Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 344
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Jpn Acad Ser B Phys Biol Sci ; 100(3): 165-189, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38462500

RESUMO

The chemical characterization of the heaviest elements at the farthest reach of the periodic table (PT) and the classification of these elements in the PT are undoubtedly crucial and challenging subjects in chemical and physical sciences. The elucidation of the influence of relativistic effects on their outermost electronic configuration is also a critical and fascinating aspect. However, the heaviest elements with atomic numbers Z ≳ 100 must be produced at accelerators using nuclear reactions of heavy ions and target materials. Therefore, production rates for these elements are low, and their half-lives are as short as a few seconds to a few minutes; they are usually available in a quantity of only a few atoms at a time. Here, we review some highlighted studies on heavy actinide and light transactinide chemical characterization performed at the Japan Atomic Energy Agency tandem accelerator facility. We discuss briefly the prospects for future studies of the heaviest elements.


Assuntos
Elementos da Série Actinoide , Elementos da Série dos Transactinídeos , Humanos , Elementos da Série Actinoide/química , Japão
2.
Chemistry ; 29(33): e202300456, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37013708

RESUMO

The separation of actinides from lanthanides in spent nuclear fuel reprocessing is a vital step of nuclear fuel cycle process. As one class of mature industrial extractants, the organophosphorus extractants have been widely used for the extraction and separation of actinides and lanthanides in spent fuel reprocessing due to their strong extraction ability and low-cost acquisition. In this concept, the application scope of tributyl phosphate (TBP), bis(2-ethylhexyl) phosphate (HDEHP), octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO), trialkyl phosphine oxide (TRPO), and purified Cyanex 301 (bis(2,4,4-trimethylpentyl) dithiophosphinic acid, HA301) are introduced, and their extraction mechanism, as well as structure-function relationships for separation of actinides over lanthanides are also discussed. Furthermore, the design criteria, extraction properties and mechanism of several typical newly developed organophosphorus extractants (CMPO-modified calixarene/pillarene, phenanthroline-derived organophosphorus extractants, and phosphate-modified carborane) based on pre-organized skeletons are briefly reviewed. Finally, the important role played by those organophosphorus extractants is emphasized and potential applications in separation of actinides over lanthanides in future advanced nuclear fuel cycle are identified.


Assuntos
Elementos da Série Actinoide , Elementos da Série dos Lantanídeos , Óxidos , Fosfatos
3.
Chemphyschem ; 24(2): e202200516, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36149643

RESUMO

The use of actinides for medical, scientific and technological purposes has gained momentum in the recent years. This creates a need to understand their interactions with biomolecules, both at the interface and as they become complexed. Calculation of the Gibbs binding energies of the ions to biomolecules, i. e., the Gibbs energy change associated with a transfer of an ion from the water phase to its binding site, could help to understand the actinides' toxicities and to design agents that bind them with high affinities. To this end, there is a need to obtain accurate reference values for actinide hydration, that for most actinides are not available from experiment. In this study, a set of ionic radii is developed that enables future calculations of binding energies for Pu3+ and five actinides with renewed scientific and technological interest: Ac3+ , Am3+ , Cm3+ , Bk3+ and Cf3+ . Reference hydration energies were calculated using quantum chemistry and ion solvation theory and agree well for all ions except Ac3+ , where ion solvation theory seems to underestimate the magnitude of the Gibbs hydration energy. The set of radii and reference energies that are presented here provide means to calculate binding energies for actinides and biomolecules.


Assuntos
Elementos da Série Actinoide , Plutônio , Actínio , Termodinâmica , Elementos da Série Actinoide/química , Água/química
4.
Biomacromolecules ; 24(11): 5058-5070, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37676932

RESUMO

Original α-aminobisphosphonate-based copolymers were synthesized and successfully used for actinide complexation. For this purpose, poly(α-chloro-ε-caprolactone-co-ε-caprolactone)-b-poly(ethylene glycol)-b-poly(α-chloro-ε-caprolactone-co-ε-caprolactone) copolymers were first prepared by ring-opening copolymerization of ε-caprolactone (εCL) and α-chloro-ε-caprolactone using poly(ethylene glycol) (PEG) as a macro-initiator and tin(II) octanoate as a catalyst. The chloride functions were then converted to azide moieties by chemical modification, and finally α-aminobisphosphonate alkyne ligand (TzBP) was grafted using click chemistry, to afford well-defined poly(αTzBPεCL-co-εCL)-b-PEG-b-poly(αTzBPεCL-co-εCL) copolymers. Three copolymers, showing different α-aminobisphosphonate group ratios, were prepared (7, 18, and 38%), namely, CP8, CP9, and CP10, respectively. They were characterized by 1H and 31P NMR and size exclusion chromatography. Sorption properties of these copolymers were evaluated by isothermal titration calorimetry (ITC) with neodymium [Nd(III)] and cerium [Ce(III)] cations, used as surrogates of actinides, especially uranium and plutonium, respectively. ITC enabled the determination of the full thermodynamic profile and the calculation of the complete set of thermodynamic parameter (ΔH, TΔS, and ΔG), with the Ka constant and the n stoichiometry. The results showed that the number of cations sorbed by the functional copolymers logically increased with the number of bisphosphonate functions borne by the macromolecular chain, independently of the complexed cation. Additionally, CP9 and CP10 copolymers showed higher sorption capacities [21.4 and 34.0 mg·g-1 for Nd(III) and 9.6 and 14.3 mg·g-1 for Ce(III), respectively] than most of the systems previously described in the literature. CP9 also showed a highest binding constant (7000 M-1). These copolymers, based on non-toxic and biocompatible poly(ε-caprolactone) and PEG, are of great interest for external body decontamination of actinides as they combine high number of complexing groups, thus leading to great decontamination efficiency, and limited diffusion through the skin due to their high-molecular weight, thus avoiding additional possible internal contamination.


Assuntos
Elementos da Série Actinoide , Polietilenoglicóis , Polietilenoglicóis/química , Polímeros/química , Poliésteres/química , Cátions
5.
Inorg Chem ; 62(50): 20754-20768, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37707798

RESUMO

Octadentate and specifically nonadentate ligands with a bispidine scaffold (3,7-diazabicyclo[3.3.1]nonane) are known to be efficiently coordinated to a range of metal ions of interest in radiopharmaceutical chemistry and lead to exceedingly stable and inert complexes. Nonadentate bispidine L2 (with a tridentate bipyridine acetate appended to N3 and a picolinate at N7) has been shown before to be an ideal chelator for 111In3+, 177Lu3+, and 225Ac3+, nuclides of interest for diagnosis and therapy, and a proof-of-principle study with an SSTR2-specific octreotate has shown potential for theranostic applications. We now have extended these studies in two directions. First, we present ligand derivative L3, in which the bipyridine acetate is substituted with terpyridine, a softer donor for metal ions with a preference for more covalency. L3 did not fulfill the hopes because complexation is much less efficient. While for Bi3+ and Pb2+ the ligand is an excellent chelator with properties similar to those of L2, Lu3+ and La3+ show very slow and inefficient complexation with L3 in contrast to L2, and 225Ac3+ is not fully coordinated, even at an increased temperature (92% radiochemical yield at 80 °C, 60 min, [L3] = 10-4 M). These observations have led to a hypothesis for the complexation pathway that is in line with all of the experimental data and supported by a preliminary density functional theory analysis, which is important for the design of further optimized bispidine chelators. Second, the coordination chemistry of L2 has been extended to Bi3+, La3+, and Pb2+, including solid state and solution structural work, complex stabilities, radiolabeling, and radiostability studies. All complexes of this ligand (La3+, Ac3+, Lu3+, Bi3+, In3+, and Pb2+), including nuclides for targeted α therapy (TAT), single-photon emission computed tomography, and positron emission tomography, are formed efficiently under physiological conditions, i.e., suitable for the labeling of delicate biological vectors such as antibodies, and the complexes are very stable and inert. Importantly, for TAT with 225Ac, the daughter nuclides 213Bi and 209Pb also form stable complexes, and this is important for reducing damage to healthy tissue.


Assuntos
Elementos da Série Actinoide , Elementos da Série dos Lantanídeos , Quelantes/química , Compostos Radiofarmacêuticos/química , Elementos da Série dos Lantanídeos/química , Ligantes , Chumbo , Íons/química , Acetatos
6.
Environ Sci Technol ; 57(49): 20830-20843, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37897703

RESUMO

Minor actinides are major contributors to the long-term radiotoxicity of nuclear fuels and other radioactive wastes. In this context, understanding their interactions with natural chelators and minerals is key to evaluating their transport behavior in the environment. The lanmodulin family of metalloproteins is produced by ubiquitous bacteria and Methylorubrum extorquens lanmodulin (LanM) was recently identified as one of nature's most selective chelators for trivalent f-elements. Herein, we investigated the behavior of neptunium, americium, and curium in the presence of LanM, carbonate ions, and common minerals (calcite, montmorillonite, quartz, and kaolinite). We show that LanM's aqueous complexes with Am(III) and Cm(III) remain stable in carbonate-bicarbonate solutions. Furthermore, the sorption of Am(III) to these minerals is strongly impacted by LanM, while Np(V) sorption is not. With calcite, even a submicromolar concentration of LanM leads to a significant reduction in the Am(III) distribution coefficient (Kd, from >104 to ∼102 mL/g at pH 8.5), rendering it even more mobile than Np(V). Thus, LanM-type chelators can potentially increase the mobility of trivalent actinides and lanthanide fission products under environmentally relevant conditions. Monitoring biological chelators, including metalloproteins, and their biogenerators should therefore be considered during the evaluation of radioactive waste repository sites and the risk assessment of contaminated sites.


Assuntos
Elementos da Série Actinoide , Metaloproteínas , Quelantes , Elementos da Série Actinoide/química , Minerais , Carbonato de Cálcio , Carbonatos
7.
Ecotoxicol Environ Saf ; 264: 115474, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37716067

RESUMO

Microorganisms show a high affinity for trivalent actinides and lanthanides, which play an important role in the safe disposal of high-level radioactive waste as well as in the mining of various rare earth elements. The interaction of the lanthanide Eu(III) with the sulfate-reducing microorganism Desulfosporosinus hippei DSM 8344T, a representative of the genus Desulfosporosinus that naturally occurs in clay rock and bentonite, was investigated. Eu(III) is often used as a non-radioactive analogue for the trivalent actinides Pu(III), Am(III), and Cm(III), which contribute to a major part of the radiotoxicity of the nuclear waste. D. hippei DSM 8344T showed a weak interaction with Eu(III), most likely due to a complexation with lactate in artificial Opalinus Clay pore water. Hence, a low removal of the lanthanide from the supernatant was observed. Scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy revealed a bioprecipitation of Eu(III) with phosphates potentially excreted from the cells. This demonstrates that the ongoing interaction mechanisms are more complex than a simple biosorption process. The bioprecipitation was also verified by luminescence spectroscopy, which showed that the formation of the Eu(III) phosphate compounds starts almost immediately after the addition of the cells. Moreover, chemical microscopy provided information on the local distribution of the different Eu(III) species in the formed cell aggregates. These results provide first insights into the interaction mechanisms of Eu(III) with sulfate-reducing bacteria and contribute to a comprehensive safety concept for a high-level radioactive waste repository, as well as to a better understanding of the fate of heavy metals (especially rare earth elements) in the environment.


Assuntos
Elementos da Série Actinoide , Elementos da Série dos Lantanídeos , Resíduos Radioativos , Európio/química , Luminescência , Sulfatos , Argila
8.
Chem Soc Rev ; 51(10): 3964-3999, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35475807

RESUMO

This review focuses on consolidating solvent extraction performed in the process intensification equipment known as Centrifugal Contactors (CCs), implemented in Spent Nuclear Fuel (SNF) reprocessing and radioactive waste processing. Recovery of valuable actinides is important from sustainability perspectives as it is a source of metals of technological interest from SNF, specifically the recovery of fissile and fertile material, and can also be employed in the processing of Waste Electrical and Electronic Equipment (WEEE). Solvent extraction (also referred to as liquid-liquid extraction, or aqueous separation), is employed in the separation of f-block elements and fission products in SNF. The sequential isolation using different flowsheets has been performed on a range of scales using CCs. However, solids, either present in the feed solution or formed in situ, are always cited as a concern for the operability of CCs, and their extraction efficiencies. This review quantifies the unexpected solid arisings and accumulation during operation in the presence and absence of highly radioactive isotopes from bench to plant scale. The review concludes with techniques implemented for the removal of solids from CCs.


Assuntos
Elementos da Série Actinoide , Resíduos Radioativos , Metais , Radioisótopos , Solventes
9.
Chem Soc Rev ; 51(9): 3735-3758, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35451437

RESUMO

The diverse coordination modes and electronic features of actinide complexes of porphyrins and related oligopyrrolic systems (referred to as "porpyrinoids") have been the subject of interest since the 1960s. Given their stability and accessibility, most work with actinides has focused on thorium and uranium. This trend is also seen in the case of porphyrinoid-based complexation studies. Nevertheless, the diversity of ligand environments provided by porphyrinoids has led to the stabilization of a number of unique complexes with the early actinides that are often without structural parallel within the broader coordination chemical lexicon. This review summarizes key examples of prophyrinoid actinide complexes reported to date, including the limited number of porphyrinoid systems involving transuranic elements. The emphasis will be on synthesis and structure; however, the electronic features and reactivity pattern of representative systems will be detailed as well. Coverage is through December of 2021.


Assuntos
Elementos da Série Actinoide , Porfirinas , Urânio , Ligantes , Porfirinas/química , Tório/química , Urânio/química
10.
J Am Chem Soc ; 144(25): 11054-11058, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35699271

RESUMO

The sequestration of uranium, particularly from the deposited bones, has been an incomplete task in chelation therapy for actinide decorporation. Part of the reason is that all previous decorporation ligands are not delicately designed to meet the coordination requirement of uranyl cations. Herein, guided by DFT calculation, we elaborately design a hexadentate ligand (TAM-2LI-MAM2), whose preorganized planar oxo-donor configuration perfectly matches the typical coordination geometry of the uranyl cation. This leads to an ultrahigh binding affinity to uranyl supported by an in vitro desorption experiment of uranyl phosphate. Administration of this ligand by prompt intraperitoneal injection demonstrates its uranyl removal efficiencies from the kidneys and bones are up to 95.4% and 81.2%, respectively, which notably exceeds all the tested chelating agents as well as the clinical drug ZnNa3-DTPA, setting a new record in uranyl decorporation efficacy.


Assuntos
Elementos da Série Actinoide , Urânio , Cátions , Quelantes/metabolismo , Rim/metabolismo , Ligantes
11.
Anal Chem ; 94(51): 18042-18049, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36519576

RESUMO

Determining actinides in urine is vital for occupational exposure monitoring and radiological emergency response because of the toxicity and radiological dose effects of actinides on human health. Traditional radiochemistry analytical methods used to determine actinide concentrations in urine are time-consuming (sample analysis takes several days) and are hindered by a variety of technical and instrumentation-related obstacles. A high-throughput, fully automated, precise, and accurate in-line method was developed for determining five actinides (241Am, 239Pu, 237Np, 232Th, and 238U) at ng/L levels in urine using extraction chromatography combined with quadrupole inductively coupled plasma mass spectrometry (EC-ICP-MS). In this method, the five actinides were successfully separated with the required sensitivity, peak shape, and resolution using a simplified single Eichrom TRU column with a Dionex ICS-5000 system. The separated actinides were subsequently injected into an in-line PerkinElmer (PE) NexION 300D ICP-MS for quantitative determination. The sample-to-sample run time was 23 min for automatic chemical separation and quantification using only 0.5 mL of urine. The limits of detection (LOD) obtained using this method were 0.015, 0.022, 0.039, 4.5, and 2.4 ng/L for 241Am, 239Pu, 237Np, 232Th, and 238U, respectively. The method routinely had a chemical yield of >84% as well as a linearity (R2) coefficient of ≥0.999 for the calibrators. The method proved to be rapid, reliable, and effective for actinide quantification in urine and therefore is appropriate for radiological emergency response incidents.


Assuntos
Elementos da Série Actinoide , Humanos , Espectrometria de Massas/métodos , Elementos da Série Actinoide/urina , Análise Espectral , Cromatografia , Limite de Detecção
12.
J Synchrotron Radiat ; 29(Pt 1): 45-52, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34985422

RESUMO

Ferritin is the main protein of Fe storage in eukaryote and prokaryote cells. It is a large multifunctional, multi-subunit protein consisting of heavy H and light L subunits. In the field of nuclear toxicology, it has been suggested that some actinide elements, such as thorium and plutonium at oxidation state +IV, have a comparable `biochemistry' to iron at oxidation state +III owing to their very high tendency for hydrolysis and somewhat comparable ionic radii. Therefore, the possible mechanisms of interaction of such actinide elements with the Fe storage protein is a fundamental question of bio-actinidic chemistry. We recently described the complexation of Pu(IV) and Th(IV) with horse spleen ferritin (composed mainly of L subunits). In this article, we bring another viewpoint to this question by further combining modeling with our previous EXAFS data for Pu(IV) and Th(IV). As a result, the interaction between the L subunits and both actinides appears to be non-specific but driven only by the density of the presence of Asp and Glu residues on the protein shell. The formation of an oxyhydroxide Th or Pu core has not been observed under the experimental conditions here, nor the interaction of Th or Pu with the ferric oxyhydroxide core.


Assuntos
Elementos da Série Actinoide , Plutônio , Elementos da Série Actinoide/metabolismo , Animais , Compostos Férricos , Ferritinas , Cavalos , Plutônio/metabolismo , Tório/metabolismo
13.
Int J Mol Sci ; 23(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35563121

RESUMO

In case of an incident in the nuclear industry or an act of war or terrorism, the dissemination of plutonium could contaminate the environment and, hence, humans. Human contamination mainly occurs via inhalation and/or wounding (and, less likely, ingestion). In such cases, plutonium, if soluble, reaches circulation, whereas the poorly soluble fraction (such as small colloids) is trapped in alveolar macrophages or remains at the site of wounding. Once in the blood, the plutonium is delivered to the liver and/or to the bone, particularly into its mineral part, mostly composed of hydroxyapatite. Countermeasures against plutonium exist and consist of intravenous injections or inhalation of diethylenetetraminepentaacetate salts. Their effectiveness is, however, mainly confined to the circulating soluble forms of plutonium. Furthermore, the short bioavailability of diethylenetetraminepentaacetate results in its rapid elimination. To overcome these limitations and to provide a complementary approach to this common therapy, we developed polymeric analogs to indirectly target the problematic retention sites. We present herein a first study regarding the decontamination abilities of polyethyleneimine methylcarboxylate (structural diethylenetetraminepentaacetate polymer analog) and polyethyleneimine methylphosphonate (phosphonate polymeric analog) directed against Th(IV), used here as a Pu(IV) surrogate, which was incorporated into hydroxyapatite used as a bone model. Our results suggest that polyethylenimine methylphosphonate could be a good candidate for powerful bone decontamination action.


Assuntos
Elementos da Série Actinoide , Plutônio , Quelantes/química , Descontaminação/métodos , Durapatita , Humanos , Plutônio/química , Polietilenoimina , Polímeros
14.
Molecules ; 27(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35684403

RESUMO

α-Aminophosphonates, -phosphinates, and -phosphine oxides are a group of organophosphorus compounds that were investigated as extraction agents for rare earth (RE) metals and actinoids for the first time in the 1960s. However, more systematic investigations of their extraction properties towards REs and actinoids were not started until the 2010s. Indeed, recent studies have shown that these α-amino-functionalized compounds can outperform the commercial organophosphorus extraction agents in RE separations. They have also proven to be very efficient extraction and precipitation agents for recovering Th and U from RE concentrates. These actinoids coexist with REs in some of the commercially important RE-containing minerals. The efficient separation and purification of REs is becoming more and more important every year as these elements have a pivotal role in many existing technologies. If one also considers the facile synthesis of α-amino-functionalized organophosphorus extractants and precipitation agents, it is expected that they will be increasingly utilized in the extraction chemistry of REs and actinoids in the future. This review collates α-aminophosphonates, -phosphinates, and -phosphine oxides that have been utilized in the separation chemistry of REs and actinoids, including their most relevant synthetic routes and molecular properties. Their extraction and precipitation properties towards REs and actinoids are also discussed.


Assuntos
Elementos da Série Actinoide , Metais Terras Raras , Organofosfonatos , Urânio , Elementos da Série Actinoide/análise , Organofosfonatos/química , Óxidos/química , Fosfinas , Tório , Urânio/química
15.
Molecules ; 27(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36500244

RESUMO

The octadentate hydroxypyridonate ligand 3,4,3-LI(1,2-HOPO) (t-HOPO) shows strong binding affinity with actinide cations and is considered as a promising decorporation agent used to eliminate in vivo actinides, while its dynamics in its unbound and bound states in the condensed phase remain unclear. In this work, by means of MD simulations, the folding dynamics of intact t-HOPO in its neutral (t-HOPO0) and in its deprotonated state (t-HOPO4-) were studied. The results indicated that the deprotonation of t-HOPO in the aqueous phase significantly narrowed the accessible conformational space under the simulated conditions, and it was prepared in a conformation that could conveniently clamp the cations. The simulation of UIV-t-HOPO showed that the tetravalent uranium ion was deca-coordinated with eight ligating O atoms from the t-HOPO4- ligand, and two from aqua ligands. The strong electrostatic interaction between the U4+ ion and t-HOPO4- further diminished the flexibility of t-HOPO4- and confined it in a limited conformational space. The strong interaction between the U4+ ion and t-HOPO4- was also implicated in the shortened residence time of water molecules.


Assuntos
Elementos da Série Actinoide , Urânio , Quelantes/química , Ligantes , Piridonas/química
16.
Environ Sci Technol ; 55(23): 15797-15809, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34813323

RESUMO

Reactive transport modeling (RTM) is an essential tool for the prediction of contaminants' behavior in the bio- and geosphere. However, RTM of sorption reactions is constrained by the reactive surface site assessment. The reactive site density variability of the crystal surface nanotopography provides an "energetic landscape", responsible for heterogeneous sorption efficiency, not covered in current RTM approaches. Here, we study the spatially heterogeneous sorption behavior of Eu(III), as an analogue to trivalent actinides, on a polycrystalline nanotopographic calcite surface and quantify the sorption efficiency as a function of surface nanoroughness. Based on experimental data from micro-focus time-resolved laser-induced luminescence spectroscopy (µTRLFS), vertical scanning interferometry, and electron back-scattering diffraction (EBSD), we parameterize a surface complexation model (SCM) using surface nanotopography data. The validation of the quantitatively predicted spatial sorption heterogeneity suggests that retention reactions can be considerably influenced by nanotopographic surface features. Our study presents a way to implement heterogeneous surface reactivity into a SCM for enhanced prediction of radionuclide retention.


Assuntos
Elementos da Série Actinoide , Adsorção
17.
Chem Soc Rev ; 49(22): 8315-8334, 2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33057507

RESUMO

Lanthanides and actinides are elements of ever-increasing technological importance in the modern world. However, the similar chemical and physical properties within these groups make purification of individual elements a challenge. Current industrial standards for the extraction, separation, and purification of these metals from natural sources, recycled materials, and industrial waste are inefficient, relying upon harsh conditions, repetitive steps, and ligands with only modest selectivity. Biological, biomolecular, and bio-inspired strategies towards improving these separations and making them more environmentally sustainable have been researched for many years; however, these methods often have insufficient selectivity for practical application. Recent developments in the understanding of how lanthanides are selectively acquired and used by certain bacteria offer the opportunity for a newer, more efficient take on these designs, as well as the possibility for fundamentally new designs and strategies. Herein, we review current cell-based and biomolecular (primarily small-molecule and protein-based) methods for detection, extraction, and separations of f-block elements. We discuss how the increasing knowledge regarding the selective recognition, uptake, trafficking, and storage of these elements in biological systems has informed and will continue to promote development of novel approaches to achieve these ends.


Assuntos
Elementos da Série Actinoide/análise , Elementos da Série dos Lantanídeos/análise
18.
Int J Mol Sci ; 21(2)2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952278

RESUMO

Even 155 years after their first synthesis, Schiff bases continue to surprise inorganic chemists. Schiff-base ligands have played a major role in the development of modern coordination chemistry because of their relevance to a number of interdisciplinary research fields. The chemistry, properties and applications of transition metal and lanthanoid complexes with Schiff-base ligands are now quite mature. On the contrary, the coordination chemistry of Schiff bases with actinoid (5f-metal) ions is an emerging area, and impressive research discoveries have appeared in the last 10 years or so. The chemistry of actinoid ions continues to attract the intense interest of many inorganic groups around the world. Important scientific challenges are the understanding the basic chemistry associated with handling and recycling of nuclear materials; investigating the redox properties of these elements and the formation of complexes with unusual metal oxidation states; discovering materials for the recovery of trans-{UVIO2}2+ from the oceans; elucidating and manipulating actinoid-element multiple bonds; discovering methods to carry out multi-electron reactions; and improving the 5f-metal ions' potential for activation of small molecules. The study of 5f-metal complexes with Schiff-base ligands is a currently "hot" topic for a variety of reasons, including issues of synthetic inorganic chemistry, metalosupramolecular chemistry, homogeneous catalysis, separation strategies for nuclear fuel processing and nuclear waste management, bioinorganic and environmental chemistry, materials chemistry and theoretical chemistry. This almost-comprehensive review, covers aspects of synthetic chemistry, reactivity and the properties of dinuclear and oligonuclear actinoid complexes based on Schiff-base ligands. Our work focuses on the significant advances that have occurred since 2000, with special attention on recent developments. The review is divided into eight sections (chapters). After an introductory section describing the organization of the scientific information, Sections 2 and 3 deal with general information about Schiff bases and their coordination chemistry, and the chemistry of actinoids, respectively. Section 4 highlights the relevance of Schiff bases to actinoid chemistry. Sections 5-7 are the "main menu" of the scientific meal of this review. The discussion is arranged according the actinoid (only for Np, Th and U are Schiff-base complexes known). Sections 5 and 7 are further arranged into parts according to the oxidation states of Np and U, respectively, because the coordination chemistry of these metals is very much dependent on their oxidation state. In Section 8, some concluding comments are presented and a brief prognosis for the future is attempted.


Assuntos
Elementos da Série Actinoide/química , Complexos de Coordenação/química , Modelos Químicos , Bases de Schiff/química , Catálise , Técnicas de Química Sintética/métodos , Técnicas de Química Sintética/tendências , Complexos de Coordenação/síntese química , Ligantes , Estrutura Molecular , Oxirredução , Bases de Schiff/síntese química
19.
Phys Chem Chem Phys ; 21(29): 16017-16031, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31304940

RESUMO

Enterobactin (Ent) is a typical siderophore with strong iron affinity. Its dynamics in its intact form and holo state remains to be studied to understand its role in the in vivo behavior of metal ions and to facilitate its potential application in drug design and environmental remediation. Here, we report molecular dynamics simulations of both Ent enantiomers and their complexes with key actinides (Am3+, Cm3+, Th4+, U4+, Np4+ and Pu4+) to study the folding equilibria of Ent enantiomers and their binding affinity with actinides. For comparison, the ferric cation was also considered. In their neutral state, both enantiomers may exist in their folded and extended states in the aqueous phase with the former more stable owing to the favorable cation-π, π-π, and H-bond interactions. A helicity preference was observed in the folded states of Ent enantiomers, which was solidified when binding with Fe3+ while disrupted when binding with actinides. Upon binding with metal ions, the dynamics of Ent enantiomers exhibited dependence on the metal ions, and appeared to be more flexible in An3+/4+-Ent complexes than in Fe3+-Ent complexes. The conformational analysis and the energy decomposition of M3+/4+-Ent complexes indicated that their distinct conformational variations and dynamic fluxionality are enthalpy driven behaviors and dependent on the nature of the loaded metal ions. The Fe3+-Ent complexes had a more compact conformation, while the relatively loosely bound An3+/4+-Ent complexes allowed solvent water molecules to access the first coordination shell of An3+/4+ and weaken the interaction between An3+/4+ and Ent. This work is expected to enrich our knowledge of the folding equilibria of Ent enantiomers and their An3+/4+-Ent complexes, and contribute to communities that concern the in vivo and in vitro behaviors of Ent enantiomers and actinides.


Assuntos
Elementos da Série Actinoide/química , Enterobactina/química , Modelos Moleculares , Conformação Molecular , Simulação de Dinâmica Molecular , Estereoisomerismo , Termodinâmica
20.
Proc Natl Acad Sci U S A ; 112(33): 10342-7, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26240330

RESUMO

Synthetic radionuclides, such as the transuranic actinides plutonium, americium, and curium, present severe health threats as contaminants, and understanding the scope of the biochemical interactions involved in actinide transport is instrumental in managing human contamination. Here we show that siderocalin, a mammalian siderophore-binding protein from the lipocalin family, specifically binds lanthanide and actinide complexes through molecular recognition of the ligands chelating the metal ions. Using crystallography, we structurally characterized the resulting siderocalin-transuranic actinide complexes, providing unprecedented insights into the biological coordination of heavy radioelements. In controlled in vitro assays, we found that intracellular plutonium uptake can occur through siderocalin-mediated endocytosis. We also demonstrated that siderocalin can act as a synergistic antenna to sensitize the luminescence of trivalent lanthanide and actinide ions in ternary protein-ligand complexes, dramatically increasing the brightness and efficiency of intramolecular energy transfer processes that give rise to metal luminescence. Our results identify siderocalin as a potential player in the biological trafficking of f elements, but through a secondary ligand-based metal sequestration mechanism. Beyond elucidating contamination pathways, this work is a starting point for the design of two-stage biomimetic platforms for photoluminescence, separation, and transport applications.


Assuntos
Elementos da Série Actinoide/química , Proteínas de Transporte/química , Proteínas de Transporte/fisiologia , Proteínas/química , Elementos da Série Actinoide/farmacocinética , Quelantes/química , Cristalografia por Raios X , Humanos , Concentração de Íons de Hidrogênio , Íons , Cinética , Elementos da Série dos Lantanídeos , Ligantes , Lipocalina-2 , Luminescência , Metais/química , Conformação Molecular , Centrais Nucleares , Fotoquímica , Ligação Proteica , Liberação Nociva de Radioativos , Espectrofotometria , Eletricidade Estática , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa