Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Med ; 30(1): 117, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39123116

RESUMO

BACKGROUND: Lipid metabolism disorders are associated with degeneration of multiple tissues and organs, but the mechanism of crosstalk between lipid metabolism disorder and intervertebral disc degeneration (IDD) has not been fully elucidated. In this study we aim to investigate the regulatory mechanism of abnormal signal of lipid metabolism disorder on intervertebral disc endplate chondrocyte (EPC) senescence and calcification. METHODS: Human intervertebral disc cartilage endplate tissue, cell model and rat hyperlipemia model were performed in this study. Histology and immunohistochemistry were used to human EPC tissue detection. TMT-labelled quantitative proteomics was used to detect differential proteins, and MRI, micro-CT, safranin green staining and immunofluorescence were performed to observe the morphology and degeneration of rat tail intervertebral discs. Flow cytometry, senescence-associated ß-galactosidase staining, alizarin red staining, alkaline phosphatase staining, DCFH-DA fluorescent probe, and western blot were performed to detect the expression of EPC cell senescence, senescence-associated secretory phenotype, calcification-related proteins and the activation of cell senescence-related signaling pathways. RESULTS: Our study found that the highly expressed oxidized low-density lipoprotein (ox-LDL) and Lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) in human degenerative EPC was associated with hyperlipidemia (HLP). TMT-labelled quantitative proteomics revealed enriched pathways such as cell cycle regulation, endochondral bone morphogenesis and inflammation. The rat model revealed that HLP could induce ox-LDL, LOX-1, senescence and calcification markers high expression in EPC. Moreover, we demonstrated that ox-LDL-induced EPCs senescence and calcification were dependent on the LOX-1 receptor, and the ROS/P38-MAPK/NF-κB signaling pathway was implicated in the regulation of senescence induced by ox-LDL/LOX-1 in cell model. CONCLUSIONS: So our study revealed that ox-LDL/LOX-1-induced EPCs senescence and calcification through ROS/P38-MAPK/NF-κB signaling pathway, providing information on understanding the link between lipid metabolism disorders and IDD.


Assuntos
Senescência Celular , Condrócitos , Degeneração do Disco Intervertebral , Metabolismo dos Lipídeos , Lipoproteínas LDL , Receptores Depuradores Classe E , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Lipoproteínas LDL/metabolismo , Animais , Humanos , Receptores Depuradores Classe E/metabolismo , Condrócitos/metabolismo , Condrócitos/patologia , Ratos , Masculino , Calcinose/metabolismo , Calcinose/patologia , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia , Modelos Animais de Doenças , Feminino , Pessoa de Meia-Idade , Transdução de Sinais , Adulto , Proteômica/métodos , Ratos Sprague-Dawley
2.
Osteoarthritis Cartilage ; 32(7): 881-894, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38604493

RESUMO

OBJECTIVE: Transient receptor potential vanilloid 4 (TRPV4) is a multi-modally activated cation channel that mediates mechanotransduction pathways by which musculoskeletal tissues respond to mechanical load and regulate tissue health. Using conditional Trpv4 knockout mice, we investigated the role of Trpv4 in regulating intervertebral disc (IVD) health and injury-induced IVD degeneration. METHODS: Col2-Cre;Trpv4fl/f (Trpv4 KO) mice were used to knockout Trpv4 in all type 2 collagen-expressing cells. Effects of gene targeting alone was assessed in lumbar spines, using vertebral bone length measurement, histological, immunohistochemistry and gene expression analyses, and mechanical testing. Disc puncture was performed on caudal IVDs of wild-type (WT) and Trpv4 KO mice at 2.5- and 6.5-months-of-age. Six weeks after puncture (4- and 8-months-of-age at sacrifice), caudal spines were assessed using histological analyses. RESULTS: While loss of Trpv4 did not significantly alter vertebral bone length and tissue histomorphology compared to age-matched WT mice, Trpv4 KO mice showed decreased proteoglycan and PRG4 staining in the annulus fibrosus compared to WT. At the gene level, Trpv4 KO mice showed significantly increased expression of Acan, Bgn, and Prg4 compared to WT. Functionally, loss of Trpv4 was associated with significantly increased neutral zone length in lumbar IVDs. Following puncture, both Trpv4 KO and WT mice showed similar signs of degeneration at the site of injury. Interestingly, loss of Trpv4 prevented mechanically-induced degeneration in IVDs adjacent to sites of injury. CONCLUSION: These studies suggest a role for Trpv4 in regulating extracellular matrix synthesis and mediating the response of IVD tissues to mechanical stress.


Assuntos
Modelos Animais de Doenças , Matriz Extracelular , Degeneração do Disco Intervertebral , Camundongos Knockout , Canais de Cátion TRPV , Animais , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Camundongos , Matriz Extracelular/metabolismo , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia , Vértebras Lombares , Suporte de Carga/fisiologia , Colágeno Tipo II/metabolismo , Mecanotransdução Celular/fisiologia , Agrecanas/metabolismo , Estresse Mecânico , Proteoglicanas/metabolismo , Proteoglicanas/genética
3.
Expert Opin Emerg Drugs ; 29(2): 155-164, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38602142

RESUMO

INTRODUCTION: Chronic lower back pain is a leading cause of disability and healthcare spending worldwide. Discogenic pain, pain originating from the intervertebral disk, is a common etiology of chronic lower back pain. Currently, accepted treatments for chronic discogenic pain focus only on the management of symptoms, such as pain. There are no approved treatments that stop or reverse degenerating intervertebral discs. Biologic therapies promoting disc regeneration have been developed to expand treatment options. VIADISC™ NP, is a viable disc allograft supplementation that, in a recent trial, demonstrated a significant reduction in pain and increased function in patients suffering from symptomatic degenerative disc disease. AREAS COVERED: This manuscript summarizes the epidemiology and etiology of low back pain, the pathophysiology of degenerative disc disease, current treatments, and a need for newer therapies. The rationale behind intradiscal biologics for the treatment of symptomatic degenerative disc disease is also discussed. EXPERT OPINION: Characterization of the biology leading to disc degeneration has allowed for the development of intradiscal biologics. They may soon be capable of preventing and reversing disc degeneration. Clinical trials have shown promise, but further research into efficacy and safety is needed before these therapies are widely employed.


Assuntos
Dor Crônica , Degeneração do Disco Intervertebral , Dor Lombar , Humanos , Degeneração do Disco Intervertebral/fisiopatologia , Dor Lombar/etiologia , Dor Lombar/fisiopatologia , Dor Lombar/tratamento farmacológico , Dor Lombar/terapia , Dor Crônica/tratamento farmacológico , Dor Crônica/fisiopatologia , Dor Crônica/etiologia , Animais , Disco Intervertebral/fisiopatologia , Disco Intervertebral/patologia , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Produtos Biológicos/administração & dosagem , Desenvolvimento de Medicamentos
4.
J Vasc Interv Radiol ; 35(6): 852-857.e1, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38613536

RESUMO

PURPOSE: To determine whether sampling of the disc or bone is more likely to yield positive tissue culture results in patients with vertebral discitis and osteomyelitis (VDO). MATERIALS AND METHODS: Retrospective review was performed of consecutive patients who underwent vertebral disc or vertebral body biopsy at a single institution between February 2019 and May 2023. Inclusion criteria were age ≥18 years, presumed VDO on spinal magnetic resonance (MR) imaging, absence of paraspinal abscess, and technically successful percutaneous biopsy with fluoroscopic guidance. The primary outcome was a positive biopsy culture result, and secondary outcomes included complications such as nerve injury and segmental artery injury. RESULTS: Sixty-six patients met the inclusion criteria; 36 patients (55%) underwent disc biopsy, and 30 patients (45%) underwent bone biopsy. Six patients required a repeat biopsy for an initially negative culture result. No significant demographic, laboratory, antibiotic administration, or pain medication use differences were observed between the 2 groups. Patients who underwent bone biopsy were more likely to have a history of intravenous drug use (26.7%) compared with patients who underwent disc biopsy (5.5%; P = .017). Positive tissue culture results were observed in 41% of patients who underwent disc biopsy and 15% of patients who underwent bone biopsy (P = .016). No vessel or nerve injuries were detected after procedure in either group. CONCLUSIONS: Percutaneous disc biopsy is more likely to yield a positive tissue culture result than vertebral body biopsy in patients with VDO.


Assuntos
Discite , Disco Intervertebral , Osteomielite , Valor Preditivo dos Testes , Humanos , Osteomielite/microbiologia , Osteomielite/patologia , Discite/microbiologia , Masculino , Estudos Retrospectivos , Feminino , Pessoa de Meia-Idade , Disco Intervertebral/patologia , Disco Intervertebral/diagnóstico por imagem , Disco Intervertebral/microbiologia , Idoso , Adulto , Biópsia , Biópsia Guiada por Imagem/efeitos adversos , Radiografia Intervencionista
5.
Med Sci Monit ; 30: e944335, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38783538

RESUMO

BACKGROUND Either a reduction in antioxidant levels or an accumulation of reactive oxygen species can heighten susceptibility to oxidative damage in disc cells. To date, no research has investigated the levels of lipid peroxidation products (thiobarbituric acid reactive substances [TBARs]), reduced glutathione (GSH), and glutathione peroxidase (GPx) in excised human lumbar disc tissues affected by degenerative disease. Therefore, this study aimed to evaluate lipid peroxidation products in excised disc tissues from patients with degenerative disc disease. MATERIAL AND METHODS Forty-two patients were enrolled. Patients were divided into lumbar disc degeneration (LDD) and nonlumbar disc degeneration (nonLDD) groups according to Pfirrmann classification. Intervertebral discs were obtained from all patients during the operation and were homogenized for analysis. TBARs levels were measured using fluorometry. GSH levels and GPx activity were quantified spectrophotometrically using a kinetic method. RESULTS TBARs levels in excised discs from LDD patients (5.18±4.14) were significantly higher than those from nonLDD patients (2.56±1.23, P=0.008). The levels of TBARs tended to increase with the severity of degeneration according to the Pfirrmann classification. However, these 2 groups showed no significant differences in reduced glutathione levels or glutathione peroxidase activity (P>0.05). Patients with LDD exhibited a worse health-related quality of life, reflected in lower utility and EQ-VAS scores and higher Oswestry disability index scores. CONCLUSIONS There was a notable increase in lipid peroxidation products in the excised intervertebral discs of patients with LDD. This finding suggests that oxidative stress may contribute to the development of disc degeneration.


Assuntos
Glutationa Peroxidase , Glutationa , Degeneração do Disco Intervertebral , Disco Intervertebral , Peroxidação de Lipídeos , Vértebras Lombares , Estresse Oxidativo , Substâncias Reativas com Ácido Tiobarbitúrico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/metabolismo , Peroxidação de Lipídeos/fisiologia , Vértebras Lombares/metabolismo , Estresse Oxidativo/fisiologia , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Idoso
6.
BMC Med Imaging ; 24(1): 213, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138416

RESUMO

PURPOSE: This study investigated potential use of computed tomography (CT)-based parameters in the lumbar spine as a surrogate for magnetic resonance imaging (MRI)-based findings. METHODS: In this retrospective study, all individuals, who had a lumbar spine CT scan and MRI between 2006 and 2012 were reviewed (n = 198). Disc height (DH) and endplate degeneration (ED) were evaluated between Th12/L1-L5/S1. Statistics consisted of Spearman correlation and univariate/multivariable regression (adjusting for age and gender). RESULTS: The mean CT-DH increased kranio-caudally (8.04 millimeters (mm) at T12/L1, 9.17 mm at L1/2, 10.59 mm at L2/3, 11.34 mm at L3/4, 11.42 mm at L4/5 and 10.47 mm at L5/S1). MRI-ED was observed in 58 (29%) individuals. CT-DH and MRI-DH had strong to very strong correlations (rho 0.781-0.904, p < .001). MRI-DH showed higher absolute values than CT-DH (mean of 1.76 mm). There was a significant association between CT-DH and MRI-ED at L2/3 (p = .006), L3/4 (p = .002), L4/5 (p < .001) and L5/S1 (p < .001). A calculated cut-off point was set at 11 mm. CONCLUSIONS: In the lumbar spine, there is a correlation between disc height on CT and MRI. This can be useful in trauma and emergency cases, where CT is readily available in the lack of an MRI. In addition, in the middle and lower part of the lumbar spine, loss of disc height on CT scans is associated with more pronounced endplate degeneration on MRIs. If the disc height on CT scans is lower than 11 mm, endplate degeneration on MRIs is likely more pronounced. LEVEL AND DESIGN: Level III, a retrospective study.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Vértebras Lombares , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X , Humanos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/patologia , Imageamento por Ressonância Magnética/métodos , Masculino , Feminino , Tomografia Computadorizada por Raios X/métodos , Estudos Retrospectivos , Pessoa de Meia-Idade , Adulto , Degeneração do Disco Intervertebral/diagnóstico por imagem , Degeneração do Disco Intervertebral/patologia , Idoso , Disco Intervertebral/diagnóstico por imagem , Disco Intervertebral/patologia , Idoso de 80 Anos ou mais , Adulto Jovem
7.
Eur Spine J ; 33(5): 2116-2128, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38436876

RESUMO

PURPOSE: Vertebral endplate lesions (EPLs) caused by severe disk degeneration are associated with low back pain. However, its pathophysiology remains unclear. In this study, we aimed to develop a vertebral EPL rat model mimicking severe intervertebral disk (IVD) degeneration by injecting monosodium iodoacetate (MIA) into the IVDs and evaluating it by assessing pain-related behavior, micro-computed tomography (CT) findings, and histological changes. METHODS: MIA was injected into the L4-5 and L5-6 IVDs of Sprague-Dawley rats. Their behavior was examined by measuring the total distance traveled and the total number of rearing in an open square arena. Bone alterations and volume around the vertebral endplate were assessed using micro-CT. Safranin-O staining, immunohistochemistry, and tartrate-resistant acid phosphatase (TRAP) staining were performed for histological assessment. RESULTS: The total distance and number of rearing times in the open field were significantly reduced in a time-dependent manner. Micro-CT revealed intervertebral osteophytes and irregularities in the endplates at 12 weeks. The bone volume/tissue volume (BV/TV) around the endplates significantly increased from 6 weeks onward. Safranin-O staining revealed severe degeneration of IVDs and endplate disorders in a dose- and time-dependent manner. Calcitonin gene-related peptide-positive nerve fibers significantly increased from 6 weeks onward. However, the number of osteoclasts decreased over time. CONCLUSION: Our rat EPL model showed progressive morphological vertebral endplate changes in a time- and concentration-dependent manner, similar to the degenerative changes in human IVDs. This model can be used as an animal model of severe IVD degeneration to better understand the pathophysiology of EPL.


Assuntos
Modelos Animais de Doenças , Degeneração do Disco Intervertebral , Vértebras Lombares , Ratos Sprague-Dawley , Animais , Ratos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/patologia , Degeneração do Disco Intervertebral/induzido quimicamente , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/diagnóstico por imagem , Masculino , Microtomografia por Raio-X , Disco Intervertebral/patologia , Disco Intervertebral/diagnóstico por imagem , Ácido Iodoacético/toxicidade
8.
Eur Spine J ; 33(3): 915-923, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38363366

RESUMO

PURPOSE: The objective of this study was to examine the relationships between BMI and intervertebral disc degeneration (DD), disc herniation (DH) and spinal stenosis (SS) using a large, prospectively recruited and heterogeneous patient population. METHODS: Patients were recruited through the European Genodisc Study. An experienced radiologist scored MRI images for DD, DH and SS. Multivariate linear and logistic regression analyses were used to model the relationship between these variables and BMI with adjustment for patient and MRI confounders. RESULTS: We analysed 1684 patients with a mean age of 51 years and BMI of 27.2 kg/m2.The mean DD score was 2.6 (out of 5) with greater DD severity with increasing age (R2 = 0.44). In the fully adjusted model, a 10-year increase in age and a 5 kg/m2 increase in BMI were associated, respectively, with a 0.31-unit [95% CI 0.29,0.34] and 0.04-unit [CI 0.01,0.07] increase in degeneration. Age (OR 1.23 [CI 1.06,1.43]) and BMI (OR 2.60 [CI 2.28,2.96]) were positively associated with SS. For DH, age was a negative predictor (OR 0.70 [CI 0.64,0.76]) but for BMI (OR 1.19 [CI 1.07,1.33]), the association was positive. BMI was the strongest predictor of all three features in the upper lumbar spine. CONCLUSIONS: While an increase in BMI was associated with only a slight increase in DD, it was a stronger predictor for DH and SS, particularly in the upper lumbar discs, suggesting weight loss could be a useful strategy for helping prevent disorders associated with these pathologies.


Assuntos
Degeneração do Disco Intervertebral , Deslocamento do Disco Intervertebral , Disco Intervertebral , Dor Lombar , Estenose Espinal , Humanos , Pessoa de Meia-Idade , Pré-Escolar , Deslocamento do Disco Intervertebral/complicações , Deslocamento do Disco Intervertebral/diagnóstico por imagem , Deslocamento do Disco Intervertebral/epidemiologia , Dor Lombar/etiologia , Dor Lombar/complicações , Estenose Espinal/complicações , Estenose Espinal/diagnóstico por imagem , Estenose Espinal/patologia , Obesidade/complicações , Degeneração do Disco Intervertebral/complicações , Degeneração do Disco Intervertebral/diagnóstico por imagem , Degeneração do Disco Intervertebral/epidemiologia , Imageamento por Ressonância Magnética/métodos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/patologia , Disco Intervertebral/patologia
9.
BMC Musculoskelet Disord ; 25(1): 249, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561725

RESUMO

BACKGROUND: This study investigated the role of Galectin-3 in the degeneration of intervertebral disc cartilage. METHODS: The patients who underwent lumbar spine surgery due to degenerative disc disease were recruited and divided into Modic I, Modic II, and Modic III; groups. HE staining was used to detect the pathological changes in endplates. The changes of Galectin-3, MMP3, Aggrecan, CCL3, and Col II were detected by immunohistochemistry, RT-PCR, and Western blot. MTT and flow cytometry were used to detect cartilage endplate cell proliferation, cell cycle, and apoptosis. RESULTS: With the progression of degeneration (from Modic I to III), the chondrocytes and density of the cartilage endplate of the intervertebral disc decreased, and the collagen arrangement of the cartilage endplate of the intervertebral disc was broken and calcified. Meanwhile, the expressions of Aggrecan, Col II, Galectin-3, Aggrecan, and CCL3 gradually decreased. After treatment with Galectin-3 inhibitor GB1107, the proliferation of rat cartilage end plate cells was significantly reduced (P < 0.05). GB1107 (25 µmol/L) also significantly promoted the apoptosis of cartilage endplate cells (P < 0.05). Moreover, the percentage of cartilage endplate cells in the G1 phase was significantly higher, while that in the G2 and S phases was significantly lower (P < 0.05). Additionally, the mRNA and protein expression levels of MMP3, CCL3, and Aggrecan in rat cartilage end plate cells were lower than those in the control group. CONCLUSIONS: Galectin-3 decreases with the progression of the cartilage endplate degeneration of the intervertebral disc. Galectin-3 may affect intervertebral disc degeneration by regulating the degradation of the extracellular matrix.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Animais , Humanos , Ratos , Agrecanas/genética , Agrecanas/metabolismo , Cartilagem/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/patologia , Metaloproteinase 3 da Matriz
10.
BMC Musculoskelet Disord ; 25(1): 356, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704519

RESUMO

BACKGROUND: Intervertebral disc degeneration (IVDD) is a common degenerative condition leading to abnormal stress distribution under load, causing intervertebral stenosis, facet joint degeneration, and foraminal stenosis. Very little is known about the molecular mechanism of eRNAs in IVDD. METHODS: Gene expression profiles of 38 annulus disc samples composed of 27 less degenerated discs (LDs) and 11 more degenerated discs (MDs) were retrieved from the GEO database. Then, differentially expressed enhancer RNAs (DEeRNAs), differentially expressed target genes (DETGs), and differentially expressed transcription factors (DETFs), hallmark of cancer signalling pathways according to GSVA; the types and quantity of immune cells according to CIBERSORT; and immune gene sets according to ssGSEA were analysed to construct an IVDD-related eRNA network. Then, multidimensional validation was performed to explore the interactions among DEeRNAs, DETFs and DEGs in space. RESULTS: A total of 53 components, 14 DETGs, 15 DEeRNAs, 3 DETFs, 5 immune cells, 9 hallmarks, and 7 immune gene sets, were selected to construct the regulatory network. After validation by online multidimensional databases, 21 interactive DEeRNA-DEG-DETF axes related to IVDD exacerbation were identified, among which the C1S-CTNNB1-CHD4 axis was the most significant. CONCLUSION: Based upon the results of our study, we theorize that the C1S-CTNNB1-CHD4 axis plays a vital role in IVDD exacerbation. Specifically, C1S recruits CTNNB1 and upregulates the expression of CHD4 in IVDD, and subsequently, CHD4 suppresses glycolysis and activates oxidative phosphorylation, thus generating insoluble collagen fibre deposits and leading to the progression of IVDD. Overall, these DEeRNAs could comprise promising therapeutic targets for IVDD due to their high tissue specificity.


Assuntos
Biologia Computacional , Degeneração do Disco Intervertebral , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Humanos , Redes Reguladoras de Genes , Perfilação da Expressão Gênica , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma , RNAs Intensificadores
11.
Skeletal Radiol ; 53(8): 1651-1656, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38231261

RESUMO

Primary malignant bone tumors of the spine are exceedingly rare, with solitary bone plasmacytoma (SBP) representing approximately 30% of all cases. Radiological assessments are crucial for localizing SBP and for ruling out a diagnosis of multiple myeloma (MM). Imaging features resembling a "mini-brain" appear to be distinctive for SBP. Vertebral lesions accompanied by adjacent disc space involvement typically suggest spinal infections, while the potential for SBP involvement is often overlooked. We present a case of a 61-year-old female with SBP who exhibited thoraco-lumbar spine destruction and adjacent disc space involvement. The patient sought treatment at our medical center due to lumbodorsal pain radiating bilaterally to the inguinal regions. Radiological findings revealed an osteolytic lesion involving the intervertebral disc, making it challenging to distinguish between tumor and inflammation. A biopsy of the vertebral lesion confirmed the diagnosis of SBP, which was further supported by laboratory results. Post-diagnosis, the patient underwent radiotherapy, receiving a total dose of 4000 Gy, which alleviated her symptoms. We also provide a comprehensive literature review on SBP with disc involvement to aid both clinical and radiological diagnoses.


Assuntos
Plasmocitoma , Neoplasias da Coluna Vertebral , Feminino , Humanos , Pessoa de Meia-Idade , Biópsia , Diagnóstico Diferencial , Disco Intervertebral/diagnóstico por imagem , Disco Intervertebral/patologia , Vértebras Lombares/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Plasmocitoma/diagnóstico por imagem , Neoplasias da Coluna Vertebral/diagnóstico por imagem , Vértebras Torácicas/diagnóstico por imagem , Vértebras Torácicas/patologia , Tomografia Computadorizada por Raios X
12.
Spine J ; 24(8): 1527-1537, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38608821

RESUMO

BACKGROUND CONTEXT: Intervertebral disc degeneration is common and may play an important role in low back pain, but it is not well-understood. Previous studies have shown that the outer layer of the annulus fibrosus of a healthy disc is innervated by nociceptive nerve fibers. In the process of disc degeneration, it can grow into the inner annulus fibrosus or nucleus pulposus and release neuropeptides. Disc degeneration is associated with inflammation that produces inflammatory factors and potentiates nociceptor sensitization. Subsequently neurogenic inflammation is induced by neuropeptide release from activated primary afferent terminals. Because the innervation of a lumbar disc comes from multisegmental dorsal root ganglion neurons, does neurogenic inflammation in a degenerative disc initiate neurogenic inflammation in neighboring healthy discs by antidromic activity? PURPOSE: This study was based on animal experiments in Sprague-Dawley rats to investigate the role of neurogenic inflammation in adjacent healthy disc degeneration induced by disc injury. STUDY DESIGN: This was an experimental study. METHODS: Seventy-five 12-week-old, male Sprague-Dawley rats were allocated to 3 groups (sham group, disc injury group and disc injury+TrkA antagonist group). The disc injury group was punctured in the tail disc between the eighth and ninth coccygeal vertebrae (Co8-9) to establish an animal model of tail intervertebral disc degeneration. The sham group underwent only skin puncture and the disc injury+TrkA antagonist group was intraperitoneally injected with GW441756 two days before disc puncture. The outcome measure included quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay. RESULTS: Disc injury induced an increase in aggrecan, NGF, TrkA, CGRP, SP, IL-1ß, and IL-6 mRNA levels in the injured (Co8-9) and adjacent discs (Co7-8), which reached a peak on day 1, then gradually decreased, and returned to normal on day 14. After intraperitoneal injection of GW441756 prior to puncture, the mRNA levels of the above indicators were down-regulated in Co7-8 and Co8-9 intervertebral discs on the 1st and 7th days. The protein content of the above indicators in Co7-8 and Co8-9 intervertebral discs showed roughly the same trend as mRNA levels. CONCLUSIONS: Degeneration of one disc can induce neurogenic inflammation of adjacent healthy discs in a rat model. CLINICAL SIGNIFICANCE: This model supports a key role of neurogenic inflammation in disc degeneration, and may play a role in the experience of low back pain.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Ratos Sprague-Dawley , Animais , Masculino , Degeneração do Disco Intervertebral/metabolismo , Ratos , Disco Intervertebral/inervação , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia , Inflamação Neurogênica
13.
J Orthop Surg Res ; 19(1): 15, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38167031

RESUMO

BACKGROUND: Lumbar disc herniation (LDH) is the main clinical cause of low back pain. The pathogenesis of lumbar disc herniation is still uncertain, while it is often accompanied by disc rupture. In order to explore relationship between loading rate and failure mechanics that may lead to lumbar disc herniation, the failure mechanical properties of the intervertebral disc under high rates of loading were analyzed. METHOD: Bend the lumbar motion segment of a healthy sheep by 5° and compress it to the ultimate strength point at a strain rate of 0.008/s, making a damaged sample. Within the normal strain range, the sample is subjected to quasi-static loading and high loading rate at different strain rates. RESULTS: For healthy samples, the stress-strain curve appears collapsed only at high rates of compression; for damaged samples, the stress-strain curves collapse both at quasi-static and high-rate compression. For damaged samples, the strengthening stage becomes significantly shorter as the strain rate increases, indicating that its ability to prevent the destruction is significantly reduced. For damaged intervertebral disc, when subjected to quasi-static or high rates loading until failure, the phenomenon of nucleus pulposus (NP) prolapse occurs, indicating the occurrence of herniation. When subjected to quasi-static loading, the AF moves away from the NP, and inner AF has the greatest displacement; when subjected to high rates loading, the AF moves closer to the NP, and outer AF has the greatest displacement. The Zhu-Wang-Tang (ZWT) nonlinear viscoelastic constitutive model was used to describe the mechanical behavior of the intervertebral disc, and the fitting results were in good agreement with the experimental curve. CONCLUSION: Experimental results show that, both damage and strain rate have a significant effect on the mechanical behavior of the disc fracture. The research work in this article has important theoretical guiding significance for preventing LDH in daily life.


Assuntos
Deslocamento do Disco Intervertebral , Disco Intervertebral , Animais , Ovinos , Deslocamento do Disco Intervertebral/patologia , Vértebras Lombares/patologia , Suporte de Carga , Fenômenos Biomecânicos , Estresse Mecânico , Disco Intervertebral/patologia
14.
Int Immunopharmacol ; 129: 111661, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38359662

RESUMO

Low back pain (LBP) is most commonly caused by intervertebral disc degeneration (IVDD). Pyroptosis, apoptosis, and necroptosis are crucial in IVDD pathogenesis; however, possible simultaneous occurrence in IVDD and co-regulation between the pathways and the regulatory mechanisms have not been investigated. PANoptosis is a regulated cell death (RCD) pathway with the key characteristics of pyroptosis, apoptosis, and necroptosis. This study revealed that tert-butyl hydroperoxide (TBHP) altered the expression of key proteins involved in PANoptosis in nucleus pulposus cells (NPCs). Furthermore, the natural product Kongensin A (KA), which has potential anti-necrotic and anti-inflammatory properties, inhibited PANoptosis. TAK1, often referred to as mitogen-activated protein kinase kinase kinase 7 (Map3k7), is a key regulator of innate immunity, cell death, inflammation, and cellular homeostasis; however, the physiological roles and regulatory mechanisms underlying IVDD remain unclear. In this study, we discovered that KA can upregulate TAK1 expression in NPCs, -which inhibits PANoptosis by suppressing oxidative stress. In conclusion, our results suggest that KA inhibits PANoptosis and delays IVDD progression in NPCs by upregulating TAK1 expression to maintain mitochondrial redox balance. Consequently, targeting TAK1 may be a promising therapeutic approach for IVDD therapy.


Assuntos
Diterpenos , Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Humanos , Degeneração do Disco Intervertebral/tratamento farmacológico , Apoptose , Estresse Oxidativo , Disco Intervertebral/patologia
15.
Sci Data ; 11(1): 264, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431692

RESUMO

This paper presents a large publicly available multi-center lumbar spine magnetic resonance imaging (MRI) dataset with reference segmentations of vertebrae, intervertebral discs (IVDs), and spinal canal. The dataset includes 447 sagittal T1 and T2 MRI series from 218 patients with a history of low back pain and was collected from four different hospitals. An iterative data annotation approach was used by training a segmentation algorithm on a small part of the dataset, enabling semi-automatic segmentation of the remaining images. The algorithm provided an initial segmentation, which was subsequently reviewed, manually corrected, and added to the training data. We provide reference performance values for this baseline algorithm and nnU-Net, which performed comparably. Performance values were computed on a sequestered set of 39 studies with 97 series, which were additionally used to set up a continuous segmentation challenge that allows for a fair comparison of different segmentation algorithms. This study may encourage wider collaboration in the field of spine segmentation and improve the diagnostic value of lumbar spine MRI.


Assuntos
Disco Intervertebral , Vértebras Lombares , Humanos , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Disco Intervertebral/patologia , Vértebras Lombares/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Dor Lombar
16.
Eur J Med Res ; 29(1): 196, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528617

RESUMO

OBJECTIVE: Intervertebral disc degeneration (IVDD) is a major cause of morbidity and disability. Our study aimed to investigate the potential of cartilage oligomeric matrix protein (COMP) and ADAMTS7 (A disintegrin and metalloproteinases with thrombospondin motifs 7) as biomarkers for IVDD together with their functional relationship. METHODS: IVD tissues and peripheral blood samples were collected from IVDD rabbit models over 1-4 weeks. Tissues and blood samples were also collected from clinical patients those were stratified into four equal groups according to Pfirrmann IVDD grading (I-V) with baseline data collected for each participant. COMP and ADAMTS7 expression were analyzed and biomarker characteristics were assessed using linear regression and receiver operating curve (ROC) analyses. RESULTS: COMP and ADAMTS7 expression increased in tissues and serum during IVDD progression. Serum COMP (sCOMP) and serum ADAMTS7 (sADAMTS7) levels increased in a time-dependent manner following IVD damage in the rabbit model while significant positive correlations were detected between sCOMP and sADAMTS7 and Pfirrmann grade in human subjects. ROC analysis showed that combining sCOMP and sADAMTS7 assay results produced an improved diagnostic measure for IVDD compared to individual sCOMP or sADAMTS7 tests. In vitro assays conducted on human cell isolates revealed that COMP prevented extracellular matrix degradation and antagonized ADAMTS7 expression although this protective role was uncoupled under microenvironmental conditions mimicking IVDD. CONCLUSIONS: Increases in circulating COMP and ADAMTS7 correlate with IVDD progression and may play regulatory roles. Assays for sCOMP and/or sADAMTS7 levels can discriminate between healthy subjects and IVDD patients, warranting further clinical assessment.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Animais , Humanos , Coelhos , Proteína ADAMTS7 , Biomarcadores/metabolismo , Proteína de Matriz Oligomérica de Cartilagem/metabolismo , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/diagnóstico
17.
Phytomedicine ; 127: 155480, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484462

RESUMO

BACKGROUND: Intervertebral disc degeneration (IVDD) is an essential cause of low back pain (LBP), the incidence of which has risen in recent years and is progressively younger, but treatment options are limited, placing a serious economic burden on society. Sanbi decoction (SBD) is an important classical formula for the treatment of IVDD, which can significantly improve patients' symptoms and is a promising alternative therapy. PURPOSE: The aim of this study is to investigate the safety and efficacy of SBD in the treatment of IVDD and to explore the underlying mechanisms by using an integrated analytical approach of microbiomics and serum metabolomics, as well as by using molecular biology. METHODS: A rat IVDD puncture model was established and treated by gavage with different concentrations of SBD, and clean faeces, serum, liver, kidney, and intervertebral disc (IVD) were collected after 4 weeks. We assessed the safety by liver and kidney weighing, functional tests and tissue staining, the expression of tumor necrosis factor-alpha (TNF-ɑ), interleukin 1ß (IL-1ß) and interleukin 6 (IL-6) inflammatory factors in serum was detected by ELISA kits, and X-ray test, magnetic resonance imaging (MRI) examination, immunohistochemistry (IHC), western blotting (WB), hematoxylin-eosin (HE) staining and safranin O-fast green (SO/FG) staining were used to assess the efficacy. Finally, we performed 16S rRNA sequencing analysis on the faeces of different groups and untargeted metabolomics on serum and analyzed the association between them. RESULTS: SBD can effectively reduce the inflammatory response, regulate the metabolic balance of extracellular matrix (ECM), improve symptoms, and restore IVD function. In addition, SBD can significantly improve the diversity of intestinal flora and maintain the balance. At the phylum level, SBD greatly increased the relative abundance of Patescibacteria and Actinobacteriota and decreased the relative abundance of Bacteroidota. At the genus level, SBD significantly increased the relative abundance of Clostridia_UCG-014, Enterorhabdus, and Adlercreutzia, and decreased the relative abundance of Ruminococcaceae_UCG-005 (p < 0.05). Untargeted metabolomics indicated that SBD significantly improved serum metabolites and altered serum expression of 4alpha-phorbol 12,13-didecanoate (4alphaPDD), euscaphic acid (EA), alpha-muricholic acid (α-MCA), 5-hydroxyindoleacetic acid (5-HIAA), and kynurenine (Kyn) (p < 0.05), and the metabolic pathways were mainly lipid metabolism and amino acid metabolism. CONCLUSIONS: This study demonstrated that SBD can extensively regulate intestinal flora and serum metabolic homeostasis to reduce inflammatory response, inhibit the degradation of ECM, restore IVD height and water content to achieve apparent therapeutic effect for IVDD.


Assuntos
Microbioma Gastrointestinal , Degeneração do Disco Intervertebral , Disco Intervertebral , Humanos , Ratos , Animais , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , RNA Ribossômico 16S , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia , Homeostase
18.
BMJ Open ; 14(5): e082244, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38719329

RESUMO

INTRODUCTION: Bacterial infection and Modic changes (MCs) as causes of low back pain (LBP) are debated. Results diverged between two randomised controlled trials examining the effect of amoxicillin with and without clavulanic acid versus placebo on patients with chronic LBP (cLBP) and MCs. Previous biopsy studies have been criticised with regard to methods, few patients and controls, and insufficient measures to minimise perioperative contamination. In this study, we minimise contamination risk, include a control group and optimise statistical power. The main aim is to compare bacterial growth between patients with and without MCs. METHODS AND ANALYSIS: This multicentre, case-control study examines disc and vertebral body biopsies of patients with cLBP. Cases have MCs at the level of tissue sampling, controls do not. Previously operated patients are included as a subgroup. Tissue is sampled before antibiotic prophylaxis with separate instruments. We will apply microbiological methods and histology on biopsies, and predefine criteria for significant bacterial growth, possible contamination and no growth. Microbiologists, surgeons and pathologist are blinded to allocation of case or control. Primary analysis assesses significant growth in MC1 versus controls and MC2 versus controls separately. Bacterial disc growth in previously operated patients, patients with large MCs and growth from the vertebral body in the fusion group are all considered exploratory analyses. ETHICS AND DISSEMINATION: The Regional Committees for Medical and Health Research Ethics in Norway (REC South East, reference number 2015/697) has approved the study. Study participation requires written informed consent. The study is registered at ClinicalTrials.gov (NCT03406624). Results will be disseminated in peer-reviewed journals, scientific conferences and patient fora. TRIAL REGISTRATION NUMBER: NCT03406624.


Assuntos
Dor Lombar , Humanos , Dor Lombar/microbiologia , Estudos de Casos e Controles , Biópsia , Disco Intervertebral/microbiologia , Disco Intervertebral/patologia , Vértebras Lombares/microbiologia , Antibacterianos/uso terapêutico , Infecções Bacterianas/microbiologia , Estudos Multicêntricos como Assunto , Antibioticoprofilaxia
19.
J Orthop Surg Res ; 19(1): 58, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38217024

RESUMO

BACKGROUND: Degenerative spine disease is one of the largest causes of disability worldwide and has a multifactorial aetiology. Determining the leading causes of this multifactorial disease could help create new treatment approaches. PURPOSE: Study the impact of degenerative changes in the paraspinal muscles caused by local (prolonged compression) or systemic (high-fat diet) factors on the structure of the intervertebral discs (IVDs) and facet joints of the lumbar spine in rats. METHODS: The study was conducted using two animal models to create degenerative changes in the paraspinal muscles of 10 white laboratory rats for 90 days and five control rats: 1) high-fat diet model (model 1) involved keeping the rats on a high calorie diet; 2) compression model (model 2) involved binding the paraspinal muscles from L2 to S1 using non-absorbable sutures. Histological analysis for the facet joints and IVDs of rats (at the L1-L4 level) with semi-quantitative analysis of the structure conducted used by degeneration grading system for IVDs and cartilage degeneration score (OARSI) for facet joint. RESULTS: In both models, 90 days after the experiment, the degenerative changes observed in the rats' IVDs were more severe in the annulus fibrosus than in the nucleus pulposus. The height of the IVD in model 1 did not differ from the control group, but in the model 2 was 1.3 times greater (p < 0.001) compared with control. Degenerative changes in the IVD were scored out 5.3 ± 1.7 in model 1 and 5.32 ± 2.1 in model 2 of a possible 16. The height of the articular cartilage of the facet joints was smaller by 1.5 times (p < 0.001) and 1.4 times (p < 0.001) in model 1 and model 2, respectively, compared to the control. Degenerative changes of facet joint were scored out 3.7 ± 0.6 in model 1 and 3.8 ± 0.6 in model 2 of five points according to the cartilage degeneration score. CONCLUSIONS: It was determined that rats who had structural changes in the lumbar paraspinal muscles as a result of being kept on a high-fat diet or subjected to prolonged compression for 90 days, showed degenerative changes in intervertebral discs and osteoarthritis in facet joints of lumbar spine.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Espondilose , Articulação Zigapofisária , Ratos , Animais , Degeneração do Disco Intervertebral/etiologia , Degeneração do Disco Intervertebral/patologia , Músculos Paraespinais/patologia , Disco Intervertebral/patologia , Vértebras Lombares/patologia
20.
Int Immunopharmacol ; 131: 111904, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38518595

RESUMO

Intervertebral disc degeneration (IVDD) stands as the primary cause of low back pain (LBP). A significant contributor to IVDD is nucleus pulposus cell (NPC) senescence. However, the precise mechanisms underlying NPC senescence remain unclear. Monoacylglycerol lipase (MAGL) serves as the primary enzyme responsible for the hydrolysis of 2-arachidonoylglycerol (2-AG), breaking down monoglycerides into glycerol and fatty acids. It plays a crucial role in various pathological processes, including pain, inflammation, and oxidative stress. In this study, we utilized a lipopolysaccharide (LPS)-induced NPC senescence model and a rat acupuncture-induced IVDD model to investigate the role of MAGL in IVDD both in vitro and in vivo. Initially, our results showed that MAGL expression was increased 2.41-fold and 1.52-fold within NP tissues from IVDD patients and rats induced with acupuncture, respectively. This increase in MAGL expression was accompanied by elevated expression of p16INK4α. Following this, it was noted that the suppression of MAGL resulted in a notable decrease in the quantity of SA-ß-gal-positive cells and hindered the manifestation of p16INK4α and the inflammatory factor IL-1ß in NPCs. MAGL inhibition promotes type II collagen (Col-2) expression and inhibits matrix metalloproteinase 13 (MMP13), thereby restoring the balance of extracellular matrix (ECM) metabolism both in vitro and in vivo. A significant role for STING has also been demonstrated in the regulation of NPC senescence by MAGL. The expression of the STING protein was reduced by 57% upon the inhibition of MAGL. STING activation can replicate the effects of MAGL and substantially increase LPS-induced inflammation while accelerating the senescence of NPCs. These results strongly indicate that the inhibition of MAGL can significantly suppress nucleus pulposus senescence via its interaction with STING, consequently restoring the balance of ECM metabolism. This insight provides new perspectives for potential treatments for IVDD.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Animais , Humanos , Ratos , Inflamação/metabolismo , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Lipopolissacarídeos/farmacologia , Monoacilglicerol Lipases/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa