Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.384
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 628(8009): 844-853, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570685

RESUMO

Mitochondria are critical modulators of antiviral tolerance through the release of mitochondrial RNA and DNA (mtDNA and mtRNA) fragments into the cytoplasm after infection, activating virus sensors and type-I interferon (IFN-I) response1-4. The relevance of these mechanisms for mitochondrial diseases remains understudied. Here we investigated mitochondrial recessive ataxia syndrome (MIRAS), which is caused by a common European founder mutation in DNA polymerase gamma (POLG1)5. Patients homozygous for the MIRAS variant p.W748S show exceptionally variable ages of onset and symptoms5, indicating that unknown modifying factors contribute to disease manifestation. We report that the mtDNA replicase POLG1 has a role in antiviral defence mechanisms to double-stranded DNA and positive-strand RNA virus infections (HSV-1, TBEV and SARS-CoV-2), and its p.W748S variant dampens innate immune responses. Our patient and knock-in mouse data show that p.W748S compromises mtDNA replisome stability, causing mtDNA depletion, aggravated by virus infection. Low mtDNA and mtRNA release into the cytoplasm and a slow IFN response in MIRAS offer viruses an early replicative advantage, leading to an augmented pro-inflammatory response, a subacute loss of GABAergic neurons and liver inflammation and necrosis. A population databank of around 300,000 Finnish individuals6 demonstrates enrichment of immunodeficient traits in carriers of the POLG1 p.W748S mutation. Our evidence suggests that POLG1 defects compromise antiviral tolerance, triggering epilepsy and liver disease. The finding has important implications for the mitochondrial disease spectrum, including epilepsy, ataxia and parkinsonism.


Assuntos
Alelos , DNA Polimerase gama , Vírus da Encefalite Transmitidos por Carrapatos , Herpesvirus Humano 1 , Tolerância Imunológica , SARS-CoV-2 , Animais , Feminino , Humanos , Masculino , Camundongos , Idade de Início , COVID-19/imunologia , COVID-19/virologia , COVID-19/genética , DNA Polimerase gama/genética , DNA Polimerase gama/imunologia , DNA Polimerase gama/metabolismo , DNA Mitocondrial/imunologia , DNA Mitocondrial/metabolismo , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/genética , Encefalite Transmitida por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/virologia , Efeito Fundador , Técnicas de Introdução de Genes , Herpes Simples/genética , Herpes Simples/imunologia , Herpes Simples/virologia , Herpesvirus Humano 1/imunologia , Tolerância Imunológica/genética , Tolerância Imunológica/imunologia , Imunidade Inata/genética , Imunidade Inata/imunologia , Interferon Tipo I/imunologia , Doenças Mitocondriais/enzimologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/imunologia , Mutação , RNA Mitocondrial/imunologia , RNA Mitocondrial/metabolismo , SARS-CoV-2/imunologia
2.
J Virol ; 98(3): e0170923, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38305156

RESUMO

Tick-borne flaviviruses (TBFs) are transmitted to humans through milk and tick bites. Although a case of possible mother-to-child transmission of tick-borne encephalitis virus (TBEV) through breast milk has been reported, this route has not been confirmed in experimental models. Therefore, in this study, using type I interferon receptor-deficient A129 mice infected with Langat virus (LGTV), we aimed to demonstrate the presence of infectious virus in the milk and mammary glands of infected mice. Our results showed viral RNA of LGTV in the pup's stomach milk clots (SMCs) and blood, indicating that the virus can be transmitted from dam to pup through breast milk. In addition, we observed that LGTV infection causes tissue lesions in the mammary gland, and viral particles were present in mammary gland epithelial cells. Furthermore, we found that milk from infected mice could infect adult mice via the intragastric route, which has a milder infection process, longer infection time, and a lower rate of weight loss than other modes of infection. Specifically, we developed a nano-luciferase-LGTV reporter virus system to monitor the dynamics of different infection routes and observed dam-to-pup infection using in vivo bioluminescence imaging. This study provides comprehensive evidence to support breast milk transmission of TBF in mice and has helped provide useful data for studying TBF transmission routes.IMPORTANCETo date, no experimental models have confirmed mother-to-child transmission of tick-borne flavivirus (TBF) through breastfeeding. In this study, we used a mouse model to demonstrate the presence of infectious viruses in mouse breast milk and mammary gland epithelial cells. Our results showed that pups could become infected through the gastrointestinal route by suckling milk, and the infection dynamics could be monitored using a reporter virus system during breastfeeding in vivo. We believe our findings have provided substantial evidence to understand the underlying mechanism of breast milk transmission of TBF in mice, which has important implications for understanding and preventing TBF transmission in humans.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Transmissão Vertical de Doenças Infecciosas , Glândulas Mamárias Animais , Leite , Animais , Feminino , Camundongos , Vírus da Encefalite Transmitidos por Carrapatos/crescimento & desenvolvimento , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Encefalite Transmitida por Carrapatos/transmissão , Encefalite Transmitida por Carrapatos/virologia , Glândulas Mamárias Animais/virologia , Leite/virologia , Animais Recém-Nascidos/virologia
3.
PLoS Pathog ; 19(11): e1011813, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38011306

RESUMO

Innate immune signaling in the central nervous system (CNS) exhibits many remarkable specializations that vary across cell types and CNS regions. In the setting of neuroinvasive flavivirus infection, neurons employ the immunologic kinase receptor-interacting kinase 3 (RIPK3) to promote an antiviral transcriptional program, independently of the traditional function of this enzyme in promoting necroptotic cell death. However, while recent work has established roles for neuronal RIPK3 signaling in controlling mosquito-borne flavivirus infections, including West Nile virus and Zika virus, functions for RIPK3 signaling in the CNS during tick-borne flavivirus infection have not yet been explored. Here, we use a model of Langat virus (LGTV) encephalitis to show that RIPK3 signaling is specifically required in neurons of the cerebellum to control LGTV replication and restrict disease pathogenesis. This effect did not require the necroptotic executioner molecule mixed lineage kinase domain like protein (MLKL), a finding similar to previous observations in models of mosquito-borne flavivirus infection. However, control of LGTV infection required a unique, region-specific dependence on RIPK3 to promote expression of key antiviral interferon-stimulated genes (ISG) in the cerebellum. This RIPK3-mediated potentiation of ISG expression was associated with robust cell-intrinsic restriction of LGTV replication in cerebellar granule cell neurons. These findings further illuminate the complex roles of RIPK3 signaling in the coordination of neuroimmune responses to viral infection, as well as provide new insight into the mechanisms of region-specific innate immune signaling in the CNS.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Doenças Transmitidas por Carrapatos , Carrapatos , Animais , Encéfalo/patologia , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Encefalite Transmitida por Carrapatos/patologia , Interferons/metabolismo , Doenças Transmitidas por Carrapatos/patologia , Replicação Viral/genética , Camundongos
4.
Clin Infect Dis ; 78(1): 80-89, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-37540989

RESUMO

BACKGROUND: Powassan virus (POWV) is an emerging arthropod-borne flavivirus, transmitted by Ixodes spp. ticks, which has been associated with neuroinvasive disease and poor outcomes. METHODS: A retrospective study was conducted at Mayo Clinic from 2013 to 2022. We included clinical and epidemiologic data of probable and confirmed neuroinvasive POWV cases. RESULTS: Sixteen patients with neuroinvasive POWV were identified; their median age was 63.2 years, and 62.5% were male. Six patients presented with rhombencephalitis, 4 with isolated meningitis, 3 with meningoencephalitis, 2 with meningoencephalomyelitis, and 1 with opsoclonus myoclonus syndrome. A median time of 18 days was observed between symptom onset and diagnosis. Cerebrospinal fluid analysis showed lymphocytic pleocytosis with elevated protein and normal glucose in the majority of patients. Death occurred within 90 days in 3 patients (18.8%), and residual neurologic deficits were seen in 8 survivors (72.7%). CONCLUSIONS: To our knowledge, this is the largest case series of patients with neuroinvasive POWV infection. We highlight the importance of a high clinical suspicion among patients who live in or travel to high-risk areas during the spring to fall months. Our data show high morbidity and mortality rates among patients with neuroinvasive disease.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Ixodes , Meningoencefalite , Animais , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Estudos Retrospectivos , Encefalite Transmitida por Carrapatos/diagnóstico , Encefalite Transmitida por Carrapatos/epidemiologia
5.
Emerg Infect Dis ; 30(2): 341-344, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38270164

RESUMO

Tick-borne encephalitis was limited to northeast portions of Italy. We report in Lombardy, a populous region in the northwest, a chamois displaying clinical signs of tickborne encephalitis virus that had multiple virus-positive ticks attached, as well as a symptomatic man. Further, we show serologic evidence of viral circulation in the area.


Assuntos
Encefalite Transmitida por Carrapatos , Encefalite Viral , Infecções por Flavivirus , Masculino , Humanos , Encefalite Transmitida por Carrapatos/epidemiologia , Itália/epidemiologia
6.
J Clin Immunol ; 44(5): 116, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676861

RESUMO

PURPOSE: A patient with X-linked agammaglobulinemia (XLA) and severe tick-borne encephalitis (TBE) was treated with TBE virus (TBEV) IgG positive plasma. The patient's clinical response, humoral and cellular immune responses were characterized pre- and post-infection. METHODS: ELISA and neutralisation assays were performed on sera and TBEV PCR assay on sera and cerebrospinal fluid. T cell assays were conducted on peripheral blood the patient and five healthy vaccinated controls. RESULTS: The patient was admitted to the hospital with headache and fever. He was not vaccinated against TBE but receiving subcutaneous IgG-replacement therapy (IGRT). TBEV IgG antibodies were low-level positive (due to scIGRT), but the TBEV IgM and TBEV neutralisation tests were negative. During hospitalisation his clinical condition deteriorated (Glasgow coma scale 3/15) and he was treated in the ICU with corticosteroids and external ventricular drainage. He was then treated with plasma containing TBEV IgG without apparent side effects. His symptoms improved within a few days and the TBEV neutralisation test converted to positive. Robust CD8+ T cell responses were observed at three and 18-months post-infection, in the absence of B cells. This was confirmed by tetramers specific for TBEV. CONCLUSION: TBEV IgG-positive plasma given to an XLA patient with TBE without evident adverse reactions may have contributed to a positive clinical outcome. Similar approaches could offer a promising foundation for researching therapeutic options for patients with humoral immunodeficiencies. Importantly, a robust CD8+ T cell response was observed after infection despite the lack of B cells and indicates that these patients can clear acute viral infections and could benefit from future vaccination programs.


Assuntos
Agamaglobulinemia , Anticorpos Antivirais , Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Doenças Genéticas Ligadas ao Cromossomo X , Imunoglobulina G , Linfócitos T , Humanos , Encefalite Transmitida por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/diagnóstico , Encefalite Transmitida por Carrapatos/terapia , Masculino , Agamaglobulinemia/imunologia , Agamaglobulinemia/terapia , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Doenças Genéticas Ligadas ao Cromossomo X/imunologia , Doenças Genéticas Ligadas ao Cromossomo X/terapia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Anticorpos Antivirais/sangue , Linfócitos T/imunologia , Resultado do Tratamento , Adulto , Imunização Passiva/métodos
7.
MMWR Recomm Rep ; 72(5): 1-29, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37943707

RESUMO

Tick-borne encephalitis (TBE) virus is focally endemic in parts of Europe and Asia. The virus is primarily transmitted to humans by the bites of infected: Ixodes species ticks but can also be acquired less frequently by alimentary transmission. Other rare modes of transmission include through breastfeeding, blood transfusion, solid organ transplantation, and slaughtering of viremic animals. TBE virus can cause acute neurologic disease, which usually results in hospitalization, often permanent neurologic or cognitive sequelae, and sometimes death. TBE virus infection is a risk for certain travelers and for laboratory workers who work with the virus. In August 2021, the Food and Drug Administration approved Ticovac TBE vaccine for use among persons aged ≥1 year. This report summarizes the epidemiology of and risks for infection with TBE virus, provides information on the immunogenicity and safety of TBE vaccine, and summarizes the recommendations of the Advisory Committee on Immunization Practices (ACIP) for use of TBE vaccine among U.S. travelers and laboratory workers.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Ixodes , Vacinas , Humanos , Animais , Estados Unidos/epidemiologia , Encefalite Transmitida por Carrapatos/epidemiologia , Encefalite Transmitida por Carrapatos/prevenção & controle , Comitês Consultivos , Vacinação
8.
J Med Virol ; 96(7): e29763, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38949193

RESUMO

Tick-borne encephalitis (TBE) is one of the main diseases transmitted by ticks, the incidence of which is increasing. Moreover, its diagnosis and therapy are often long and difficult according to nonspecific symptoms and complex etiology. This study aimed to observe changes in the proteome of cerebrospinal fluid from TBE patients. Cerebrospinal fluid (CSF) of TBE patients (n = 20) and healthy individuals (n = 10) was analyzed using a proteomic approach (QExactiveHF-Orbitrap mass spectrometer) and zymography. Obtained results show that in CSF of TBE patients, the top-upregulated proteins are involved in pro-inflammatory reaction (interleukins), as well as antioxidant/protective response (peroxiredoxins, heat shock proteins). Moreover, changes in the proteome of CSF are not only the result of this disease development, but they can also be an indicator of its course. This mainly applies to proteins involved in proteolysis including serpins and metalloproteinases, whose activity is proportional to the length of patients' convalescence. The obtained proteomic data strongly direct attention to the changes caused by the development of TBE to antioxidant, pro-inflammatory, and proteolytic proteins, knowledge about which can significantly contribute to faster and more accurate diagnosis of various clinical forms of TBE.


Assuntos
Encefalite Transmitida por Carrapatos , Proteoma , Humanos , Encefalite Transmitida por Carrapatos/líquido cefalorraquidiano , Encefalite Transmitida por Carrapatos/diagnóstico , Proteoma/análise , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Proteômica/métodos , Adulto Jovem , Idoso
9.
Pediatr Res ; 95(2): 464-479, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37880334

RESUMO

This review utilizes quatitative methods and bibliometric data to analyse the trends of emerging and re-emerging vector-borne diseases, with a focus on their impact on pediatric population. To conduct this analysis, a systematic search of PubMed articles from the past two decades was performed, specifically looking at 26 different vector-borne viruses listed in WHO and CDC list of vector-borne viruses. The review found that diseases like Dengue, Zika, West Nile, and Chikungunya were frequently discussed in the literature. On the other hand, diseases such as Tick-borne encephalitis, Rift Valley fever, Venezuelan equine encephalitis, Sindbis fever, Venezuelan equine encephalitis, Ross River virus, and Eastern equine encephalitis showed an upward trend in publications, indicating potential resurgence. In addition to discussing trends and patterns, the review delves into the clinical manifestations and long-term effects of the top 10 viruses in children. It highlights various factors including deforestation, urbanization, global travel, and immunosuppression that contribute to disease emergence and resurgence. To effectively combat these vector-borne diseases, continuous surveillance is crucial. The review also emphasizes the importance of increased vaccination efforts and targeted research to address the health challenges they pose. IMPACT: This review employs quantitative analysis of publications to elucidate trends in emerging pediatric vector-borne viral diseases over two decades. Dengue, the most prevalent of these diseases, has spread to new regions. New strains of Japanese Encephalitis have caused outbreaks. Resurgence of Tick-borne Encephalitis, West Nile, and Yellow Fever due to vaccine hesitancy has also transpired. Continuous global surveillance, increased vaccination, and research into novel therapeutics are imperative to combat the substantial morbidity and mortality burden these diseases pose for children worldwide.


Assuntos
Dengue , Encefalite Transmitida por Carrapatos , Encefalomielite Equina Venezuelana , Viroses , Vírus , Infecção por Zika virus , Zika virus , Animais , Cavalos , Criança , Humanos , Dengue/epidemiologia
10.
Rev Med Virol ; 33(5): e2470, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37392370

RESUMO

Tick-borne encephalitis virus (TBEV) is a flavivirus commonly found in at least 27 European and Asian countries. It is an emerging public health problem, with steadily increasing case numbers over recent decades. Tick-borne encephalitis virus affects between 10,000 and 15,000 patients annually. Infection occurs through the bite of an infected tick and, much less commonly, through infected milk consumption or aerosols. The TBEV genome comprises a positive-sense single-stranded RNA molecule of ∼11 kilobases. The open reading frame is > 10,000 bases long, flanked by untranslated regions (UTR), and encodes a polyprotein that is co- and post-transcriptionally processed into three structural and seven non-structural proteins. Tick-borne encephalitis virus infection results in encephalitis, often with a characteristic biphasic disease course. After a short incubation time, the viraemic phase is characterised by non-specific influenza-like symptoms. After an asymptomatic period of 2-7 days, more than half of patients show progression to a neurological phase, usually characterised by central and, rarely, peripheral nervous system symptoms. Mortality is low-around 1% of confirmed cases, depending on the viral subtype. After acute tick-borne encephalitis (TBE), a minority of patients experience long-term neurological deficits. Additionally, 40%-50% of patients develop a post-encephalitic syndrome, which significantly impairs daily activities and quality of life. Although TBEV has been described for several decades, no specific treatment exists. Much remains unknown regarding the objective assessment of long-lasting sequelae. Additional research is needed to better understand, prevent, and treat TBE. In this review, we aim to provide a comprehensive overview of the epidemiology, virology, and clinical picture of TBE.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Humanos , Encefalite Transmitida por Carrapatos/epidemiologia , Encefalite Transmitida por Carrapatos/prevenção & controle , Qualidade de Vida , Vírus da Encefalite Transmitidos por Carrapatos/genética , RNA , Saúde Pública
11.
Epidemiol Infect ; 152: e20, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38250808

RESUMO

Lymphocytic choriomeningitis virus (LCMV) is one of the arenaviruses infecting humans. LCMV infections have been reported worldwide in humans with varying levels of severity. To detect arenavirus RNA and LCMV-reactive antibodies in different geographical regions of Finland, we screened human serum and cerebrospinal fluid (CSF) samples, taken from suspected tick-borne encephalitis (TBE) cases, using reverse transcriptase polymerase chain reaction (RT-PCR) and immunofluorescence assay (IFA). No arenavirus nucleic acids were detected, and the overall LCMV seroprevalence was 4.5%. No seroconversions were detected in paired serum samples. The highest seroprevalence (5.2%) was detected among individuals of age group III (40-59 years), followed by age group I (under-20-year-olds, 4.9%), while the lowest seroprevalence (3.8%) was found in age group IV (60 years or older). A lower LCMV seroprevalence in older age groups may suggest waning of immunity over time. The observation of a higher seroprevalence in the younger age group and the decreasing population size of the main reservoir host, the house mouse, may suggest exposure to another LCMV-like virus in Finland.


Assuntos
Encefalite Transmitida por Carrapatos , Coriomeningite Linfocítica , Animais , Camundongos , Humanos , Idoso , Adulto , Pessoa de Meia-Idade , Encefalite Transmitida por Carrapatos/diagnóstico , Encefalite Transmitida por Carrapatos/epidemiologia , Finlândia/epidemiologia , Estudos Soroepidemiológicos , Coriomeningite Linfocítica/diagnóstico , Coriomeningite Linfocítica/epidemiologia , Vírus da Coriomeningite Linfocítica , Anticorpos Antivirais
12.
BMC Vet Res ; 20(1): 228, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796429

RESUMO

BACKGROUND: Tick-borne encephalitis (TBE) is a severe human neuroinfection caused by TBE virus (TBEV). TBEV is transmitted by tick bites and by the consumption of unpasteurized dairy products from infected asymptomatic ruminants. In France, several food-borne transmission events have been reported since 2020, raising the question of the level of exposure of domestic ungulates to TBEV. In this study, our objectives were (i) to estimate TBEV seroprevalence and quantify antibodies titres in cattle in the historical endemic area of TBEV in France using the micro virus neutralisation test (MNT) and (ii) to compare the performance of two veterinary cELISA kits with MNT for detecting anti-TBEV antibodies in cattle in various epidemiological contexts. A total of 344 cattle sera from four grid cells of 100 km² in Alsace-Lorraine (endemic region) and 84 from western France, assumed to be TBEV-free, were investigated. RESULTS: In Alsace-Lorraine, cattle were exposed to the virus with an overall estimated seroprevalence of 57.6% (95% CI: 52.1-62.8%, n = 344), varying locally from 29.9% (95% CI: 21.0-40.0%) to 92.1% (95% CI: 84.5-96.8%). Seroprevalence did not increase with age, with one- to three-year-old cattle being as highly exposed as older ones, suggesting a short-life duration of antibodies. The proportion of sera with MNT titres lower than 1:40 per grid cell decreased with increased seroprevalence. Both cELISA kits showed high specificity (> 90%) and low sensitivity (less than 78.1%) compared with MNT. Sensitivity was lower for sera with neutralising antibodies titres below 1:40, suggesting that sensitivity of these tests varied with local virus circulation intensity. CONCLUSIONS: Our results highlight that cattle were highly exposed to TBEV. Screening strategy and serological tests should be carefully chosen according to the purpose of the serological study and with regard to the limitations of each method.


Assuntos
Anticorpos Antivirais , Doenças dos Bovinos , Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Animais , Bovinos , Encefalite Transmitida por Carrapatos/epidemiologia , Encefalite Transmitida por Carrapatos/veterinária , Encefalite Transmitida por Carrapatos/virologia , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Vírus da Encefalite Transmitidos por Carrapatos/isolamento & purificação , França/epidemiologia , Estudos Soroepidemiológicos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/virologia , Anticorpos Antivirais/sangue , Feminino , Masculino , Testes de Neutralização/veterinária , Doenças Endêmicas/veterinária
13.
Nucleic Acids Res ; 50(8): 4574-4600, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35420134

RESUMO

We have identified seven putative guanine quadruplexes (G4) in the RNA genome of tick-borne encephalitis virus (TBEV), a flavivirus causing thousands of human infections and numerous deaths every year. The formation of G4s was confirmed by biophysical methods on synthetic oligonucleotides derived from the predicted TBEV sequences. TBEV-5, located at the NS4b/NS5 boundary and conserved among all known flaviviruses, was tested along with its mutated variants for interactions with a panel of known G4 ligands, for the ability to affect RNA synthesis by the flaviviral RNA-dependent RNA polymerase (RdRp) and for effects on TBEV replication fitness in cells. G4-stabilizing TBEV-5 mutations strongly inhibited RdRp RNA synthesis and exhibited substantially reduced replication fitness, different plaque morphology and increased sensitivity to G4-binding ligands in cell-based systems. In contrast, strongly destabilizing TBEV-5 G4 mutations caused rapid reversion to the wild-type genotype. Our results suggest that there is a threshold of stability for G4 sequences in the TBEV genome, with any deviation resulting in either dramatic changes in viral phenotype or a rapid return to this optimal level of G4 stability. The data indicate that G4s are critical elements for efficient TBEV replication and are suitable targets to tackle TBEV infection.


Assuntos
Antivirais , Vírus da Encefalite Transmitidos por Carrapatos , Quadruplex G , Antivirais/farmacologia , Antivirais/uso terapêutico , Vírus da Encefalite Transmitidos por Carrapatos/efeitos dos fármacos , Vírus da Encefalite Transmitidos por Carrapatos/genética , Encefalite Transmitida por Carrapatos/tratamento farmacológico , Encefalite Transmitida por Carrapatos/genética , Humanos , Ligantes , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética
14.
Euro Surveill ; 29(2)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38214080

RESUMO

BackgroundIn Sweden, information on seroprevalence of tick-borne encephalitis virus (TBEV) in the population, including vaccination coverage and infection, is scattered. This is largely due to the absence of a national tick-borne encephalitis (TBE) vaccination registry, scarcity of previous serological studies and use of serological methods not distinguishing between antibodies induced by vaccination and infection. Furthermore, the number of notified TBE cases in Sweden has continued to increase in recent years despite increased vaccination.AimThe aim was to estimate the TBEV seroprevalence in Sweden.MethodsIn 2018 and 2019, 2,700 serum samples from blood donors in nine Swedish regions were analysed using a serological method that can distinguish antibodies induced by vaccination from antibodies elicited by infection. The regions were chosen to reflect differences in notified TBE incidence.ResultsThe overall seroprevalence varied from 9.7% (95% confidence interval (CI): 6.6-13.6%) to 64.0% (95% CI: 58.3-69.4%) between regions. The proportion of vaccinated individuals ranged from 8.7% (95% CI: 5.8-12.6) to 57.0% (95% CI: 51.2-62.6) and of infected from 1.0% (95% CI: 0.2-3.0) to 7.0% (95% CI: 4.5-10.7). Thus, more than 160,000 and 1,600,000 individuals could have been infected by TBEV and vaccinated against TBE, respectively. The mean manifestation index was 3.1%.ConclusionA difference was observed between low- and high-incidence TBE regions, on the overall TBEV seroprevalence and when separated into vaccinated and infected individuals. The estimated incidence and manifestation index argue that a large proportion of TBEV infections are not diagnosed.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Infecções por Flavivirus , Humanos , Encefalite Transmitida por Carrapatos/epidemiologia , Encefalite Transmitida por Carrapatos/prevenção & controle , Suécia/epidemiologia , Cobertura Vacinal , Estudos Soroepidemiológicos , Vacinação , Anticorpos Antivirais
15.
Euro Surveill ; 29(18)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38699900

RESUMO

BackgroundTick-borne encephalitis (TBE) is a severe, vaccine-preventable viral infection of the central nervous system. Symptoms are generally milder in children and adolescents than in adults, though severe disease does occur. A better understanding of the disease burden and duration of vaccine-mediated protection is important for vaccination recommendations.AimTo estimate TBE vaccination coverage, disease severity and vaccine effectiveness (VE) among individuals aged 0-17 years in Switzerland.MethodsVaccination coverage between 2005 and 2022 was estimated using the Swiss National Vaccination Coverage Survey (SNVCS), a nationwide, repeated cross-sectional study assessing vaccine uptake. Incidence and severity of TBE between 2005 and 2022 were determined using data from the Swiss disease surveillance system and VE was calculated using a case-control analysis, matching TBE cases with SNVCS controls.ResultsOver the study period, vaccination coverage increased substantially, from 4.8% (95% confidence interval (CI): 4.1-5.5%) to 50.1% (95% CI: 48.3-52.0%). Reported clinical symptoms in TBE cases were similar irrespective of age. Neurological involvement was less likely in incompletely (1-2 doses) and completely (≥ 3 doses) vaccinated cases compared with unvaccinated ones. For incomplete vaccination, VE was 66.2% (95% CI: 42.3-80.2), whereas VE for complete vaccination was 90.8% (95% CI: 87.7-96.4). Vaccine effectiveness remained high, 83.9% (95% CI: 69.0-91.7) up to 10 years since last vaccination.ConclusionsEven children younger than 5 years can experience severe TBE. Incomplete and complete vaccination protect against neurological manifestations of the disease. Complete vaccination offers durable protection up to 10 years against TBE.


Assuntos
Encefalite Transmitida por Carrapatos , Cobertura Vacinal , Vacinação , Vacinas Virais , Humanos , Encefalite Transmitida por Carrapatos/prevenção & controle , Encefalite Transmitida por Carrapatos/epidemiologia , Adolescente , Estudos de Casos e Controles , Suíça/epidemiologia , Criança , Estudos Transversais , Masculino , Feminino , Pré-Escolar , Lactente , Vacinação/estatística & dados numéricos , Cobertura Vacinal/estatística & dados numéricos , Vacinas Virais/administração & dosagem , Incidência , Eficácia de Vacinas/estatística & dados numéricos , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Recém-Nascido , Vigilância da População
16.
J Infect Dis ; 227(4): 512-521, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35235953

RESUMO

BACKGROUND: There are discrepant observations on the severity of tick-borne encephalitis (TBE) in vaccinated persons. We, therefore, analyzed the occurrence of severe and mild disease in hospitalized vaccinated and nonvaccinated patients with TBE and determined the field effectiveness (FE) of vaccination against these forms of disease. METHODS: The study covered all patients hospitalized with TBE in Austria from 2000 to 2018. Clinical diagnoses in vaccinated and age- and sex-matched nonvaccinated patients were compared in a nested case-control study. FE was calculated based on vaccination coverage and incidences in the nonvaccinated and vaccinated population. RESULTS: Of 1545 patients hospitalized with TBE, 206 were vaccinated. In those, a higher proportion of severe TBE was observed, especially in children. FE was high in all age groups and against all forms of disease. The higher proportion of severe TBE can be explained by a lower FE against severe than against mild disease, a difference especially pronounced in children (FE, 82.7% for severe vs 94.7% for mild disease). CONCLUSIONS: The FE of TBE vaccination is excellent. The observed higher proportion of severe disease in vaccinated persons with TBE does not reflect a higher risk associated with vaccination but is rather due to a somewhat lower FE against severe TBE. Because this effect was more pronounced in children, we recommend adapting the immunization schedule.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Infecções por Flavivirus , Vacinas Virais , Criança , Humanos , Encefalite Transmitida por Carrapatos/epidemiologia , Encefalite Transmitida por Carrapatos/prevenção & controle , Áustria/epidemiologia , Estudos de Casos e Controles , Estudos Retrospectivos , Vacinação
17.
Artigo em Zh | MEDLINE | ID: mdl-38403427

RESUMO

Forest encephalitis is a natural focal disease transmitted through the bite of hard ticks, and its pathogen is the tick-borne encephalitis virus from the Flaviviridae family. The mortality rate of forest encephalitis is relatively high, making laboratory testing significant in diagnosing this disease. This article elaborates on the etiological diagnostic methods and recent research progress in forest encephalitis. Laboratory tests for forest encephalitis mainly include routine examinations, serological tests, virus isolation, and molecular biological testing. The detection of serum-specific IgM antibodies against the forest encephalitis virus is of great importance for early diagnosis, and specific IgG antibodies serve as a "gold standard" for differentiation from other diseases. Techniques such as enzyme-linked immunosorbent assay (ELISA) or indirect immunofluorescence assay for detecting specific IgM antibodies in serum and/or cerebrospinal fluid, the serum hemagglutination inhibition test or serum complement fixation test, and the double serum hemagglutination inhibition test or complement fixation test all contribute to the early diagnosis. The development of molecular testing methods is rapid, and techniques such as metabolomics, digital PCR, and matrix metalloproteinases are also applied in the early diagnosis of forest encephalitis.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Humanos , Encefalite Transmitida por Carrapatos/diagnóstico , Anticorpos Antivirais/líquido cefalorraquidiano , Ensaio de Imunoadsorção Enzimática/métodos , Imunoglobulina M/líquido cefalorraquidiano
18.
Clin Infect Dis ; 76(6): 1142-1148, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36103602

RESUMO

With increasing use of rituximab and other B-cell depleting monoclonal antibodies for multiple indications, infectious complications are being recognized. We summarize clinical findings of patients on rituximab with arboviral diseases identified through literature review or consultation with the Centers for Disease Control and Prevention. We identified 21 patients on recent rituximab therapy who were diagnosed with an arboviral disease caused by West Nile, tick-borne encephalitis, eastern equine encephalitis, Cache Valley, Jamestown Canyon, and Powassan viruses. All reported patients had neuroinvasive disease. The diagnosis of arboviral infection required molecular testing in 20 (95%) patients. Median illness duration was 36 days (range, 12 days to 1 year), and 15/19 (79%) patients died from their illness. Patients on rituximab with arboviral disease can have a severe or prolonged course with an absence of serologic response. Patients should be counseled about mosquito and tick bite prevention when receiving rituximab and other B-cell depleting therapies.


Assuntos
Infecções por Arbovirus , Encefalite Transmitida por Carrapatos , Febre do Nilo Ocidental , Animais , Rituximab/uso terapêutico , Febre do Nilo Ocidental/tratamento farmacológico , Febre do Nilo Ocidental/complicações , Febre do Nilo Ocidental/epidemiologia , Surtos de Doenças , Encefalite Transmitida por Carrapatos/epidemiologia
19.
Emerg Infect Dis ; 29(4): 838-841, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36958034

RESUMO

We describe a 4-year-old male patient in Ohio, USA, who had encephalitis caused by Powassan virus lineage 2. Virus was detected by using metagenomic next-generation sequencing and confirmed with IgM and plaque reduction neutralization assays. Clinicians should recognize changing epidemiology of tickborne viruses to enhance encephalitis diagnosis and management.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Encefalite , Masculino , Humanos , Pré-Escolar , Encefalite Transmitida por Carrapatos/epidemiologia , Ohio/epidemiologia , Sequenciamento de Nucleotídeos em Larga Escala
20.
Emerg Infect Dis ; 29(3): 669-671, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36823716

RESUMO

We report a case of severe tick-borne encephalitis in a pregnant woman, leading to a prolonged stay in the intensive care unit. She showed minor clinical improvement >6 months after her presumed infection. The patient was not vaccinated, although an effective vaccine is available and not contraindicated during pregnancy.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Vacinas , Humanos , Feminino , Gravidez , Gestantes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa