Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.229
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 174(1): 143-155.e16, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29779947

RESUMO

Neisseria meningitidis, a bacterium responsible for meningitis and septicemia, proliferates and eventually fills the lumen of blood capillaries with multicellular aggregates. The impact of this aggregation process and its specific properties are unknown. We first show that aggregative properties are necessary for efficient infection and study their underlying physical mechanisms. Micropipette aspiration and single-cell tracking unravel unique features of an atypical fluidized phase, with single-cell diffusion exceeding that of isolated cells. A quantitative description of the bacterial pair interactions combined with active matter physics-based modeling show that this behavior relies on type IV pili active dynamics that mediate alternating phases of bacteria fast mutual approach, contact, and release. These peculiar fluid properties proved necessary to adjust to the geometry of capillaries upon bacterial proliferation. Intermittent attractive forces thus generate a fluidized phase that allows for efficient colonization of the blood capillary network during infection.


Assuntos
Aderência Bacteriana/fisiologia , Capilares/microbiologia , Fímbrias Bacterianas/fisiologia , Neisseria meningitidis/patogenicidade , Animais , Carga Bacteriana , Capilares/patologia , Endotélio/metabolismo , Endotélio/microbiologia , Endotélio/patologia , Feminino , Proteínas de Fímbrias/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos SCID , Microscopia Confocal , Neisseria meningitidis/fisiologia , Transplante de Pele , Tensão Superficial , Imagem com Lapso de Tempo , Transplante Heterólogo
2.
Immunity ; 54(5): 1083-1095.e7, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33891889

RESUMO

Multisystem inflammatory syndrome in children (MIS-C) is a life-threatening post-infectious complication occurring unpredictably weeks after mild or asymptomatic SARS-CoV-2 infection. We profiled MIS-C, adult COVID-19, and healthy pediatric and adult individuals using single-cell RNA sequencing, flow cytometry, antigen receptor repertoire analysis, and unbiased serum proteomics, which collectively identified a signature in MIS-C patients that correlated with disease severity. Despite having no evidence of active infection, MIS-C patients had elevated S100A-family alarmins and decreased antigen presentation signatures, indicative of myeloid dysfunction. MIS-C patients showed elevated expression of cytotoxicity genes in NK and CD8+ T cells and expansion of specific IgG-expressing plasmablasts. Clinically severe MIS-C patients displayed skewed memory T cell TCR repertoires and autoimmunity characterized by endothelium-reactive IgG. The alarmin, cytotoxicity, TCR repertoire, and plasmablast signatures we defined have potential for application in the clinic to better diagnose and potentially predict disease severity early in the course of MIS-C.


Assuntos
COVID-19/imunologia , COVID-19/patologia , SARS-CoV-2/imunologia , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Síndrome de Resposta Inflamatória Sistêmica/patologia , Adolescente , Alarminas/imunologia , Autoanticorpos/imunologia , Linfócitos T CD8-Positivos/imunologia , Criança , Pré-Escolar , Citotoxicidade Imunológica/genética , Endotélio/imunologia , Endotélio/patologia , Humanos , Células Matadoras Naturais/imunologia , Células Mieloides/imunologia , Plasmócitos/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Índice de Gravidade de Doença
3.
J Immunol ; 210(4): 408-419, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36548474

RESUMO

Cryptococcal meningoencephalitis caused by Cryptococcus neoformans infection is the most common cause of death in HIV/AIDS patients. Macrophages are pivotal for the regulation of immune responses to cryptococcal infection by either playing protective function or facilitating fungal dissemination. However, the mechanisms underlying macrophage responses to C. neoformans remain unclear. To analyze the transcriptomic changes and identify the pathogenic factors of macrophages, we performed a comparative transcriptomic analysis of alveolar macrophage responses during C. neoformans infection. Alveolar macrophages isolated from C. neoformans-infected mice showed dynamic gene expression patterns, with expression change from a protective M1 (classically activated)-like to a pathogenic M2 (alternatively activated)-like phenotype. Arg1, the gene encoding the enzyme arginase 1, was found as the most upregulated gene in alveolar macrophages during the chronic infection phase. The in vitro inhibition of arginase activity resulted in a reduction of cryptococcal phagocytosis, intracellular growth, and proliferation, coupled with an altered macrophage response from pathogenic M2 to a protective M1 phenotype. In an in vitro model of the blood-brain barrier, macrophage-derived arginase was found to be required for C. neoformans invasion of brain microvascular endothelium. Further analysis of the degree of virulence indicated a positive correlation between arginase 1 expression in macrophages and cryptococcal brain dissemination in vivo. Thus, our data suggest that a dynamic macrophage activation that involves arginase expression may contribute to the cryptococcal disease by promoting cryptococcal growth, proliferation, and the invasion to the brain endothelium.


Assuntos
Criptococose , Cryptococcus neoformans , Camundongos , Animais , Células Endoteliais/patologia , Arginase/genética , Encéfalo/patologia , Macrófagos , Endotélio/patologia , Proliferação de Células
4.
Brain ; 147(2): 566-589, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37776513

RESUMO

Cerebral malaria is the deadliest complication that can arise from Plasmodium infection. CD8 T-cell engagement of brain vasculature is a putative mechanism of neuropathology in cerebral malaria. To define contributions of brain endothelial cell major histocompatibility complex (MHC) class I antigen-presentation to CD8 T cells in establishing cerebral malaria pathology, we developed novel H-2Kb LoxP and H-2Db LoxP mice crossed with Cdh5-Cre mice to achieve targeted deletion of discrete class I molecules, specifically from brain endothelium. This strategy allowed us to avoid off-target effects on iron homeostasis and class I-like molecules, which are known to perturb Plasmodium infection. This is the first endothelial-specific ablation of individual class-I molecules enabling us to interrogate these molecular interactions. In these studies, we interrogated human and mouse transcriptomics data to compare antigen presentation capacity during cerebral malaria. Using the Plasmodium berghei ANKA model of experimental cerebral malaria (ECM), we observed that H-2Kb and H-2Db class I molecules regulate distinct patterns of disease onset, CD8 T-cell infiltration, targeted cell death and regional blood-brain barrier disruption. Strikingly, ablation of either molecule from brain endothelial cells resulted in reduced CD8 T-cell activation, attenuated T-cell interaction with brain vasculature, lessened targeted cell death, preserved blood-brain barrier integrity and prevention of ECM and the death of the animal. We were able to show that these events were brain-specific through the use of parabiosis and created the novel technique of dual small animal MRI to simultaneously scan conjoined parabionts during infection. These data demonstrate that interactions of CD8 T cells with discrete MHC class I molecules on brain endothelium differentially regulate development of ECM neuropathology. Therefore, targeting MHC class I interactions therapeutically may hold potential for treatment of cases of severe malaria.


Assuntos
Malária Cerebral , Camundongos , Humanos , Animais , Malária Cerebral/patologia , Malária Cerebral/prevenção & controle , Células Endoteliais/patologia , Encéfalo/patologia , Barreira Hematoencefálica/patologia , Linfócitos T CD8-Positivos , Endotélio/patologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
5.
Acta Neuropathol ; 147(1): 77, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687393

RESUMO

Influenza-associated encephalopathy (IAE) is extremely acute in onset, with high lethality and morbidity within a few days, while the direct pathogenesis by influenza virus in this acute phase in the brain is largely unknown. Here we show that influenza virus enters into the cerebral endothelium and thereby induces IAE. Three-weeks-old young mice were inoculated with influenza A virus (IAV). Physical and neurological scores were recorded and temporal-spatial analyses of histopathology and viral studies were performed up to 72 h post inoculation. Histopathological examinations were also performed using IAE human autopsy brains. Viral infection, proliferation and pathogenesis were analyzed in cell lines of endothelium and astrocyte. The effects of anti-influenza viral drugs were tested in the cell lines and animal models. Upon intravenous inoculation of IAV in mice, the mice developed encephalopathy with brain edema and pathological lesions represented by micro bleeding and injured astrocytic process (clasmatodendrosis) within 72 h. Histologically, massive deposits of viral nucleoprotein were observed as early as 24 h post infection in the brain endothelial cells of mouse models and the IAE patients. IAV inoculated endothelial cell lines showed deposition of viral proteins and provoked cell death, while IAV scarcely amplified. Inhibition of viral transcription and translation suppressed the endothelial cell death and the lethality of mouse models. These data suggest that the onset of encephalopathy should be induced by cerebral endothelial infection with IAV. Thus, IAV entry into the endothelium, and transcription and/or translation of viral RNA, but not viral proliferation, should be the key pathogenesis of IAE.


Assuntos
Encéfalo , Infecções por Orthomyxoviridae , Animais , Humanos , Camundongos , Encéfalo/patologia , Encéfalo/virologia , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/complicações , Internalização do Vírus , Vírus da Influenza A/patogenicidade , Células Endoteliais/virologia , Células Endoteliais/patologia , Influenza Humana/patologia , Influenza Humana/complicações , Encefalopatias/virologia , Encefalopatias/patologia , Masculino , Modelos Animais de Doenças , Feminino , Endotélio/patologia , Endotélio/virologia , Camundongos Endogâmicos C57BL
6.
Respir Res ; 25(1): 172, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637760

RESUMO

The success of lung transplantation is limited by the high rate of primary graft dysfunction due to ischemia-reperfusion injury (IRI). Lung IRI is characterized by a robust inflammatory response, lung dysfunction, endothelial barrier disruption, oxidative stress, vascular permeability, edema, and neutrophil infiltration. These events are dependent on the health of the endothelium, which is a primary target of IRI that results in pulmonary endothelial barrier dysfunction. Over the past 10 years, research has focused more on the endothelium, which is beginning to unravel the multi-factorial pathogenesis and immunologic mechanisms underlying IRI. Many important proteins, receptors, and signaling pathways that are involved in the pathogenesis of endothelial dysfunction after IR are starting to be identified and targeted as prospective therapies for lung IRI. In this review, we highlight the more significant mediators of IRI-induced endothelial dysfunction discovered over the past decade including the extracellular glycocalyx, endothelial ion channels, purinergic receptors, kinases, and integrins. While there are no definitive clinical therapies currently available to prevent lung IRI, we will discuss potential clinical strategies for targeting the endothelium for the treatment or prevention of IRI. The accruing evidence on the essential role the endothelium plays in lung IRI suggests that promising endothelial-directed treatments may be approaching the clinic soon. The application of therapies targeting the pulmonary endothelium may help to halt this rapid and potentially fatal injury.


Assuntos
Lesão Pulmonar , Transplante de Pulmão , Traumatismo por Reperfusão , Humanos , Pulmão/metabolismo , Traumatismo por Reperfusão/patologia , Endotélio/metabolismo , Endotélio/patologia , Lesão Pulmonar/metabolismo
7.
Am J Obstet Gynecol ; 230(4): 443.e1-443.e18, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38296740

RESUMO

BACKGROUND: Placenta accreta spectrum disorders are associated with severe maternal morbidity and mortality. Placenta accreta spectrum disorders involve excessive adherence of the placenta preventing separation at birth. Traditionally, this condition has been attributed to excessive trophoblast invasion; however, an alternative view is a fundamental defect in decidual biology. OBJECTIVE: This study aimed to gain insights into the understanding of placenta accreta spectrum disorder by using single-cell and spatially resolved transcriptomics to characterize cellular heterogeneity at the maternal-fetal interface in placenta accreta spectrum disorders. STUDY DESIGN: To assess cellular heterogeneity and the function of cell types, single-cell RNA sequencing and spatially resolved transcriptomics were used. A total of 12 placentas were included, 6 placentas with placenta accreta spectrum disorder and 6 controls. For each placenta with placenta accreta spectrum disorder, multiple biopsies were taken at the following sites: placenta accreta spectrum adherent and nonadherent sites in the same placenta. Of note, 2 platforms were used to generate libraries: the 10× Chromium and NanoString GeoMX Digital Spatial Profiler for single-cell and spatially resolved transcriptomes, respectively. Differential gene expression analysis was performed using a suite of bioinformatic tools (Seurat and GeoMxTools R packages). Correction for multiple testing was performed using Clipper. In situ hybridization was performed with RNAscope, and immunohistochemistry was used to assess protein expression. RESULTS: In creating a placenta accreta cell atlas, there were dramatic difference in the transcriptional profile by site of biopsy between placenta accreta spectrum and controls. Most of the differences were noted at the site of adherence; however, differences existed within the placenta between the adherent and nonadherent site of the same placenta in placenta accreta. Among all cell types, the endothelial-stromal populations exhibited the greatest difference in gene expression, driven by changes in collagen genes, namely collagen type III alpha 1 chain (COL3A1), growth factors, epidermal growth factor-like protein 6 (EGFL6), and hepatocyte growth factor (HGF), and angiogenesis-related genes, namely delta-like noncanonical Notch ligand 1 (DLK1) and platelet endothelial cell adhesion molecule-1 (PECAM1). Intraplacental tropism (adherent versus non-adherent sites in the same placenta) was driven by differences in endothelial-stromal cells with notable differences in bone morphogenic protein 5 (BMP5) and osteopontin (SPP1) in the adherent vs nonadherent site of placenta accreta spectrum. CONCLUSION: Placenta accreta spectrum disorders were characterized at single-cell resolution to gain insight into the pathophysiology of the disease. An atlas of the placenta at single cell resolution in accreta allows for understanding in the biology of the intimate maternal and fetal interaction. The contributions of stromal and endothelial cells were demonstrated through alterations in the extracellular matrix, growth factors, and angiogenesis. Transcriptional and protein changes in the stroma of placenta accreta spectrum shift the etiologic explanation away from "invasive trophoblast" to "loss of boundary limits" in the decidua. Gene targets identified in this study may be used to refine diagnostic assays in early pregnancy, track disease progression over time, and inform therapeutic discoveries.


Assuntos
Descolamento Prematuro da Placenta , Placenta Acreta , Doenças Placentárias , Gravidez , Feminino , Recém-Nascido , Humanos , Placenta Acreta/terapia , Células Endoteliais , Placenta/patologia , Doenças Placentárias/patologia , Peptídeos e Proteínas de Sinalização Intercelular , Decídua/patologia , Endotélio/patologia
8.
Brain ; 146(4): 1483-1495, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36319587

RESUMO

The trafficking of autoreactive leucocytes across the blood-brain barrier endothelium is a hallmark of multiple sclerosis pathogenesis. Although the blood-brain barrier endothelium represents one of the main CNS borders to interact with the infiltrating leucocytes, its exact contribution to neuroinflammation remains understudied. Here, we show that Mcam identifies inflammatory brain endothelial cells with pro-migratory transcriptomic signature during experimental autoimmune encephalomyelitis. In addition, MCAM was preferentially upregulated on blood-brain barrier endothelial cells in multiple sclerosis lesions in situ and at experimental autoimmune encephalomyelitis disease onset by molecular MRI. In vitro and in vivo, we demonstrate that MCAM on blood-brain barrier endothelial cells contributes to experimental autoimmune encephalomyelitis development by promoting the cellular trafficking of TH1 and TH17 lymphocytes across the blood-brain barrier. Last, we showcase ST14 as an immune ligand to brain endothelial MCAM, enriched on CD4+ T lymphocytes that cross the blood-brain barrier in vitro, in vivo and in multiple sclerosis lesions as detected by flow cytometry on rapid autopsy derived brain tissue from multiple sclerosis patients. Collectively, our findings reveal that MCAM is at the centre of a pathological pathway used by brain endothelial cells to recruit pathogenic CD4+ T lymphocyte from circulation early during neuroinflammation. The therapeutic targeting of this mechanism is a promising avenue to treat multiple sclerosis.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Humanos , Barreira Hematoencefálica/patologia , Encéfalo/patologia , Antígeno CD146/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Encefalomielite Autoimune Experimental/patologia , Células Endoteliais/metabolismo , Endotélio/metabolismo , Endotélio/patologia , Esclerose Múltipla/patologia , Doenças Neuroinflamatórias
9.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34782474

RESUMO

Visualization of three-dimensional (3D) morphological changes in the subcellular structures of a biological specimen is a major challenge in life science. Here, we present an integrated chip-based optical nanoscopy combined with quantitative phase microscopy (QPM) to obtain 3D morphology of liver sinusoidal endothelial cells (LSEC). LSEC have unique morphology with small nanopores (50-300 nm in diameter) in the plasma membrane, called fenestrations. The fenestrations are grouped in discrete clusters, which are around 100 to 200 nm thick. Thus, imaging and quantification of fenestrations and sieve plate thickness require resolution and sensitivity of sub-100 nm along both the lateral and the axial directions, respectively. In chip-based nanoscopy, the optical waveguides are used both for hosting and illuminating the sample. The fluorescence signal is captured by an upright microscope, which is converted into a Linnik-type interferometer to sequentially acquire both superresolved images and phase information of the sample. The multimodal microscope provided an estimate of the fenestration diameter of 119 ± 53 nm and average thickness of the sieve plates of 136.6 ± 42.4 nm, assuming the constant refractive index of cell membrane to be 1.38. Further, LSEC were treated with cytochalasin B to demonstrate the possibility of precise detection in the cell height. The mean phase value of the fenestrated area in normal and treated cells was found to be 161 ± 50 mrad and 109 ± 49 mrad, respectively. The proposed multimodal technique offers nanoscale visualization of both the lateral size and the thickness map, which would be of broader interest in the fields of cell biology and bioimaging.


Assuntos
Células Endoteliais/patologia , Endotélio/diagnóstico por imagem , Endotélio/patologia , Fígado/diagnóstico por imagem , Microscopia/métodos , Animais , Membrana Celular , Endotélio/metabolismo , Fluorescência , Hepatócitos/patologia , Imageamento Tridimensional/métodos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia/instrumentação , Ratos , Ratos Sprague-Dawley
10.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397093

RESUMO

The lung can experience different oxygen concentrations, low as in hypoxia, high as under supplemental oxygen therapy, or oscillating during intermittent hypoxia as in obstructive sleep apnea or intermittent hypoxia/hyperoxia due to cyclic atelectasis in the ventilated patient. This study aimed to characterize the oxygen-condition-specific protein composition of extracellular vesicles (EVs) released from human pulmonary microvascular endothelial cells in vitro to decipher their potential role in biotrauma using quantitative proteomics with bioinformatic evaluation, transmission electron microscopy, flow cytometry, and non-activated thromboelastometry (NATEM). The release of vesicles enriched in markers CD9/CD63/CD81 was enhanced under intermittent hypoxia, strong hyperoxia and intermittent hypoxia/hyperoxia. Particles with exposed phosphatidylserine were increased under intermittent hypoxia. A small portion of vesicles were tissue factor-positive, which was enhanced under intermittent hypoxia and intermittent hypoxia/hyperoxia. EVs from treatment with intermittent hypoxia induced a significant reduction of Clotting Time in NATEM analysis compared to EVs isolated after normoxic exposure, while after intermittent hypoxia/hyperoxia, tissue factor in EVs seems to be inactive. Gene set enrichment analysis of differentially expressed genes revealed that EVs from individual oxygen conditions potentially induce different biological processes such as an inflammatory response under strong hyperoxia and intermittent hypoxia/hyperoxia and enhancement of tumor invasiveness under intermittent hypoxia.


Assuntos
Vesículas Extracelulares , Hiperóxia , Humanos , Oxigênio/farmacologia , Oxigênio/metabolismo , Hiperóxia/metabolismo , Proteoma/metabolismo , Células Endoteliais/patologia , Tromboplastina/metabolismo , Pulmão/patologia , Hipóxia/metabolismo , Vesículas Extracelulares/metabolismo , Endotélio/patologia
11.
Hum Mol Genet ; 31(1): 10-17, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34254124

RESUMO

Vascular malformations are most often caused by somatic mutations of the PI3K/mTOR and the RAS signaling pathways, which can be identified in the affected tissue. Venous malformations (VMs) commonly harbor PIK3CA and TEK mutations, whereas arteriovenous malformations (AVMs) are usually caused by BRAF, RAS or MAP2K1 mutations. Correct identification of the underlying mutation is of increasing importance, since targeted treatments are becoming more and more relevant, especially in patients with extensive vascular malformations. However, variants of unknown significance (VUSs) are often identified and their pathogenicity and response to targeted therapy cannot be precisely predicted. Here, we show that zebrafish embryos can be used to rapidly assess the pathogenicity of novel VUSs in TEK, encoding for the receptor TIE2, present on endothelial cells of VMs. Endothelium-specific overexpression of TEK mutations leads to robust induction of VMs, whereas MAP2K1 mutations cause AVMs in our zebrafish model. TEK mutations are often found as double mutations in cis; using our model, we show that double mutations have an additive effect in inducing VMs compared with the respective single variants. The clinically established mTOR-inhibitor sirolimus (rapamycin) efficiently abrogates the development of VMs in this zebrafish model. In summary, endothelium-specific overexpression of patient-derived TEK variants in the zebrafish model allows assessment of their pathogenic significance as well as testing of candidate drugs in a personalized and mutation-specific approach.


Assuntos
Receptor TIE-2 , Malformações Vasculares , Peixe-Zebra , Animais , Células Endoteliais/metabolismo , Endotélio/metabolismo , Endotélio/patologia , Humanos , Mutação , Receptor TIE-2/genética , Malformações Vasculares/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
12.
Angiogenesis ; 26(2): 279-293, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36459240

RESUMO

PURPOSE: Ongoing angiogenesis renders the tumor endothelium unresponsive to inflammatory cytokines and interferes with adhesion of leukocytes, resulting in escape from immunity. This process is referred to as tumor endothelial cell anergy. We aimed to investigate whether anti-angiogenic agents can overcome endothelial cell anergy and provide pro-inflammatory conditions. EXPERIMENTAL DESIGN: Tissues of renal cell carcinoma (RCC) patients treated with VEGF pathway-targeted drugs and control tissues were subject to RNAseq and immunohistochemical profiling of the leukocyte infiltrate. Analysis of adhesion molecule regulation in cultured endothelial cells, in a preclinical model and in human tissues was performed and correlated to leukocyte infiltration. RESULTS: It is shown that treatment of RCC patients with the drugs sunitinib or bevacizumab overcomes tumor endothelial cell anergy. This treatment resulted in an augmented inflammatory state of the tumor, characterized by enhanced infiltration of all major leukocyte subsets, including T cells, regulatory T cells, macrophages of both M1- and M2-like phenotypes and activated dendritic cells. In vitro, exposure of angiogenic endothelial cells to anti-angiogenic drugs normalized ICAM-1 expression. In addition, a panel of tyrosine kinase inhibitors was shown to increase transendothelial migration of both non-adherent and monocytic leukocytes. In primary tumors of RCC patients, ICAM-1 expression was found to be significantly increased in both the sunitinib and bevacizumab-treated groups. Genomic analysis confirmed the correlation between increased immune cell infiltration and ICAM-1 expression upon VEGF-targeted treatment. CONCLUSION: The results support the emerging concept that anti-angiogenic therapy can boost immunity and show how immunotherapy approaches can benefit from combination with anti-angiogenic compounds.


Assuntos
Inibidores da Angiogênese , Carcinoma de Células Renais , Células Endoteliais , Neoplasias Renais , Neovascularização Patológica , Humanos , Bevacizumab/imunologia , Bevacizumab/farmacologia , Bevacizumab/uso terapêutico , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/patologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Células Endoteliais/patologia , Endotélio/efeitos dos fármacos , Endotélio/imunologia , Endotélio/patologia , Molécula 1 de Adesão Intercelular/imunologia , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/imunologia , Neoplasias Renais/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/imunologia , Neovascularização Patológica/patologia , Sunitinibe/imunologia , Sunitinibe/farmacologia , Sunitinibe/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/imunologia , Tolerância Imunológica/efeitos dos fármacos , Tolerância Imunológica/imunologia , Invasividade Neoplásica/imunologia , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/patologia , Inibidores da Angiogênese/imunologia , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico
13.
FASEB J ; 36(1): e22077, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34878671

RESUMO

Endothelial cells play an essential role in inflammation through synthesis and secretion of chemoattractant cytokines and expression of adhesion molecules required for inflammatory cell attachment and infiltration. The mechanisms by which endothelial cells control the pro-inflammatory response depend on the type of inflammatory stimuli, endothelial cell origin, and tissue involved. In the present study, we investigated the role of the transcription factor c-Myc in inflammation using a conditional knockout mouse model in which Myc is specifically deleted in the endothelium. At a systemic level, circulating monocytes, the chemokine CCL7, and the extracellular-matrix protein osteopontin were significantly increased in endothelial c-Myc knockout (EC-Myc KO) mice, whereas the cytokine TNFSF11 was downregulated. Using an experimental model of steatohepatitis, we investigated the involvement of endothelial c-Myc in diet-induced inflammation. EC-Myc KO animals displayed enhanced pro-inflammatory response, characterized by increased expression of pro-inflammatory cytokines and leukocyte infiltration, and worsened liver fibrosis. Transcriptome analysis identified enhanced expression of genes associated with inflammation, fibrosis, and hepatocellular carcinoma in EC-Myc KO mice relative to control (CT) animals after short-exposure to high-fat diet. Analysis of a single-cell RNA-sequencing dataset of human cirrhotic livers indicated downregulation of MYC in endothelial cells relative to healthy controls. In summary, our results suggest a protective role of endothelial c-Myc in diet-induced liver inflammation and fibrosis. Targeting c-Myc and its downstream pathways in the endothelium may constitute a potential strategy for the treatment of inflammatory disease.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Endotélio/metabolismo , Fígado Gorduroso , Cirrose Hepática , Proteínas Proto-Oncogênicas c-myc/deficiência , Animais , Endotélio/patologia , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Feminino , Técnicas de Inativação de Genes , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-myc/metabolismo
14.
FASEB J ; 36(2): e22161, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35061300

RESUMO

Epidemiological studies suggested that PM2.5 (particle matters with an aerodynamic diameter ≤2.5 µm) exposure is associated with atherosclerosis. Extracellular vesicles (EVs) are messengers between intracellular communications which are important in diseases procession. At present, whether EVs derived from PM2.5-exposed alveolar epithelial cells (P-EVs) involve in atherosclerosis has not been clearly understood. This study is performed to investigate the effects of P-EVs on the development of endothelium adhesion and atherosclerosis. Here, ApoE-/- mice were randomized into different groups receiving one of the following treatments, filtered air (FA), PM2.5, PBS, PBS-treated alveolar epithelial cells-derived EVs (EVs), or P-EVs. Then the atherosclerosis level in aortas or aorta sections was evaluated by oil red O staining. The results indicated that ApoE-/- mice treated with P-EVs or PM2.5 showed more obvious atherosclerosis plaques in aortas and aortic arches than those treated with EVs or PBS. Endothelial cells (ECs) were treated with PBS, EVs, P-EVs, or PM2.5. The adhesion property, miRNAs level and expressions of IκBα, phosphorylated IκBα, NF-κB p65, phosphorylated NF-κB p65, and VCAM1 in ECs were determined. It was found that P-EVs activated IκBα-NF-κB-VCAM1 signaling and increased adhesion of ECs, and such effects could be reversed by adalimumab (the TNF-α inhibitor) or miR-326-3p inhibitor. Further study suggested that P-EVs induced upregulation of TNF-α and miR-326-3p in recipient ECs and contributed to the phosphorylation of NF-κB p65. Collectively, EVs derived from PM2.5-exposed alveolar epithelial cells played an important role in the development of atherosclerosis via activating IκBα-NF-κB-VCAM1 signaling.


Assuntos
Células Epiteliais Alveolares/patologia , Apolipoproteínas E/metabolismo , Aterosclerose/patologia , Adesão Celular/efeitos dos fármacos , Endotélio/patologia , Vesículas Extracelulares/patologia , Material Particulado/efeitos adversos , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/fisiologia , Aterosclerose/metabolismo , Endotélio/efeitos dos fármacos , Endotélio/metabolismo , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Camundongos , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
15.
J Immunol ; 206(1): 59-66, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33268481

RESUMO

Friend leukemia virus integration 1 (Fli-1) is an ETS transcription factor and a critical regulator of inflammatory mediators, including MCP-1, CCL5, IL-6, G-CSF, CXCL2, and caspase-1. GM-CSF is a regulator of granulocyte and macrophage lineage differentiation and a key player in the pathogenesis of inflammatory/autoimmune diseases. In this study, we demonstrated that Fli-1 regulates the expression of GM-CSF in both T cells and endothelial cells. The expression of GM-CSF was significantly reduced in T cells and endothelial cells when Fli-1 was reduced. We found that Fli-1 binds directly to the GM-CSF promoter using chromatin immunoprecipitation assay. Transient transfection assays indicated that Fli-1 drives transcription from the GM-CSF promoter in a dose-dependent manner, and mutation of the Fli-1 DNA binding domain resulted in a significant loss of transcriptional activation. Mutation of a known phosphorylation site within the Fli-1 protein led to a significant increase in GM-CSF promoter activation. Thus, direct binding to the promoter and phosphorylation are two important mechanisms behind Fli-1-driven activation of the GM-CSF promoter. In addition, Fli-1 regulates GM-CSF expression in an additive manner with another transcription factor Sp1. Finally, we demonstrated that a low dose of a chemotherapeutic drug, camptothecin, inhibited expression of Fli-1 and reduced GM-CSF production in human T cells. These results demonstrate novel mechanisms for regulating the expression of GM-CSF and suggest that Fli-1 is a critical druggable regulator of inflammation and immunity.


Assuntos
Endotélio/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Proteína Proto-Oncogênica c-fli-1/metabolismo , Linfócitos T/fisiologia , Animais , Camptotecina/farmacologia , Endotélio/patologia , Regulação da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Humanos , Células Jurkat , Camundongos , Terapia de Alvo Molecular , Células NIH 3T3 , Regiões Promotoras Genéticas/genética , Proteína Proto-Oncogênica c-fli-1/genética , RNA Interferente Pequeno/genética , Fator de Transcrição Sp1/genética , Linfócitos T/efeitos dos fármacos , Inibidores da Topoisomerase I/farmacologia
16.
Am J Dermatopathol ; 45(1): 62-63, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36484610

RESUMO

ABSTRACT: Kaposi sarcoma (KS) is an endothelial tumor associated with human herpesvirus 8. Cutaneous lesions can present with pink or purple patches, plaques, and nodules which can be ulcerated. The main subtypes of KS generally have similar histologic appearances, with spindle cells and expression of human herpesvirus 8 being characteristic features. However, various histologic variants have been reported. We present the case of a 55-year-old man with cutaneous KS with cavernous hemangioma-like histological features. Cavernous hemangioma-like KS is a rare morphologic type of KS, with only a handful of cases reported in the literature.


Assuntos
Hemangioma Cavernoso , Herpesvirus Humano 8 , Sarcoma de Kaposi , Neoplasias Cutâneas , Masculino , Humanos , Pessoa de Meia-Idade , Sarcoma de Kaposi/cirurgia , Sarcoma de Kaposi/patologia , Neoplasias Cutâneas/patologia , Hemangioma Cavernoso/cirurgia , Endotélio/metabolismo , Endotélio/patologia
17.
Proc Natl Acad Sci U S A ; 117(3): 1753-1761, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31896584

RESUMO

Carbon dioxide (CO2), the major product of metabolism, has a strong impact on cerebral blood vessels, a phenomenon known as cerebrovascular reactivity. Several vascular risk factors such as hypertension or diabetes dampen this response, making cerebrovascular reactivity a useful diagnostic marker for incipient vascular pathology, but its functional relevance, if any, is still unclear. Here, we found that GPR4, an endothelial H+ receptor, and endothelial Gαq/11 proteins mediate the CO2/H+ effect on cerebrovascular reactivity in mice. CO2/H+ leads to constriction of vessels in the brainstem area that controls respiration. The consequential washout of CO2, if cerebrovascular reactivity is impaired, reduces respiration. In contrast, CO2 dilates vessels in other brain areas such as the amygdala. Hence, an impaired cerebrovascular reactivity amplifies the CO2 effect on anxiety. Even at atmospheric CO2 concentrations, impaired cerebrovascular reactivity caused longer apneic episodes and more anxiety, indicating that cerebrovascular reactivity is essential for normal brain function. The site-specific reactivity of vessels to CO2 is reflected by regional differences in their gene expression and the release of vasoactive factors from endothelial cells. Our data suggest the central nervous system (CNS) endothelium as a target to treat respiratory and affective disorders associated with vascular diseases.


Assuntos
Ansiedade/metabolismo , Sistema Cardiovascular/metabolismo , Endotélio/metabolismo , Transtornos Respiratórios/metabolismo , Tonsila do Cerebelo , Animais , Arteríolas/patologia , Encéfalo/fisiologia , Tronco Encefálico/metabolismo , Dióxido de Carbono/metabolismo , Sistema Nervoso Central/metabolismo , Modelos Animais de Doenças , Endotélio/patologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Expressão Gênica , Humanos , Hipercapnia/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Respiração , Fatores de Risco , Transdução de Sinais
18.
Semin Cancer Biol ; 71: 109-121, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32428715

RESUMO

Metastatic melanoma is a fatal disease with a rapid systemic dissemination. The most frequent target sites are the liver, bone, and brain. Melanoma metastases represent a heterogeneous cell population, which associates with genomic instability and resistance to therapy. Interaction of melanoma cells with the hepatic sinusoidal endothelium initiates a signaling cascade involving cytokines, growth factors, bioactive lipids, and reactive oxygen and nitrogen species produced by the cancer cell, the endothelium, and also by different immune cells. Endothelial cell-derived NO and H2O2 and the action of immune cells cause the death of most melanoma cells that reach the hepatic microvascularization. Surviving melanoma cells attached to the endothelium of pre-capillary arterioles or sinusoids may follow two mechanisms of extravasation: a) migration through vessel fenestrae or b) intravascular proliferation followed by vessel rupture and microinflammation. Invading melanoma cells first form micrometastases within the normal lobular hepatic architecture via a mechanism regulated by cross-talk with the stroma and multiple microenvironment-related molecular signals. In this review special emphasis is placed on neuroendocrine (systemic) mechanisms as potential promoters of liver metastatic growth. Growing metastatic cells undergo functional and metabolic changes that increase their capacity to withstand oxidative/nitrosative stress, which favors their survival. This adaptive process also involves upregulation of Bcl-2-related antideath mechanisms, which seems to lead to the generation of more resistant cell subclones.


Assuntos
Carcinoma Neuroendócrino/secundário , Endotélio/patologia , Neoplasias Hepáticas/secundário , Melanoma/patologia , Estresse Oxidativo , Microambiente Tumoral , Animais , Carcinoma Neuroendócrino/irrigação sanguínea , Sobrevivência Celular , Humanos , Neoplasias Hepáticas/irrigação sanguínea , Oxirredução
19.
Am J Pathol ; 191(5): 829-837, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33617784

RESUMO

The endothelial glycoprotein thrombomodulin regulates coagulation, inflammation, and apoptosis. In diabetic mice, reduced thrombomodulin function results in diabetic nephropathy (DN). Furthermore, thrombomodulin treatment reduces renal inflammation and fibrosis. Herein, thrombomodulin expression was examined in human kidney samples to investigate the possibility of targeting thrombomodulin in patients with DN. Glomerular thrombomodulin was analyzed together with the number of glomerular macrophages in 90 autopsied diabetic cases with DN, 55 autopsied diabetic cases without DN, and 37 autopsied cases without diabetes or kidney disease. Thrombomodulin mRNA was measured in glomeruli microdissected from renal biopsies from patients with DN and nondiabetic controls. Finally, glomerular thrombomodulin was measured in diabetic mice following treatment with the selective endothelin A receptor (ETAR) blocker, atrasentan. In diabetic patients, glomerular thrombomodulin expression was increased at the mRNA level, but decreased at the protein level, compared with nondiabetic controls. Reduced glomerular thrombomodulin was associated with an increased glomerular influx of macrophages. Blocking the ETAR with atrasentan restored glomerular thrombomodulin protein levels in diabetic mice to normal levels. The reduction in glomerular thrombomodulin in diabetes likely serves as an early proinflammatory step in the pathogenesis of DN. Thrombomodulin protein may be cleaved under diabetic conditions, leading to a compensatory increase in transcription. The nephroprotective effects of ETAR antagonists in diabetic patients may be attributed to the restoration of glomerular thrombomodulin.


Assuntos
Atrasentana/farmacologia , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/patologia , Antagonistas do Receptor de Endotelina A/farmacologia , Fibrose/patologia , Trombomodulina/metabolismo , Animais , Endotélio/patologia , Humanos , Inflamação/patologia , Rim/patologia , Glomérulos Renais/patologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Knockout , Trombomodulina/efeitos dos fármacos , Trombomodulina/genética
20.
Toxicol Appl Pharmacol ; 446: 116047, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35526791

RESUMO

The present study investigates whether resveratrol could modulate the endothelial dysfunction of atherosclerosis via the Pin1/Notch1 signaling pathway. To assess the vascular endothelial cell (VECs) injury in mice, the levels of serum soluble vascular cell adhesion molecule-1 (sVCAM-1), soluble intercellular adhesion molecule-1 (sICAM-1), soluble E-selectin (sE-selectin), soluble thrombomodulin (sTM), and von Willebrand factor (vWF) were measured. Expressions of Pin1 and Notch1 intracellular domain (NICD1), both mRNA and protein, were also measured. Human umbilical vein endothelial cells (HUVECs) treated with 100 µg/mL oxidized low-density lipoprotein (ox-LDL) were incubated with resveratrol at doses from 10 µM to 40 µM. Cell function was evaluated by measuring apoptosis, cell viability, lipid accumulation, and adherent human myeloid leukemia mononuclear (THP-1) cells. Resveratrol intervention in AS mice decreased the expression of serum sVCAM-1, sICAM-1, sE-selectin, sTM, and vWF and dose-dependently down-regulated Pin1 and NICD1 mRNA and protein expression in endothelial cells. Resveratrol intervention reversed ox-LDL-induced cell dysfunction by increasing viability and decreasing apoptosis, lipid accumulation, and the adhesion of THP-1 cells. These beneficial effects were reversed by the overexpression of Pin1. Resveratrol regulates endothelial cell injury of atherosclerosis by inhibiting the Pin1/Notch1 signaling pathway, suggesting novel therapeutic targets for atherosclerosis treatment.


Assuntos
Aterosclerose , Peptidilprolil Isomerase de Interação com NIMA , Receptor Notch1 , Resveratrol , Fator de von Willebrand , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Endotélio/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Lipoproteínas LDL/metabolismo , Camundongos , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , RNA Mensageiro/metabolismo , Receptor Notch1/metabolismo , Resveratrol/farmacologia , Selectinas/metabolismo , Selectinas/farmacologia , Fator de von Willebrand/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa