Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 629(8010): 121-126, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632395

RESUMO

The neural crest is an embryonic stem cell population unique to vertebrates1 whose expansion and diversification are thought to have promoted vertebrate evolution by enabling emergence of new cell types and structures such as jaws and peripheral ganglia2. Although jawless vertebrates have sensory ganglia, convention has it that trunk sympathetic chain ganglia arose only in jawed vertebrates3-8. Here, by contrast, we report the presence of trunk sympathetic neurons in the sea lamprey, Petromyzon marinus, an extant jawless vertebrate. These neurons arise from sympathoblasts near the dorsal aorta that undergo noradrenergic specification through a transcriptional program homologous to that described in gnathostomes. Lamprey sympathoblasts populate the extracardiac space and extend along the length of the trunk in bilateral streams, expressing the catecholamine biosynthetic pathway enzymes tyrosine hydroxylase and dopamine ß-hydroxylase. CM-DiI lineage tracing analysis further confirmed that these cells derive from the trunk neural crest. RNA sequencing of isolated ammocoete trunk sympathoblasts revealed gene profiles characteristic of sympathetic neuron function. Our findings challenge the prevailing dogma that posits that sympathetic ganglia are a gnathostome innovation, instead suggesting that a late-developing rudimentary sympathetic nervous system may have been characteristic of the earliest vertebrates.


Assuntos
Linhagem da Célula , Gânglios Simpáticos , Crista Neural , Neurônios , Petromyzon , Sistema Nervoso Simpático , Tirosina 3-Mono-Oxigenase , Animais , Crista Neural/citologia , Crista Neural/metabolismo , Gânglios Simpáticos/citologia , Gânglios Simpáticos/metabolismo , Sistema Nervoso Simpático/citologia , Sistema Nervoso Simpático/fisiologia , Tirosina 3-Mono-Oxigenase/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Neurônios/citologia , Neurônios/metabolismo , Dopamina beta-Hidroxilase/metabolismo , Dopamina beta-Hidroxilase/genética , Vertebrados , Evolução Biológica , Norepinefrina/metabolismo
2.
Nature ; 631(8021): 601-609, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38987587

RESUMO

Exaggerated airway constriction triggered by repeated exposure to allergen, also called hyperreactivity, is a hallmark of asthma. Whereas vagal sensory neurons are known to function in allergen-induced hyperreactivity1-3, the identity of downstream nodes remains poorly understood. Here we mapped a full allergen circuit from the lung to the brainstem and back to the lung. Repeated exposure of mice to inhaled allergen activated the nuclei of solitary tract (nTS) neurons in a mast cell-, interleukin-4 (IL-4)- and vagal nerve-dependent manner. Single-nucleus RNA sequencing, followed by RNAscope assay at baseline and allergen challenges, showed that a Dbh+ nTS population is preferentially activated. Ablation or chemogenetic inactivation of Dbh+ nTS neurons blunted hyperreactivity whereas chemogenetic activation promoted it. Viral tracing indicated that Dbh+ nTS neurons project to the nucleus ambiguus (NA) and that NA neurons are necessary and sufficient to relay allergen signals to postganglionic neurons that directly drive airway constriction. Delivery of noradrenaline antagonists to the NA blunted hyperreactivity, suggesting noradrenaline as the transmitter between Dbh+ nTS and NA. Together, these findings provide molecular, anatomical and functional definitions of key nodes of a canonical allergen response circuit. This knowledge informs how neural modulation could be used to control allergen-induced airway hyperreactivity.


Assuntos
Alérgenos , Tronco Encefálico , Hiper-Reatividade Brônquica , Dopamina beta-Hidroxilase , Pulmão , Neurônios , Animais , Feminino , Masculino , Camundongos , Alérgenos/imunologia , Asma/imunologia , Asma/fisiopatologia , Tronco Encefálico/citologia , Tronco Encefálico/fisiologia , Hiper-Reatividade Brônquica/tratamento farmacológico , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/fisiopatologia , Interleucina-4/imunologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/inervação , Pulmão/fisiopatologia , Mastócitos/imunologia , Neurônios/enzimologia , Neurônios/fisiologia , Norepinefrina/antagonistas & inibidores , Norepinefrina/metabolismo , Núcleo Solitário/citologia , Núcleo Solitário/fisiologia , Nervo Vago/citologia , Nervo Vago/fisiologia , Bulbo/citologia , Bulbo/efeitos dos fármacos , Gânglios Autônomos/citologia , Dopamina beta-Hidroxilase/metabolismo
3.
J Neurosci ; 44(34)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39038954

RESUMO

Stress impairs fertility, at least in part, via inhibition of gonadotropin secretion. Luteinizing hormone (LH) is an important gonadotropin that is released in a pulsatile pattern in males and in females throughout the majority of the ovarian cycle. Several models of stress, including acute metabolic stress, suppress LH pulses via inhibition of neurons in the arcuate nucleus of the hypothalamus that coexpress kisspeptin, neurokinin B, and dynorphin (termed KNDy cells) which form the pulse generator. The mechanism for inhibition of KNDy neurons during stress, however, remains a significant outstanding question. Here, we investigated a population of catecholamine neurons in the nucleus of the solitary tract (NTS), marked by expression of the enzyme dopamine beta-hydroxylase (DBH), in female mice. First, we found that a subpopulation of DBH neurons in the NTS is activated (express c-Fos) during metabolic stress. Then, using chemogenetics, we determined that activation of these cells is sufficient to suppress LH pulses, augment corticosterone secretion, and induce sickness-like behavior. In subsequent studies, we identified evidence for suppression of KNDy cells (rather than downstream signaling pathways) and determined that the suppression of LH pulses was not dependent on the acute rise in glucocorticoids. Together these data support the hypothesis that DBH cells in the NTS are important for regulation of neuroendocrine and behavioral responses to stress.


Assuntos
Hormônio Luteinizante , Núcleo Solitário , Animais , Feminino , Hormônio Luteinizante/metabolismo , Camundongos , Núcleo Solitário/metabolismo , Dopamina beta-Hidroxilase/metabolismo , Camundongos Endogâmicos C57BL , Neurônios Adrenérgicos/metabolismo , Neurônios Adrenérgicos/fisiologia , Corticosterona/metabolismo , Norepinefrina/metabolismo , Camundongos Transgênicos , Estresse Fisiológico/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Kisspeptinas/metabolismo , Neurocinina B/metabolismo
4.
J Neurosci ; 44(28)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38830763

RESUMO

Chronic sleep disruption (CSD), from insufficient or fragmented sleep and is an important risk factor for Alzheimer's disease (AD). Underlying mechanisms are not understood. CSD in mice results in degeneration of locus ceruleus neurons (LCn) and CA1 hippocampal neurons and increases hippocampal amyloid-ß42 (Aß42), entorhinal cortex (EC) tau phosphorylation (p-tau), and glial reactivity. LCn injury is increasingly implicated in AD pathogenesis. CSD increases NE turnover in LCn, and LCn norepinephrine (NE) metabolism activates asparagine endopeptidase (AEP), an enzyme known to cleave amyloid precursor protein (APP) and tau into neurotoxic fragments. We hypothesized that CSD would activate LCn AEP in an NE-dependent manner to induce LCn and hippocampal injury. Here, we studied LCn, hippocampal, and EC responses to CSD in mice deficient in NE [dopamine ß-hydroxylase (Dbh)-/-] and control male and female mice, using a model of chronic fragmentation of sleep (CFS). Sleep was equally fragmented in Dbh -/- and control male and female mice, yet only Dbh -/- mice conferred resistance to CFS loss of LCn, LCn p-tau, and LCn AEP upregulation and activation as evidenced by an increase in AEP-cleaved APP and tau fragments. Absence of NE also prevented a CFS increase in hippocampal AEP-APP and Aß42 but did not prevent CFS-increased AEP-tau and p-tau in the EC. Collectively, this work demonstrates AEP activation by CFS, establishes key roles for NE in both CFS degeneration of LCn neurons and CFS promotion of forebrain Aß accumulation, and, thereby, identifies a key molecular link between CSD and specific AD neural injuries.


Assuntos
Peptídeos beta-Amiloides , Cisteína Endopeptidases , Hipocampo , Locus Cerúleo , Norepinefrina , Privação do Sono , Animais , Peptídeos beta-Amiloides/metabolismo , Norepinefrina/metabolismo , Camundongos , Hipocampo/metabolismo , Hipocampo/patologia , Privação do Sono/metabolismo , Privação do Sono/patologia , Masculino , Locus Cerúleo/metabolismo , Locus Cerúleo/patologia , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/genética , Fragmentos de Peptídeos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dopamina beta-Hidroxilase/metabolismo , Dopamina beta-Hidroxilase/genética , Proteínas tau/metabolismo , Feminino , Degeneração Neural/patologia , Degeneração Neural/metabolismo , Degeneração Neural/genética
5.
Cell Immunol ; 401-402: 104839, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38850753

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) is a chronic and relapsing disease characterized by immune-mediated dysfunction of intestinal homeostasis. Alteration of the enteric nervous system and the subsequent neuro-immune interaction are thought to contribute to the initiation and progression of IBD. However, the role of dopamine beta-hydroxylase (DBH), an enzyme converting dopamine into norepinephrine, in modulating intestinal inflammation is not well defined. METHODS: CD4+CD45RBhighT cell adoptive transfer, and 2,4-dinitrobenzene sulfonic acid (DNBS) or dextran sodium sulfate (DSS)-induced colitis were collectively conducted to uncover the effects of DBH inhibition by nepicastat, a DBH inhibitor, in mucosal ulceration, disease severity, and T cell function. RESULTS: Inhibition of DBH by nepicastat triggered therapeutic effects on T cell adoptive transfer induced chronic mouse colitis model, which was consistent with the gene expression of DBH in multiple cell populations including T cells. Furthermore, DBH inhibition dramatically ameliorated the disease activity and colon shortening in chemically induced acute and chronic IBD models, as evidenced by morphological and histological examinations. The reshaped systemic inflammatory status was largely associated with decreased pro-inflammatory mediators, such as TNF-α, IL-6 and IFN-γ in plasma and re-balanced Th1, Th17 and Tregs in mesenteric lymph nodes (MLNs) upon colitis progression. Additionally, the conversion from dopamine (DA) to norepinephrine (NE) was inhibited resulting in increase in DA level and decrease in NE level and DA/NE showed immune-modulatory effects on the activation of immune cells. CONCLUSION: Modulation of neurotransmitter levels via inhibition of DBH exerted protective effects on progression of murine colitis by modulating the neuro-immune axis. These findings suggested a promising new therapeutic strategy for attenuating intestinal inflammation.


Assuntos
Transferência Adotiva , Colite , Dopamina beta-Hidroxilase , Doenças Inflamatórias Intestinais , Ativação Linfocitária , Camundongos Endogâmicos C57BL , Animais , Camundongos , Colite/induzido quimicamente , Colite/imunologia , Dopamina beta-Hidroxilase/metabolismo , Doenças Inflamatórias Intestinais/imunologia , Ativação Linfocitária/imunologia , Modelos Animais de Doenças , Sulfato de Dextrana , Inflamação/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Masculino , Citocinas/metabolismo
6.
Behav Brain Res ; 471: 115116, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38897419

RESUMO

The neural mechanisms underlying paternal care in biparental mammals are not well understood. The California mouse (Peromyscus californicus) is a biparental rodent in which virtually all fathers are attracted to pups, while virgin males vary widely in their behavior toward unrelated infants, ranging from attacking to avoiding to huddling and grooming pups. We previously showed that pharmacologically inhibiting the synthesis of the neurotransmitter norepinephrine (NE) with the dopamine ß-hydroxylase inhibitor nepicastat reduced the propensity of virgin male and female California mice to interact with pups. The current study tested the hypothesis that nepicastat would reduce pup-induced c-Fos immunoreactivity, a cellular marker of neural activity, in the medial preoptic area (MPOA), medial amygdala (MeA), basolateral amygdala (BLA), and bed nucleus of the stria terminalis (BNST), brain regions implicated in the control of parental behavior and/or anxiety. Virgin males were injected with nepicastat (75 mg/kg, i.p.) or vehicle 2 hours prior to exposure to either an unrelated pup or novel object for 60 minutes (n = 4-6 mice per group). Immediately following the 60-minute stimulus exposure, mice were euthanized and their brains were collected for c-Fos immunohistochemistry. Nepicastat reduced c-Fos expression in the MeA and MPOA of pup-exposed virgin males compared to vehicle-injected controls. In contrast, nepicastat did not alter c-Fos expression in any of the above brain regions following exposure to a novel object. Overall, these results suggest that the noradrenergic system might influence MeA and MPOA function to promote behavioral interactions with pups in virgin males.


Assuntos
Dopamina beta-Hidroxilase , Comportamento Paterno , Peromyscus , Área Pré-Óptica , Núcleos Septais , Animais , Masculino , Dopamina beta-Hidroxilase/metabolismo , Dopamina beta-Hidroxilase/antagonistas & inibidores , Comportamento Paterno/fisiologia , Comportamento Paterno/efeitos dos fármacos , Núcleos Septais/efeitos dos fármacos , Núcleos Septais/metabolismo , Área Pré-Óptica/metabolismo , Área Pré-Óptica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Feminino , Inibidores Enzimáticos/farmacologia , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Corticomedial/efeitos dos fármacos , Complexo Nuclear Corticomedial/metabolismo , Norepinefrina/metabolismo , Imidazóis , Tionas
7.
Braz. j. med. biol. res ; 42(12): 1185-1190, Dec. 2009. ilus
Artigo em Inglês | LILACS | ID: lil-532306

RESUMO

Chronic stress is associated with the development of cardiovascular diseases. The sympathoneural system plays an important role in the regulation of cardiac function both in health and disease. In the present study, the changes in gene expression of the catecholamine biosynthetic enzymes tyrosine hydroxylase (TH), dopamine-â-hydroxylase (DBH) and phenylethanolamine N-methyltransferase (PNMT) and protein levels in the right and left heart auricles of naive control and long-term (12 weeks) socially isolated rats were investigated by Taqman RT-PCR and Western blot analysis. The response of these animals to additional immobilization stress (2 h) was also examined. Long-term social isolation produced a decrease in TH mRNA level in left auricles (about 70 percent) compared to the corresponding control. Expression of the DBH gene was markedly decreased both in the right (about 62 percent) and left (about 81 percent) auricles compared to the corresponding control, group-maintained rats, whereas PNMT mRNA levels remained unchanged. Exposure of group-housed rats to acute immobilization for 2 h led to a significant increase of mRNA levels of TH (about 267 percent), DBH (about 37 percent) and PNMT (about 60 percent) only in the right auricles. Additional 2-h immobilization of individually housed rats did not affect gene expression of these enzymes in either the right or left auricle. Protein levels of TH, DBH and PNMT in left and right heart auricles were unchanged either in both individually housed and immobilized rats. The unchanged mRNA levels of the enzymes examined after short-term immobilization suggest that the catecholaminergic system of the heart auricles of animals previously exposed to chronic psychosocial stress was adapted to maintain appropriate cardiovascular homeostasis.


Assuntos
Animais , Masculino , Ratos , Catecolaminas/metabolismo , Dopamina beta-Hidroxilase/metabolismo , Regulação Enzimológica da Expressão Gênica/genética , Átrios do Coração/enzimologia , Feniletanolamina N-Metiltransferase/metabolismo , /metabolismo , Western Blotting , Catecolaminas/genética , Dopamina beta-Hidroxilase/genética , Feniletanolamina N-Metiltransferase/genética , Ratos Wistar , Restrição Física , Reação em Cadeia da Polimerase Via Transcriptase Reversa , RNA Mensageiro , Isolamento Social , Estresse Fisiológico , Fatores de Tempo , /genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa