Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76.966
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 38: 315-340, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31986068

RESUMO

The age-associated B cell subset has been the focus of increasing interest over the last decade. These cells have a unique cell surface phenotype and transcriptional signature, and they rely on TLR7 or TLR9 signals in the context of Th1 cytokines for their formation and activation. Most are antigen-experienced memory B cells that arise during responses to microbial infections and are key to pathogen clearance and control. Their increasing prevalence with age contributes to several well-established features of immunosenescence, including reduced B cell genesis and damped immune responses. In addition, they are elevated in autoimmune and autoinflammatory diseases, and in these settings they are enriched for characteristic autoantibody specificities. Together, these features identify age-associated B cells as a subset with pivotal roles in immunological health, disease, and aging. Accordingly, a detailed understanding of their origins, functions, and physiology should make them tractable translational targets in each of these settings.


Assuntos
Envelhecimento/fisiologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Animais , Autoimunidade , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Biomarcadores , Citocinas/metabolismo , Suscetibilidade a Doenças , Homeostase , Humanos , Memória Imunológica , Imunossenescência , Ativação Linfocitária/imunologia
2.
Cell ; 184(14): 3717-3730.e24, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34214471

RESUMO

Neural activity underlying short-term memory is maintained by interconnected networks of brain regions. It remains unknown how brain regions interact to maintain persistent activity while exhibiting robustness to corrupt information in parts of the network. We simultaneously measured activity in large neuronal populations across mouse frontal hemispheres to probe interactions between brain regions. Activity across hemispheres was coordinated to maintain coherent short-term memory. Across mice, we uncovered individual variability in the organization of frontal cortical networks. A modular organization was required for the robustness of persistent activity to perturbations: each hemisphere retained persistent activity during perturbations of the other hemisphere, thus preventing local perturbations from spreading. A dynamic gating mechanism allowed hemispheres to coordinate coherent information while gating out corrupt information. Our results show that robust short-term memory is mediated by redundant modular representations across brain regions. Redundant modular representations naturally emerge in neural network models that learned robust dynamics.


Assuntos
Lobo Frontal/fisiologia , Rede Nervosa/fisiologia , Envelhecimento/fisiologia , Animais , Comportamento Animal , Cérebro/fisiologia , Comportamento de Escolha , Feminino , Luz , Masculino , Camundongos , Modelos Neurológicos , Córtex Motor/fisiologia , Neurônios/fisiologia
3.
Cell ; 184(3): 759-774.e18, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33400916

RESUMO

To investigate circuit mechanisms underlying locomotor behavior, we used serial-section electron microscopy (EM) to acquire a synapse-resolution dataset containing the ventral nerve cord (VNC) of an adult female Drosophila melanogaster. To generate this dataset, we developed GridTape, a technology that combines automated serial-section collection with automated high-throughput transmission EM. Using this dataset, we studied neuronal networks that control leg and wing movements by reconstructing all 507 motor neurons that control the limbs. We show that a specific class of leg sensory neurons synapses directly onto motor neurons with the largest-caliber axons on both sides of the body, representing a unique pathway for fast limb control. We provide open access to the dataset and reconstructions registered to a standard atlas to permit matching of cells between EM and light microscopy data. We also provide GridTape instrumentation designs and software to make large-scale EM more accessible and affordable to the scientific community.


Assuntos
Envelhecimento/fisiologia , Drosophila melanogaster/ultraestrutura , Microscopia Eletrônica de Transmissão , Neurônios Motores/ultraestrutura , Células Receptoras Sensoriais/ultraestrutura , Animais , Automação , Conectoma , Extremidades/inervação , Nervos Periféricos/ultraestrutura , Sinapses/ultraestrutura
4.
Cell ; 184(11): 3056-3074.e21, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33932339

RESUMO

The choroid plexus (ChP) in each brain ventricle produces cerebrospinal fluid (CSF) and forms the blood-CSF barrier. Here, we construct a single-cell and spatial atlas of each ChP in the developing, adult, and aged mouse brain. We delineate diverse cell types, subtypes, cell states, and expression programs in epithelial and mesenchymal cells across ages and ventricles. In the developing ChP, we predict a common progenitor pool for epithelial and neuronal cells, validated by lineage tracing. Epithelial and fibroblast cells show regionalized expression by ventricle, starting at embryonic stages and persisting with age, with a dramatic transcriptional shift with maturation, and a smaller shift in each aged cell type. With aging, epithelial cells upregulate host-defense programs, and resident macrophages upregulate interleukin-1ß (IL-1ß) signaling genes. Our atlas reveals cellular diversity, architecture and signaling across ventricles during development, maturation, and aging of the ChP-brain barrier.


Assuntos
Plexo Corióideo/embriologia , Plexo Corióideo/metabolismo , Fatores Etários , Envelhecimento/fisiologia , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiologia , Encefalopatias/genética , Encefalopatias/fisiopatologia , Diferenciação Celular/genética , Linhagem da Célula/genética , Plexo Corióideo/fisiologia , Células Epiteliais/metabolismo , Feminino , Masculino , Camundongos/embriologia , Camundongos Endogâmicos C57BL , Transdução de Sinais , Análise de Célula Única
5.
Cell ; 181(2): 424-441.e21, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32234521

RESUMO

KRAS mutant pancreatic ductal adenocarcinoma (PDAC) is characterized by a desmoplastic response that promotes hypovascularity, immunosuppression, and resistance to chemo- and immunotherapies. We show that a combination of MEK and CDK4/6 inhibitors that target KRAS-directed oncogenic signaling can suppress PDAC proliferation through induction of retinoblastoma (RB) protein-mediated senescence. In preclinical mouse models of PDAC, this senescence-inducing therapy produces a senescence-associated secretory phenotype (SASP) that includes pro-angiogenic factors that promote tumor vascularization, which in turn enhances drug delivery and efficacy of cytotoxic gemcitabine chemotherapy. In addition, SASP-mediated endothelial cell activation stimulates the accumulation of CD8+ T cells into otherwise immunologically "cold" tumors, sensitizing tumors to PD-1 checkpoint blockade. Therefore, in PDAC models, therapy-induced senescence can establish emergent susceptibilities to otherwise ineffective chemo- and immunotherapies through SASP-dependent effects on the tumor vasculature and immune system.


Assuntos
Envelhecimento/fisiologia , Carcinoma Ductal Pancreático/patologia , Remodelação Vascular/fisiologia , Animais , Linfócitos T CD8-Positivos/imunologia , Carcinoma Ductal Pancreático/microbiologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Genes ras/genética , Humanos , Imunoterapia/métodos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Neoplasias Pancreáticas/patologia , Proteína do Retinoblastoma/imunologia , Transdução de Sinais/genética , Microambiente Tumoral , Remodelação Vascular/genética
6.
Annu Rev Cell Dev Biol ; 36: 529-550, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32580566

RESUMO

The generation of all blood cell lineages (hematopoiesis) is sustained throughout the entire life span of adult mammals. Studies using cell transplantation identified the self-renewing, multipotent hematopoietic stem cells (HSCs) as the source of hematopoiesis in adoptive hosts and delineated a hierarchy of HSC-derived progenitors that ultimately yield mature blood cells. However, much less is known about adult hematopoiesis as it occurs in native hosts, i.e., without transplantation. Here we review recent advances in our understanding of native hematopoiesis, focusing in particular on the application of genetic lineage tracing in mice. The emerging evidence has established HSCs as the major source of native hematopoiesis, helped to define the kinetics of HSC differentiation, and begun exploring native hematopoiesis in stress conditions such as aging and inflammation. Major outstanding questions about native hematopoiesis still remain, such as its clonal composition, the nature of lineage commitment, and the dynamics of the process in humans.


Assuntos
Linhagem da Célula , Hematopoese , Adulto , Envelhecimento/fisiologia , Diferenciação Celular , Células-Tronco Hematopoéticas/citologia , Humanos , Cinética
7.
Cell ; 169(1): 24-34, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28340346

RESUMO

Interconnectivity and feedback control are hallmarks of biological systems. This includes communication between organelles, which allows them to function and adapt to changing cellular environments. While the specific mechanisms for all communications remain opaque, unraveling the wiring of organelle networks is critical to understand how biological systems are built and why they might collapse, as occurs in aging. A comprehensive understanding of all the routes involved in inter-organelle communication is still lacking, but important themes are beginning to emerge, primarily in budding yeast. These routes are reviewed here in the context of sub-system proteostasis and complex adaptive systems theory.


Assuntos
Organelas/fisiologia , Saccharomyces cerevisiae/citologia , Envelhecimento/fisiologia , Animais , Divisão Celular , Humanos , Proteínas/química , Saccharomyces cerevisiae/fisiologia , Transdução de Sinais
8.
Genes Dev ; 38(3-4): 151-167, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38453480

RESUMO

By satisfying bioenergetic demands, generating biomass, and providing metabolites serving as cofactors for chromatin modifiers, metabolism regulates adult stem cell biology. Here, we report that a branch of glycolysis, the serine biosynthesis pathway (SBP), is activated in regenerating muscle stem cells (MuSCs). Gene inactivation and metabolomics revealed that Psat1, one of the three SBP enzymes, controls MuSC activation and expansion of myogenic progenitors through production of the metabolite α-ketoglutarate (α-KG) and α-KG-generated glutamine. Psat1 ablation resulted in defective expansion of MuSCs and impaired regeneration. Psat1, α-KG, and glutamine were reduced in MuSCs of old mice. α-KG or glutamine re-established appropriate muscle regeneration of adult conditional Psat1 -/- mice and of old mice. These findings contribute insights into the metabolic role of Psat1 during muscle regeneration and suggest α-KG and glutamine as potential therapeutic interventions to ameliorate muscle regeneration during aging.


Assuntos
Células-Tronco Adultas , Ácidos Cetoglutáricos , Camundongos , Animais , Ácidos Cetoglutáricos/metabolismo , Glutamina/metabolismo , Envelhecimento/fisiologia , Músculos , Músculo Esquelético
9.
Nat Immunol ; 20(1): 50-63, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30478397

RESUMO

Recent advances highlight a pivotal role for cellular metabolism in programming immune responses. Here, we demonstrate that cell-autonomous generation of nicotinamide adenine dinucleotide (NAD+) via the kynurenine pathway (KP) regulates macrophage immune function in aging and inflammation. Isotope tracer studies revealed that macrophage NAD+ derives substantially from KP metabolism of tryptophan. Genetic or pharmacological blockade of de novo NAD+ synthesis depleted NAD+, suppressed mitochondrial NAD+-dependent signaling and respiration, and impaired phagocytosis and resolution of inflammation. Innate immune challenge triggered upstream KP activation but paradoxically suppressed cell-autonomous NAD+ synthesis by limiting the conversion of downstream quinolinate to NAD+, a profile recapitulated in aging macrophages. Increasing de novo NAD+ generation in immune-challenged or aged macrophages restored oxidative phosphorylation and homeostatic immune responses. Thus, KP-derived NAD+ operates as a metabolic switch to specify macrophage effector responses. Breakdown of de novo NAD+ synthesis may underlie declining NAD+ levels and rising innate immune dysfunction in aging and age-associated diseases.


Assuntos
Envelhecimento/fisiologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Inflamação/imunologia , Macrófagos/fisiologia , Mitocôndrias/metabolismo , NAD/metabolismo , Animais , Células Cultivadas , Homeostase , Imunidade Inata , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Cinurenina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação Oxidativa , Pentosiltransferases/genética , Fagocitose , Transdução de Sinais , Triptofano/metabolismo
10.
Cell ; 166(3): 784-784.e1, 2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27471972

RESUMO

Aging is characterized by loss of homeostasis across multiple tissues. The nervous system governs whole-body homeostasis by communicating external and internal signals to peripheral tissues. Here, we highlight neuronal mechanisms and downstream outputs that regulate aging and longevity. Targeting these neuronal pathways may be a novel strategy to promote healthy aging. To view this SnapShot, open or download the PDF.


Assuntos
Envelhecimento/fisiologia , Fenômenos Fisiológicos do Sistema Nervoso , Humanos , Sistema Nervoso , Vias Neurais
11.
Cell ; 167(5): 1323-1338.e14, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27863246

RESUMO

Aged skin heals wounds poorly, increasing susceptibility to infections. Restoring homeostasis after wounding requires the coordinated actions of epidermal and immune cells. Here we find that both intrinsic defects and communication with immune cells are impaired in aged keratinocytes, diminishing their efficiency in restoring the skin barrier after wounding. At the wound-edge, aged keratinocytes display reduced proliferation and migration. They also exhibit a dampened ability to transcriptionally activate epithelial-immune crosstalk regulators, including a failure to properly activate/maintain dendritic epithelial T cells (DETCs), which promote re-epithelialization following injury. Probing mechanism, we find that aged keratinocytes near the wound edge don't efficiently upregulate Skints or activate STAT3. Notably, when epidermal Stat3, Skints, or DETCs are silenced in young skin, re-epithelialization following wounding is perturbed. These findings underscore epithelial-immune crosstalk perturbations in general, and Skints in particular, as critical mediators in the age-related decline in wound-repair.


Assuntos
Envelhecimento/fisiologia , Subpopulações de Linfócitos/citologia , Transdução de Sinais , Cicatrização , Animais , Interleucina-6/administração & dosagem , Queratinócitos/metabolismo , Camundongos , Pele/citologia , Fenômenos Fisiológicos da Pele , Cicatrização/efeitos dos fármacos
12.
Annu Rev Cell Dev Biol ; 33: 577-599, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28992436

RESUMO

Both sex (i.e., biological differences) and gender (i.e., social or cultural influences) impact vaccine acceptance, responses, and outcomes. Clinical data illustrate that among children, young adults, and aged individuals, males and females differ in vaccine-induced immune responses, adverse events, and protection. Although males are more likely to receive vaccines, following vaccination, females typically develop higher antibody responses and report more adverse effects of vaccination than do males. Human, nonhuman animal, and in vitro studies reveal numerous immunological, genetic, hormonal, and environmental factors that differ between males and females and contribute to sex- and gender-specific vaccine responses and outcomes. Herein, we address the impact of sex and gender variables that should be considered in preclinical and clinical studies of vaccines.


Assuntos
Envelhecimento/fisiologia , Caracteres Sexuais , Vacinação , Epigênese Genética , Feminino , Humanos , Masculino , Vacinas/imunologia
13.
Physiol Rev ; 103(1): 609-647, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36049114

RESUMO

Cardiovascular diseases (CVDs) constitute the prime cause of global mortality, with an immense impact on patient quality of life and disability. Clinical evidence has revealed a strong connection between cellular senescence and worse cardiac outcomes in the majority of CVDs concerning both ischemic and nonischemic cardiomyopathies. Cellular senescence is characterized by cell cycle arrest accompanied by alterations in several metabolic pathways, resulting in morphological and functional changes. Metabolic rewiring of senescent cells results in marked paracrine activity, through a unique secretome, often exerting deleterious effects on neighboring cells. Here, we recapitulate the hallmarks and key molecular pathways involved in cellular senescence in the cardiac context and summarize the different roles of senescence in the majority of CVDs. In the last few years, the possibility of eliminating senescent cells in various pathological conditions has been increasingly explored, giving rise to the field of senotherapeutics. Therefore, we additionally attempt to clarify the current state of this field with a focus on cardiac senescence and discuss the potential of implementing senolytics as a treatment option in heart disease.


Assuntos
Doenças Cardiovasculares , Humanos , Envelhecimento/fisiologia , Qualidade de Vida , Senescência Celular/fisiologia
14.
Nat Immunol ; 19(9): 912-922, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30131615

RESUMO

Receptor-interacting protein (RIP) kinases, in particular RIPK1, RIPK2 and RIPK3, have emerged as pleiotropic modulators of inflammatory responses that act either by directly regulating intracellular inflammatory signaling pathways or by causing apoptotic or necrotic cell death. In this Review, we discuss the signaling pathways and immunological functions of these RIP kinases in the inflammatory response to microbial infection and tissue injury, as well as their potential roles in the pathogenesis of inflammatory disease and aging.


Assuntos
Envelhecimento/fisiologia , Infecções Bacterianas/imunologia , Imunidade/imunologia , Inflamação/imunologia , Micoses/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia , Animais , Morte Celular , Humanos , Transdução de Sinais
15.
Immunity ; 54(1): 99-115.e12, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33271118

RESUMO

Systematic understanding of immune aging on a whole-body scale is currently lacking. We characterized age-associated alterations in immune cells across multiple mouse organs using single-cell RNA and antigen receptor sequencing and flow cytometry-based validation. We defined organ-specific and common immune alterations and identified a subpopulation of age-associated granzyme K (GZMK)-expressing CD8+ T (Taa) cells that are distinct from T effector memory (Tem) cells. Taa cells were highly clonal, had specific epigenetic and transcriptional signatures, developed in response to an aged host environment, and expressed markers of exhaustion and tissue homing. Activated Taa cells were the primary source of GZMK, which enhanced inflammatory functions of non-immune cells. In humans, proportions of the circulating GZMK+CD8+ T cell population that shares transcriptional and epigenetic signatures with mouse Taa cells increased during healthy aging. These results identify GZMK+ Taa cells as a potential target to address age-associated dysfunctions of the immune system.


Assuntos
Envelhecimento/fisiologia , Linfócitos T CD8-Positivos/fisiologia , Sistema Imunitário/fisiologia , Inflamação/imunologia , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos T/genética , Animais , Células Cultivadas , Células Clonais , Citotoxicidade Imunológica , Feminino , Perfilação da Expressão Gênica , Granzimas/metabolismo , Humanos , Memória Imunológica , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência de RNA , Análise de Célula Única , Transcriptoma
16.
Nat Rev Mol Cell Biol ; 19(2): 109-120, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29165426

RESUMO

Mitochondrial function declines during ageing owing to the accumulation of deleterious mitochondrial genomes and damage resulting from the localized generation of reactive oxygen species, both of which are often exacerbated in diseases such as Parkinson disease. Cells have several mechanisms to assess mitochondrial function and activate a transcriptional response known as the mitochondrial unfolded protein response (UPRmt) when mitochondrial integrity and function are impaired. The UPRmt promotes cell survival and the recovery of the mitochondrial network to ensure optimal cellular function. Recent insights into the regulation, mechanisms and functions of the UPRmt have uncovered important and complex links to ageing and ageing-associated diseases. In this Review, we discuss the signal transduction mechanisms that regulate the UPRmt and the physiological consequences of its activation that affect cellular and organismal health during ageing.


Assuntos
Mitocôndrias/fisiologia , Resposta a Proteínas não Dobradas/genética , Resposta a Proteínas não Dobradas/fisiologia , Envelhecimento/fisiologia , Animais , DNA Mitocondrial/metabolismo , Humanos , Mitocôndrias/genética , Doenças Mitocondriais/patologia , Proteínas Mitocondriais/genética , Mutação/genética , Doença de Parkinson/fisiopatologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
17.
Nature ; 629(8010): 154-164, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38649488

RESUMO

Muscle atrophy and functional decline (sarcopenia) are common manifestations of frailty and are critical contributors to morbidity and mortality in older people1. Deciphering the molecular mechanisms underlying sarcopenia has major implications for understanding human ageing2. Yet, progress has been slow, partly due to the difficulties of characterizing skeletal muscle niche heterogeneity (whereby myofibres are the most abundant) and obtaining well-characterized human samples3,4. Here we generate a single-cell/single-nucleus transcriptomic and chromatin accessibility map of human limb skeletal muscles encompassing over 387,000 cells/nuclei from individuals aged 15 to 99 years with distinct fitness and frailty levels. We describe how cell populations change during ageing, including the emergence of new populations in older people, and the cell-specific and multicellular network features (at the transcriptomic and epigenetic levels) associated with these changes. On the basis of cross-comparison with genetic data, we also identify key elements of chromatin architecture that mark susceptibility to sarcopenia. Our study provides a basis for identifying targets in the skeletal muscle that are amenable to medical, pharmacological and lifestyle interventions in late life.


Assuntos
Envelhecimento , Músculo Esquelético , Análise de Célula Única , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Envelhecimento/genética , Envelhecimento/patologia , Envelhecimento/fisiologia , Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromatina/genética , Suscetibilidade a Doenças , Epigênese Genética , Fragilidade/genética , Fragilidade/patologia , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Sarcopenia/genética , Sarcopenia/patologia , Transcriptoma
18.
Nature ; 627(8005): 839-846, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38509363

RESUMO

The bone marrow adjusts blood cell production to meet physiological demands in response to insults. The spatial organization of normal and stress responses are unknown owing to the lack of methods to visualize most steps of blood production. Here we develop strategies to image multipotent haematopoiesis, erythropoiesis and lymphopoiesis in mice. We combine these with imaging of myelopoiesis1 to define the anatomy of normal and stress haematopoiesis. In the steady state, across the skeleton, single stem cells and multipotent progenitors distribute through the marrow enriched near megakaryocytes. Lineage-committed progenitors are recruited to blood vessels, where they contribute to lineage-specific microanatomical structures composed of progenitors and immature cells, which function as the production sites for each major blood lineage. This overall anatomy is resilient to insults, as it was maintained after haemorrhage, systemic bacterial infection and granulocyte colony-stimulating factor (G-CSF) treatment, and during ageing. Production sites enable haematopoietic plasticity as they differentially and selectively modulate their numbers and output in response to insults. We found that stress responses are variable across the skeleton: the tibia and the sternum respond in opposite ways to G-CSF, and the skull does not increase erythropoiesis after haemorrhage. Our studies enable in situ analyses of haematopoiesis, define the anatomy of normal and stress responses, identify discrete microanatomical production sites that confer plasticity to haematopoiesis, and uncover unprecedented heterogeneity of stress responses across the skeleton.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Estresse Fisiológico , Animais , Feminino , Masculino , Camundongos , Envelhecimento/fisiologia , Infecções Bacterianas/patologia , Infecções Bacterianas/fisiopatologia , Vasos Sanguíneos/citologia , Linhagem da Célula , Eritropoese , Fator Estimulador de Colônias de Granulócitos/metabolismo , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Hemorragia/patologia , Hemorragia/fisiopatologia , Linfopoese , Megacariócitos/citologia , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Mielopoese , Crânio/irrigação sanguínea , Crânio/patologia , Crânio/fisiopatologia , Esterno/irrigação sanguínea , Esterno/citologia , Esterno/metabolismo , Estresse Fisiológico/fisiologia , Tíbia/irrigação sanguínea , Tíbia/citologia , Tíbia/metabolismo
19.
Cell ; 159(4): 709-13, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25417146

RESUMO

Mammalian aging can be delayed with genetic, dietary, and pharmacologic approaches. Given that the elderly population is dramatically increasing and that aging is the greatest risk factor for a majority of chronic diseases driving both morbidity and mortality, it is critical to expand geroscience research directed at extending human healthspan.


Assuntos
Envelhecimento/fisiologia , Doença Crônica , Envelhecimento/patologia , Animais , Pesquisa Biomédica , Epigênese Genética , Interação Gene-Ambiente , Humanos
20.
Nature ; 613(7942): 169-178, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36544018

RESUMO

Tissue regeneration requires coordination between resident stem cells and local niche cells1,2. Here we identify that senescent cells are integral components of the skeletal muscle regenerative niche that repress regeneration at all stages of life. The technical limitation of senescent-cell scarcity3 was overcome by combining single-cell transcriptomics and a senescent-cell enrichment sorting protocol. We identified and isolated different senescent cell types from damaged muscles of young and old mice. Deeper transcriptome, chromatin and pathway analyses revealed conservation of cell identity traits as well as two universal senescence hallmarks (inflammation and fibrosis) across cell type, regeneration time and ageing. Senescent cells create an aged-like inflamed niche that mirrors inflammation associated with ageing (inflammageing4) and arrests stem cell proliferation and regeneration. Reducing the burden of senescent cells, or reducing their inflammatory secretome through CD36 neutralization, accelerates regeneration in young and old mice. By contrast, transplantation of senescent cells delays regeneration. Our results provide a technique for isolating in vivo senescent cells, define a senescence blueprint for muscle, and uncover unproductive functional interactions between senescent cells and stem cells in regenerative niches that can be overcome. As senescent cells also accumulate in human muscles, our findings open potential paths for improving muscle repair throughout life.


Assuntos
Envelhecimento , Senescência Celular , Inflamação , Músculo Esquelético , Regeneração , Nicho de Células-Tronco , Idoso , Animais , Humanos , Camundongos , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Senescência Celular/fisiologia , Inflamação/metabolismo , Inflamação/fisiopatologia , Músculo Esquelético/fisiologia , Músculo Esquelético/fisiopatologia , Células-Tronco/fisiologia , Fibrose/fisiopatologia , Nicho de Células-Tronco/fisiologia , Transcriptoma , Cromatina/genética , Gerociência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa