially larger magnitudes of hemoglobin reduction and lower hemoglobin nadir levels than the G6PDn group, but this trend was not evident in females. Almost 1/3 of the patients experienced clinically concerning declines in hemoglobin, with five requiring blood transfusion. CONCLUSIONS: The standard 14-day primaquine regimen carries a significant risk of acute hemolytic anemia (AHA) in vivax patients without G6PD testing in a population with a high prevalence of G6PD deficiency and anemia. G6PD testing would avoid most of the clinically significant Hb reductions and AHA in male patients.


Assuntos
Antimaláricos , Deficiência de Glucosefosfato Desidrogenase , Malária Vivax , Feminino , Humanos , Masculino , Primaquina/efeitos adversos , Malária Vivax/tratamento farmacológico , Malária Vivax/epidemiologia , Deficiência de Glucosefosfato Desidrogenase/complicações , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Hemólise , Antimaláricos/efeitos adversos , Prevalência , Glucosefosfato Desidrogenase/uso terapêutico , Hemoglobinas , Plasmodium vivax
9.
Malays J Pathol ; 45(1): 31-41, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37119244

RESUMO

INTRODUCTION: The treatment of Plasmodium vivax malaria with 8-aminoquinolines is contraindicated in glucose-6-phosphate dehydrogenase (G6PD) deficient individuals due to the risk of acute haemolytic anaemia. Effective G6PD screening is paramount to avoid adverse drug reactions. This study aimed to evaluate the performance of novel quantitative point-of-care (POC) tests as a new screening method for G6PD deficiency in Malaysia. MATERIALS AND METHODS: A total of 153 neonatal cord blood, 99 peripheral blood of older children aged between 1 month to 12-years old, and 62 peripheral adult blood were screened for G6PD deficiency using two quantitative POC tests, CareStartTM biosensor (Carestart) and CareStartTM Biosensor 1 (S1). The results were compared with OSMMR2000D kit as a reference assay. Two statistical analyses were performed in this study to evaluate the POC test performances, the Spearman's correlation test and the Cohen's kappa method. RESULTS: Both Carestart and S1 tests showed significant positive correlations to OSMMRS000D with r2 = 0.7916 and r2 = 0.7467. Their measurement of agreement showed a kappa (κ) value of 0.805 (p<0.001, 95% CI), and 0.795 (p<0.001, 95% CI), respectively. Analysis of the area under the Receiver Operating Curve (ROC) at 60% cut-off illustrated that the Carestart had 90.2% sensitivity, 98.9% specificity, 98.3% positive predictive value (PPV), and 93.8% negative predictive value (NPV). The corresponding values for the S1 were 95.2%, 100%, 100%, and 96.8%, respectively. CONCLUSION: This study showed that the Carestart and S1 biosensors have high-performance reliability for screening of G6PD deficiency, which can guide safe prescriptions of anti-malaria medications and hence, eradication of Plasmodium vivax malaria.


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Malária Vivax , Adulto , Criança , Recém-Nascido , Humanos , Adolescente , Lactente , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Glucosefosfato Desidrogenase/uso terapêutico , Malária Vivax/diagnóstico , Malária Vivax/tratamento farmacológico , Reprodutibilidade dos Testes , Malásia , Testes Imediatos
10.
Pharmacogenet Genomics ; 32(3): 87-93, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34693927

RESUMO

Glucose-6-phosphate-dehydrogenase (G6PD) deficiency is a common X-linked enzyme disorder associated with hemolytic anemia after exposure to fava beans or certain medications. Activity testing is the gold standard for detecting G6PD deficiency; however, this test is affected by various hematologic parameters. Clinical G6PD genotyping is now included in pharmacogenetic arrays and clinical sequencing efforts and may be reconciled with activity results. Patients (n = 1391) enrolled on an institutional pharmacogenetic testing protocol underwent clinical G6PD genotyping for 164 G6PD variants. An algorithm accounting for known interferences with the activity assay is proposed. We developed clinical decision support alerts to inform prescribers when high-risk medications were prescribed, warning of gene-drug interactions and recommending therapy alteration. Of 1391 patients with genotype results, 1334 (95.9%) patients were predicted to have normal G6PD activity, 30 (2.1%) were predicted to have variable G6PD activity and 27 (2%) were predicted to have deficient G6PD activity. Of the 417 patients with a normal genotype and an activity result, 415 (99.5%) had a concordant normal G6PD phenotype. Of the 21 patients with a deficient genotype and an activity result, 18 (85.7%) had a concordant deficient activity result. Genotyping reassigned phenotype in five patients with discordant genotype and activity results: three switched from normal to deficient, and two switched from deficient to normal. G6PD activity and genotyping are two independent testing methods that can be used in conjunction to assign a more informed G6PD phenotype than either method alone.


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Genótipo , Deficiência de Glucosefosfato Desidrogenase/complicações , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Deficiência de Glucosefosfato Desidrogenase/genética , Humanos , Farmacogenética
11.
Ann Hematol ; 101(10): 2149-2157, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35840819

RESUMO

In heterozygous females, X-inactivation causes a change in glucose-6-phosphate dehydrogenase (G6PD) activity from normal to deficient. Most G6PD screening tests are used to accurately diagnose hemizygous males, but they are less reliable for diagnosing heterozygous females. This study established flow cytometric cut-off values for screening of G6PD deficiency in hemizygous males and heterozygous or homozygous females. We studied 205 (125 females, 80 males) leftover blood samples from quantitative methemoglobin reduction (MR) screening. G6PD gene mutations determined by multiplex amplification refractory mutation system-polymerase chain reaction and direct DNA sequencing were used as the gold standard reference. Accuracy of the test, including the sensitivity, specificity, and positive and negative predictive values, was analyzed using MedCalc software. The optimal cut-off values for classification of %red blood cells with normal G6PD activity or %bright cells into homozygous normal, heterozygous, and homozygous deficiency in females were 85.4-100%, 6.3-85.3%, and 0-6.2%, respectively (sensitivity 93.2%, specificity 100%). The cut-offs for classification into hemizygous normal and hemizygous deficiency in males were 76.5-100% and 0-76.4%, respectively (sensitivity 100%, specificity 96.5%). Flow cytometry can be used to differentiate heterozygous females with intermediate phenotype from homozygous females, but cannot distinguish between heterozygous females with extreme phenotype and homozygous females. By flow cytometry, heterozygous and homozygous deficiency was detected in 29.6% and 3.2% of females, respectively. Among males, hemizygous deficiency was found in 31.3%. Flow cytometry can be used to screen patients with G6PD deficiency, and reliably and efficiently identify heterozygous and homozygous females, and hemizygous males based on cellular G6PD activity.


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Eritrócitos , Feminino , Citometria de Fluxo , Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Deficiência de Glucosefosfato Desidrogenase/genética , Heterozigoto , Humanos , Masculino , Tailândia/epidemiologia
12.
Malar J ; 21(1): 282, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195916

RESUMO

BACKGROUND: Quantitative measurement of Glucose-6-Phosphate Dehydrogenase (G6PD) enzyme activity is critical to decide on appropriate treatment and provision of radical cure regimens for vivax malaria. Biosensors are point-of-care semi-quantitative analysers that measure G6PD enzyme activity. The main objective of this study was to evaluate the operational aspects of biosensor deployment in the hands of village malaria workers (VMWs) in Cambodia over a year. METHODS: Following initial orientation and training at Kravanh Referral Hospital, each VMW (n = 28) and laboratory technician (n = 5) was provided a biosensor (STANDARD SD Biosensor, Republic of Korea) with supplies for routine use. Over the next 12 months VMWs convened every month for refresher training, to collect supplies, and to recalibrate and test their biosensors. A quantitative self-administered questionnaire was used to assess the skills necessary to use the biosensor after the initial training. Subsequently, VMWs were visited at their location of work for field observation and evaluation using an observer-administered questionnaire. All quantitative questionnaire-based data were analysed descriptively. Semi-structured interviews (SSIs) were conducted among all participants to explore their experience and practicalities of using the biosensor in the field. SSIs were transcribed and translated into English and underwent thematic analysis. RESULTS: A total of 33 participants completed the training and subsequently used the biosensor in the community. Quantitative assessments demonstrated progressive improvement in skills using the biosensor. VMWs expressed confidence and enthusiasm to use biosensors in their routine work. Providing G6PD testing at the point of first contact avoids a multitude of barriers patients have to overcome when travelling to health centres for G6PD testing and radical cure. Deploying biosensors in routine work of VMWs was also considered an opportunity to expand and strengthen the role of VMWs as health care providers in the community. VMWs reported practical concerns related to the use of biosensor such as difficulty in using two pipettes, difficulty in extracting the code chip from the machine, and the narrow base of buffer tube. CONCLUSIONS: VMWs considered the biosensor a practical and beneficial tool in their routine work. Providing VMWs with biosensors can be considered when followed by appropriate training and regular supervision. Providing community management of vivax malaria at the point of first contact could be key for elimination.


Assuntos
Antimaláricos , Técnicas Biossensoriais , Deficiência de Glucosefosfato Desidrogenase , Malária Vivax , Malária , Antimaláricos/uso terapêutico , Camboja , Glucosefosfato Desidrogenase , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Deficiência de Glucosefosfato Desidrogenase/tratamento farmacológico , Humanos , Malária/diagnóstico , Malária/tratamento farmacológico , Malária Vivax/diagnóstico , Malária Vivax/tratamento farmacológico , Primaquina/uso terapêutico
13.
Br J Clin Pharmacol ; 88(9): 4163-4170, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35419830

RESUMO

AIMS: Glucose-6-phosphate dehydrogenase (G6PD) deficiency, the most common enzymopathy in humans, can cause acute haemolysis resulting from exposure to certain medications, chemicals, infections and fava beans. Rasburicase, used to manage elevated uric acid levels in the oncologic emergency of tumour lysis syndrome, is one such drug. The US Food and Drug Administration (FDA) recommends testing of G6PD status prior to rasburicase administration for patients at higher risk for G6PD deficiency. METHODS: We performed a retrospective chart review of all oncology patients for whom a semi-quantitative biochemical test for detecting G6PD deficiency was performed prior to rasburicase administration over a 2.5-year period, in a large academic metropolitan hospital. RESULTS: We identified 16 out of 260 tested individuals as G6PD-deficient (6.1%), including six females. On average, test results were electronically available to health care providers within 4 hours of sample collection, with most results available within 2-3 hours. Four G6PD-deficient patients developed elevated uric acid levels. Two of the G6PD-deficient patients were treated with rasburicase, and subsequently developed haemolysis, which was appropriately managed. CONCLUSION: In summary, by providing information about G6PD status with a rapid turnaround time, we have taken a significant step towards personalized medicine in our institution. In spite of the test implementation, two out of four G6PD-deficient patients, who were no longer candidates for rasburicase use, still received the drug, highlighting the need for improved provider education.


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Urato Oxidase , Feminino , Deficiência de Glucosefosfato Desidrogenase/complicações , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Hemólise , Humanos , Estudos Retrospectivos , Centros de Atenção Terciária , Urato Oxidase/administração & dosagem , Urato Oxidase/efeitos adversos , Ácido Úrico
14.
Transfus Med ; 32(4): 293-298, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35534916

RESUMO

BACKGROUND: Recent studies revealed the glucose-6-phosphate dehydrogenase (G-6-PD) deficiency prevalence of 7.7-10% among Thai blood donors. Transfusion of red blood cells (RBCs) from these subjects potentially causes haemolysis in recipients. METHODS: RBC units from the National Blood Centre were sampled to assess G-6-PD levels using spectrophotometry. Patients with pure underproduction anaemia requiring blood transfusion were randomised to receive G-6-PD-deficient versus normal ABO-matched RBCs. Pre- and 48-h post-transfusion indirect bilirubin, haemoglobin, haematocrit, lactate dehydrogenase (LDH) and haptoglobin were measured. RESULTS: From April 2020 to March 2021, 374 RBC units were tested for G-6-PD, and that 25 were found to be G-6-PD deficient. Twelve units of G-6-PD-deficient RBCs and 14 units of normal RBCs were given to patients who met the inclusion criteria. The median (interquartile range) increases of indirect bilirubin in G-6-PD-deficient (N = 11) versus normal RBCs (N = 13) were + 0.12 (0.27) versus + 0.01 (1.3) mg/dl, p = 0.030), respectively. The median increases of haemoglobin were 1.00 (0.50) versus + 0.80 (0.95), p = 0.910, respectively. The increases in haematocrit were 2.59 (1.9) versus 2.29 (2.1), p = 0.733, respectively. There were no significant differences in changes of LDH and haptoglobin levels and no transfusion reactions. DISCUSSION: G-6-PD-deficient packed red cells were associated with mildly elevated indirect bilirubin after transfusion, but there was no observed clinical symptoms.


Assuntos
Anemia , Deficiência de Glucosefosfato Desidrogenase , Anemia/terapia , Bilirrubina , Transfusão de Eritrócitos , Glucosefosfato Desidrogenase , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Deficiência de Glucosefosfato Desidrogenase/terapia , Haptoglobinas , Hemoglobinas , Humanos
15.
BMC Pediatr ; 22(1): 678, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36419023

RESUMO

BACKGROUND: Screening for G6PD deficiency in newborns can help prevent severe hemolysis, hyperbilirubinemia, and bilirubin encephalopathy, as recommended by the World Health Organization (WHO). It has been speculated that the presence of a high number of reticulocytes in newborns interferes with the diagnosis of G6PD deficiency since reticulocytes contain higher amounts of G6PD enzyme than mature erythrocytes. Therefore, the purposes of this study were to assess the effect of reticulocytosis in the determination of blood G6PD activity in Thai newborns by using a novel automated UV-based enzymatic assay and to validate the performance of this assay for the detection of G6PD deficiency in newborn samples. METHODS: The levels of reticulocytes and G6PD activity were measured in blood samples collected from 1,015 newborns. G6PD mutations were identified using TaqMan® SNP genotyping assay, PCR-restriction fragment length polymorphism (PCR-RFLP), and direct sequencing. The correlation between the levels of reticulocytes and G6PD activity was examined. The performance of the automated method was compared with that of the fluorescent spot test (FST) and the standard quantitative assay. RESULTS: The automated assay detected G6PD deficiency in 6.5% of the total newborn subjects compared to 5.3% and 6.1% by the FST and the standard method, respectively. The minor allele frequencies (MAFs) of G6PD ViangchanG871A, G6PD MahidolG487A, and G6PD UnionC1360T were 0.066, 0.005, and 0.005, respectively. The reticulocyte counts in newborns with G6PD deficiency were significantly higher than those in normal male newborns (p < 0.001). Compared with normal newborns after controlling for thalassemias and hemoglobinopathies, G6PD-deficient patients with the G6PD ViangchanG871A mutation exhibited elevated reticulocyte counts (5.82 ± 1.73%, p < 0.001). In a group of G6PD normal newborns, the percentage of reticulocytes was positively correlated with G6PD activity (r = 0.327, p < 0.001). However, there was no correlation between G6PD activity and the levels of reticulocytes in subjects with G6PD deficiency (r = -0.019, p = 0.881). The level of agreement in the detection of G6PD deficiency was 0.999, while the area under the receiver operating characteristic (AUC) curve demonstrated that the automated method had 98.4% sensitivity, 99.5% specificity, 92.4% positive predictive value (PPV), 99.9% negative predictive value (NPV), and 99.4% accuracy. CONCLUSIONS: We report that reticulocytosis does not have a statistically significant effect on the detection of G6PD deficiency in newborns by both qualitative and quantitative methods.


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Recém-Nascido , Humanos , Masculino , Deficiência de Glucosefosfato Desidrogenase/complicações , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Deficiência de Glucosefosfato Desidrogenase/genética , Reticulocitose , Estudos Transversais , Fosfatos , Glucose
16.
Hemoglobin ; 46(3): 160-163, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35582759

RESUMO

With the development of sequencing technology, more and more rare thalassemia types have been found. In this article, we found a novel Hb H disease combined with glucose-6-phosphate dehydrogenase (G6PD) deficiency through whole genome sequencing (WGS), which was verified by Sanger sequencing and polymerase chain reaction (PCR)-reverse dot-blot hybridization, respectively.


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Talassemia , Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Deficiência de Glucosefosfato Desidrogenase/genética , Humanos , Reação em Cadeia da Polimerase , Talassemia/genética , Sequenciamento Completo do Genoma
17.
Korean J Parasitol ; 60(4): 281-288, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36041490

RESUMO

Malaria continues to be one of the most crucial infectious burdens in endemic areas worldwide, as well as for travelers visiting malaria transmission regions. It has been reported that 8-aminoquinolines are effective against the Plasmodium species, particularly primaquine, for anti-hypnozoite therapy in P. vivax malaria. However, primaquine causes acute hemolytic anemia in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency. Therefore, G6PD deficiency testing should precede hypnozoite elimination with 8-aminoquinoline. Several point-of-care devices have been developed to detect G6PD deficiency. The aim of the present study was to evaluate the performance of a novel, quantitative G6PD diagnostics based on a metagenomic blue fluorescent protein (mBFP). We comparatively evaluated the sensitivity and specificity of the G6PD diagnostic modality with standard methods using 120 human whole blood samples. The G6PD deficiency was spectrophotometrically confirmed. The performance of the G6PD quantitative test kit was compared with that of a licensed control medical device, the G6PD strip. The G6PD quantitative test kit had a sensitivity of 95% (95% confidence interval (CI): 89.3-100%) and a specificity of 100% (95% CI: 94.3-100%). This study shows that the novel diagnostic G6PD quantitative test kit could be a cost-effective and time-efficient, and universally mandated screening tool for G6PD deficiency.


Assuntos
Antimaláricos , Deficiência de Glucosefosfato Desidrogenase , Malária Vivax , Malária , Antimaláricos/uso terapêutico , Glucosefosfato Desidrogenase/uso terapêutico , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Humanos , Malária/epidemiologia , Malária Vivax/epidemiologia , Sistemas Automatizados de Assistência Junto ao Leito , Primaquina , Kit de Reagentes para Diagnóstico
18.
J Clin Rheumatol ; 28(1): e23-e25, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32956151

RESUMO

BACKGROUND: Glucose-6-phosphate dehydrogenase deficiency (G6PD) is linked to hemolytic anemia with certain medications and is the most common enzyme deficiency worldwide. Although the American College of Rheumatology does not recommend routine testing for G6PD prior to initiation of hydroxychloroquine (HCQ), the package insert for HCQ does recommend careful use in patients with G6PD deficiency. METHODS: We identified eligible subjects seen at our tertiary care, urban medical center between 1997 and 2018. Case records were analyzed for G6PD deficiency, HCQ use, length of exposure to HCQ, demographic characteristics, and laboratory evidence of hemolysis. RESULTS: We found 5264 patients who were prescribed HCQ, of which 49.5% (2605 patients) were screened for G6PD deficiency. Of the screened patients, 36 were found to be G6PD-deficient. Of the G6PD-deficient patients, 18 were exposed to HCQ. No evidence of hemolysis was found in these exposed patients. CONCLUSIONS: Despite more than 500 months of cumulative exposure time to HCQ, there were no cases of hemolysis. These findings are in line with recently published data and suggest that this interaction is not associated with clinically significant hemolysis in our population of mainly African American and Hispanic patients. Limitations to our study are potential bias due to case review design and lack of prior assessment of episodes of hemolysis before HCQ exposure. A high proportion of our patients were Hispanic, suggesting no increase of adverse events in this subgroup. A larger longitudinal trial would be needed to definitively answer the question of the safety of HCQ in G6PD-deficient patients.


Assuntos
Anemia Hemolítica , Deficiência de Glucosefosfato Desidrogenase , Negro ou Afro-Americano , Anemia Hemolítica/induzido quimicamente , Anemia Hemolítica/diagnóstico , Anemia Hemolítica/epidemiologia , Glucosefosfato Desidrogenase , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Hemólise , Humanos , Hidroxicloroquina/efeitos adversos
19.
PLoS Med ; 18(6): e1003614, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34061843

RESUMO

BACKGROUND: In 2017, an estimated 14 million cases of Plasmodium vivax malaria were reported from Asia, Central and South America, and the Horn of Africa. The clinical burden of vivax malaria is largely driven by its ability to form dormant liver stages (hypnozoites) that can reactivate to cause recurrent episodes of malaria. Elimination of both the blood and liver stages of the parasites ("radical cure") is required to achieve a sustained clinical response and prevent ongoing transmission of the parasite. Novel treatment options and point-of-care diagnostics are now available to ensure that radical cure can be administered safely and effectively. We quantified the global economic cost of vivax malaria and estimated the potential cost benefit of a policy of radical cure after testing patients for glucose-6-phosphate dehydrogenase (G6PD) deficiency. METHODS AND FINDINGS: Estimates of the healthcare provider and household costs due to vivax malaria were collated and combined with national case estimates for 44 endemic countries in 2017. These provider and household costs were compared with those that would be incurred under 2 scenarios for radical cure following G6PD screening: (1) complete adherence following daily supervised primaquine therapy and (2) unsupervised treatment with an assumed 40% effectiveness. A probabilistic sensitivity analysis generated credible intervals (CrIs) for the estimates. Globally, the annual cost of vivax malaria was US$359 million (95% CrI: US$222 to 563 million), attributable to 14.2 million cases of vivax malaria in 2017. From a societal perspective, adopting a policy of G6PD deficiency screening and supervision of primaquine to all eligible patients would prevent 6.1 million cases and reduce the global cost of vivax malaria to US$266 million (95% CrI: US$161 to 415 million), although healthcare provider costs would increase by US$39 million. If perfect adherence could be achieved with a single visit, then the global cost would fall further to US$225 million, equivalent to $135 million in cost savings from the baseline global costs. A policy of unsupervised primaquine reduced the cost to US$342 million (95% CrI: US$209 to 532 million) while preventing 2.1 million cases. Limitations of the study include partial availability of country-level cost data and parameter uncertainty for the proportion of patients prescribed primaquine, patient adherence to a full course of primaquine, and effectiveness of primaquine when unsupervised. CONCLUSIONS: Our modelling study highlights a substantial global economic burden of vivax malaria that could be reduced through investment in safe and effective radical cure achieved by routine screening for G6PD deficiency and supervision of treatment. Novel, low-cost interventions for improving adherence to primaquine to ensure effective radical cure and widespread access to screening for G6PD deficiency will be critical to achieving the timely global elimination of P. vivax.


Assuntos
Antimaláricos/economia , Antimaláricos/uso terapêutico , Custos de Medicamentos , Saúde Global/economia , Malária Vivax/tratamento farmacológico , Malária Vivax/economia , Primaquina/economia , Primaquina/uso terapêutico , Adolescente , Adulto , Antimaláricos/efeitos adversos , Criança , Pré-Escolar , Tomada de Decisão Clínica , Redução de Custos , Análise Custo-Benefício , Terapia Diretamente Observada , Feminino , Testes Genéticos/economia , Deficiência de Glucosefosfato Desidrogenase/sangue , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Deficiência de Glucosefosfato Desidrogenase/economia , Deficiência de Glucosefosfato Desidrogenase/genética , Gastos em Saúde , Hemólise/efeitos dos fármacos , Humanos , Incidência , Lactente , Recém-Nascido , Malária Vivax/epidemiologia , Masculino , Adesão à Medicação , Modelos Econômicos , Seleção de Pacientes , Primaquina/efeitos adversos , Indução de Remissão , Resultado do Tratamento , Adulto Jovem
20.
Trop Med Int Health ; 26(4): 462-468, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33415798

RESUMO

OBJECTIVE: Glucose-6-phosphate dehydrogenase (G6PD) deficiency, an X-linked recessive disorder, is the commonest erythrocytic enzymopathy worldwide. Reliable diagnosis and severity prediction in G6PD-deficient/heterozygous females remain challenging. A recently developed flow cytometric test for G6PD deficiency has shown promise in precisely identifying deficient females. This paper presents our experiences with this test in a subtropical setting and presents a modification in flow cytometric data acquisition strategy. METHODS: The methaemoglobin reduction + ferryl Hb generation-based flow cytometric G6PD test was compared with the screening methaemoglobin reduction test (MRT) and confirmatory G6PD enzyme activity assay (EAA) in 20 G6PD-deficient males, 22 G6PD-heterozygous/deficient females and 20 controls. Stained cells were also assessed for bright/dim G6PD activity under a fluorescent microscope. RESULTS: Flow cytometry separated and quantified %bright cells in heterozygous/deficient females, objectively classifying them into 6 normal (>85% bright cells), 14 intermediate (10-85%) and two G6PD-deficient (<10% bright cells). Concordance with MRT was 89% (55/62 cases) and with EAA was 77% (48/62 cases). Fluorometrically predicted violet laser excitation (405-nm) with signal acquisition in the 425-475 nm region was a technical advancement noted for the first time in this paper. CONCLUSION: Flow cytometry/fluorescence microscopy represent technically straightforward methods for the detection and quantification of G6PD-deficient erythrocytes. Based on our results, we recommend their application as a first-line investigation to screen females who are prescribed an oxidant drug like primaquine or dapsone.


Assuntos
Ensaios Enzimáticos Clínicos/métodos , Testes Diagnósticos de Rotina/métodos , Eritrócitos/enzimologia , Citometria de Fluxo/métodos , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Glucosefosfato Desidrogenase/sangue , Heterozigoto , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Testes de Química Clínica/métodos , Contraindicações de Medicamentos , Feminino , Deficiência de Glucosefosfato Desidrogenase/enzimologia , Deficiência de Glucosefosfato Desidrogenase/genética , Humanos , Lactente , Masculino , Programas de Rastreamento/métodos , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa