Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 537
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 23(19): 5069-86, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24824219

RESUMO

Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a leukodystrophy characterized by myelin vacuolization and caused by mutations in MLC1 or GLIALCAM. Patients with recessive mutations in either MLC1 or GLIALCAM show the same clinical phenotype. It has been shown that GLIALCAM is necessary for the correct targeting of MLC1 to the membrane at cell junctions, but its own localization was independent of MLC1 in vitro. However, recent studies in Mlc1(-/-) mice have shown that GlialCAM is mislocalized in glial cells. In order to investigate whether the relationship between Mlc1 and GlialCAM is species-specific, we first identified MLC-related genes in zebrafish and generated an mlc1(-/-) zebrafish. We have characterized mlc1(-/-) zebrafish both functionally and histologically and compared the phenotype with that of the Mlc1(-/-) mice. In mlc1(-/-) zebrafish, as in Mlc1(-/-) mice, Glialcam is mislocalized. Re-examination of a brain biopsy from an MLC patient indicates that GLIALCAM is also mislocalized in Bergmann glia in the cerebellum. In vitro, impaired localization of GlialCAM was observed in astrocyte cultures from Mlc1(-/-) mouse only in the presence of elevated potassium levels, which mimics neuronal activity. In summary, here we demonstrate an evolutionary conserved role for MLC1 in regulating glial surface levels of GLIALCAM, and this interrelationship explains why patients with mutations in either gene (MLC1 or GLIALCAM) share the same clinical phenotype.


Assuntos
Cistos/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/metabolismo , Proteínas de Membrana/metabolismo , Neuroglia/metabolismo , Proteínas/metabolismo , Animais , Animais Geneticamente Modificados , Astrócitos/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Ciclo Celular , Linhagem Celular , Membrana Celular/metabolismo , Cistos/genética , Modelos Animais de Doenças , Epêndima/citologia , Epêndima/metabolismo , Epêndima/ultraestrutura , Expressão Gênica , Genótipo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Humanos , Junções Intercelulares/metabolismo , Junções Intercelulares/ultraestrutura , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Mutação , Fenótipo , Transporte Proteico , Proteínas/genética , Retina/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
2.
Stroke ; 46(10): 2902-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26265129

RESUMO

BACKGROUND AND PURPOSE: The intraventricular hemorrhage (IVH) secondary to intracerebral hemorrhage (ICH) was reported to be relevant to a higher incidence of hydrocephalus, which would result in poorer outcomes for patients with ICH. However, the mechanisms responsible for this relationship remain poorly characterized. Thus, this study was designed to further explore the development and progression of hydrocephalus after secondary IVH. METHODS: Autologous blood injection model was induced to mimic ICH with ventricular extension (ICH/IVH) or primary IVH in Sprague-Dawley rats. Magnetic resonance imaging, Morris water maze, brain water content, Evans blue extravasation, immunohistochemistry staining, Western blot, iron determination, and electron microscopy were used in these rats. Then, deferoxamine treatment was used to clarify the involvement of iron in the development of hydrocephalus. RESULTS: Despite the injection of equivalent blood volumes, ICH/IVH resulted in more significant ventricular dilation, ependymal cilia damage, and iron overload, as well as more severe early brain injury and neurological deficits compared with IVH alone. Systemic deferoxamine treatment more effectively reduced ventricular enlargement in ICH/IVH compared with primary IVH. CONCLUSIONS: Our results show that ICH/IVH caused more significant chronic hydrocephalus and iron accumulation than primary IVH alone. Intracerebral hematoma plays a vital role in persistent iron overload and aggravated hydrocephalus after ICH/IVH.


Assuntos
Hemorragia Cerebral/metabolismo , Ventrículos Cerebrais , Ferritinas/metabolismo , Hematoma/metabolismo , Hidrocefalia/metabolismo , Ferro/metabolismo , Animais , Comportamento Animal , Western Blotting , Hemorragia Cerebral/complicações , Hemorragia Cerebral/patologia , Cílios/ultraestrutura , Modelos Animais de Doenças , Epêndima/patologia , Epêndima/ultraestrutura , Hematoma/complicações , Hematoma/patologia , Hipocampo/patologia , Hidrocefalia/etiologia , Hidrocefalia/patologia , Imuno-Histoquímica , Ferro/líquido cefalorraquidiano , Imageamento por Ressonância Magnética , Masculino , Microscopia Eletrônica , Testes Neuropsicológicos , Tamanho do Órgão , Ratos , Ratos Sprague-Dawley
3.
Cell Tissue Res ; 359(2): 627-634, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25380566

RESUMO

Brain ependymal cells, which form an epithelial layer covering the cerebral ventricles, have been shown to play a role in the regulation of cerebrospinal and interstitial fluids. The machinery underlying this, however, remains largely unknown. Here, we report the specific localization of an inwardly rectifying K(+) channel, Kir4.1, on the ependymal cell membrane suggesting involvement of the channel in this function. Immunohistochemical study with confocal microscopy identified Kir4.1 labeling on the lateral but not apical membrane of ependymal cells. Ultrastructural analysis revealed that Kir4.1-immunogold particles were specifically localized and clustered on adjacent membranes at puncta adherens type junctions, whereas an aquaporin water channel, AQP4, that was also detected on the lateral membrane only occurred at components other than adherens junctions. Therefore, in ependymal cells, Kir4.1 and AQP4 are partitioned into distinct membrane compartments that might respectively transport either K(+) or water. Kir4.1 was also expressed in a specialized form of ependymal cell, namely the tanycyte, being abundant in tanycyte processes wrapping neuropils and blood vessels. These specific localizations suggest that Kir4.1 mediates intercellular K(+) exchange between ependymal cells and also K(+)-buffering transport via tanycytes that can interconnect neurons and vessels/ventricles. We propose that ependymal cells and tanycytes differentially operate Kir4.1 and AQP4 actively to control the property of fluids at local areas in the brain.


Assuntos
Compartimento Celular , Membrana Celular/metabolismo , Epêndima/citologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Animais , Aquaporina 4/metabolismo , Membrana Celular/ultraestrutura , Epêndima/metabolismo , Epêndima/ultraestrutura , Células Ependimogliais/citologia , Células Ependimogliais/metabolismo , Masculino , Transporte Proteico , Ratos Wistar , Frações Subcelulares/metabolismo
4.
Dev Biol ; 382(1): 172-85, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23906841

RESUMO

Congenital hydrocephalus, the accumulation of excess cerebrospinal fluid (CSF) in the ventricles of the brain, affects one of every 1000 children born today, making it one of the most common human developmental disorders. Genetic causes of hydrocephalus are poorly understood in humans, but animal models suggest a broad genetic program underlying the regulation of CSF balance. In this study, the random integration of a transgene into the mouse genome led to the development of an early onset and rapidly progressive hydrocephalus. Juvenile hydrocephalus transgenic mice (Jhy(lacZ)) inherit communicating hydrocephalus in an autosomal recessive fashion with dilation of the lateral ventricles observed as early as postnatal day 1.5. Ventricular dilation increases in severity over time, becoming fatal at 4-8 weeks of age. The ependymal cilia lining the lateral ventricles are morphologically abnormal and reduced in number in Jhy(lacZ/lacZ) brains, and ultrastructural analysis revealed disorganization of the expected 9+2 microtubule pattern. Rather, the majority of Jhy(lacZ/lacZ) cilia develop axonemes with 9+0 or 8+2 microtubule structures. Disruption of an unstudied gene, 4931429I11Rik (now named Jhy) appears to underlie the hydrocephalus of Jhy(lacZ/lacZ) mice, and the Jhy transcript and protein are decreased in Jhy(lacZ/lacZ) mice. Partial phenotypic rescue was achieved in Jhy(lacZ/lacZ) mice by the introduction of a bacterial artificial chromosome (BAC) carrying 60-70% of the JHY protein coding sequence. Jhy is evolutionarily conserved from humans to basal vertebrates, but the predicted JHY protein lacks identifiable functional domains. Ongoing studies are directed at uncovering the physiological function of JHY and its role in CSF homeostasis.


Assuntos
Cílios/patologia , Deleção de Genes , Hidrocefalia/genética , Hidrocefalia/patologia , Microtúbulos/metabolismo , Proteínas/genética , Envelhecimento , Sequência de Aminoácidos , Animais , Sequência de Bases , Líquido Cefalorraquidiano/metabolismo , Cílios/metabolismo , Cílios/ultraestrutura , Progressão da Doença , Elementos Facilitadores Genéticos/genética , Epêndima/crescimento & desenvolvimento , Epêndima/metabolismo , Epêndima/patologia , Epêndima/ultraestrutura , Genes Reporter , Humanos , Hidrocefalia/líquido cefalorraquidiano , Camundongos , Camundongos Transgênicos , Microtúbulos/ultraestrutura , Dados de Sequência Molecular , Fenótipo , Proteínas/química , Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Síndrome , Transgenes/genética
5.
Glia ; 62(5): 790-803, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24677590

RESUMO

Neurogenesis persists in the adult subventricular zone (SVZ) of the mammalian brain. During aging, the SVZ neurogenic capacity undergoes a progressive decline, which is attributed to a decrease in the population of neural stem cells (NSCs). However, the behavior of the NSCs that remain in the aged brain is not fully understood. Here we performed a comparative ultrastructural study of the SVZ niche of 2-month-old and 24-month-old male C57BL/6 mice, focusing on the NSC population. Using thymidine-labeling, we showed that residual NSCs in the aged SVZ divide less frequently than those in young mice. We also provided evidence that ependymal cells are not newly generated during senescence, as others studies suggest. Remarkably, both astrocytes and ependymal cells accumulated a high number of intermediate filaments and dense bodies during aging, resembling reactive cells. A better understanding of the changes occurring in the neurogenic niche during aging will allow us to develop new strategies for fighting neurological disorders linked to senescence.


Assuntos
Envelhecimento/fisiologia , Astrócitos/fisiologia , Epêndima/citologia , Epêndima/fisiologia , Ventrículos Laterais/citologia , Ventrículos Laterais/fisiologia , Animais , Astrócitos/ultraestrutura , Diferenciação Celular/fisiologia , Proliferação de Células , Epêndima/ultraestrutura , Ventrículos Laterais/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/fisiologia , Células-Tronco Neurais/ultraestrutura , Neurogênese/fisiologia
6.
J Neurogenet ; 28(1-2): 146-52, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24708399

RESUMO

Motile cilia play diverse roles across phyla and cell types, and abnormalities in motile cilia lead to numerous disease states, including hydrocephalus. Although motile ciliary abnormalities in Prickle2 mutants have not yet been described, the planar cell polarity genes, including Prickle2, are implicated in the development and function of motile cilia. This report evaluates Prickle2-deficient mice for dysfunction in processes known to depend on functioning motile cilia. Prickle2-deficient mice do not develop hydrocephalus, but do display abnormal morphology and motility in the motile cilia of the ependyma. The morphology of tracheal motile cilia is also abnormal. Taken together, these results demonstrate that Prickle2 is required for normal ependymal motile cilia development and function.


Assuntos
Cílios/genética , Cílios/patologia , Hidrocefalia/genética , Hidrocefalia/patologia , Proteínas com Domínio LIM/deficiência , Proteínas de Membrana/deficiência , Mutação/genética , Animais , Polaridade Celular/genética , Ventrículos Cerebrais/patologia , Ventrículos Cerebrais/ultraestrutura , Cílios/ultraestrutura , Epêndima/patologia , Epêndima/ultraestrutura , Proteínas com Domínio LIM/genética , Imageamento por Ressonância Magnética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão
7.
J Neurochem ; 120(6): 913-27, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22092001

RESUMO

The choroid plexus (CP) epithelium develops from the ependyma that lines the ventricular system, and plays a critical role in the development and function of the brain. In addition to being the primary site of CSF production, the CP maintains the blood-CSF barrier via apical tight junctions between epithelial cells. Here we show that the 22-member γ-protocadherin (γ-Pcdh) family of cell adhesion molecules, which we have implicated previously in synaptogenesis and neuronal survival, is highly expressed by both CP epithelial and ependymal cells, in which γ-Pcdh protein localization is, surprisingly, tightly restricted to the apical membrane. Multi-label immunostaining demonstrates that γ-Pcdhs are excluded from tight junctions, basolateral adherens junctions, and apical cilia tufts. RT-PCR analysis indicates that, as a whole, the CP expresses most members of the Pcdh-γ gene family. Immunostaining using novel monoclonal antibodies specific for single γ-Pcdh proteins shows that individual epithelial cells differ in their apically localized γ-Pcdh repertoire. Restricted mutation of the Pcdh-γ locus in the choroid plexus and ependyma leads to significant reductions in ventricular volume, without obvious disruptions of epithelial apical-basal polarity. Together, these results suggest an unsuspected role for the γ-Pcdhs in CSF production and demonstrate a surprising molecular heterogeneity in the CP epithelium.


Assuntos
Caderinas/metabolismo , Plexo Corióideo/anatomia & histologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Animais , Proteínas Relacionadas a Caderinas , Caderinas/genética , Linhagem Celular Transformada , Ventrículos Cerebrais/metabolismo , Ventrículos Cerebrais/ultraestrutura , Líquido Cefalorraquidiano/fisiologia , Embrião de Mamíferos , Epêndima/citologia , Epêndima/metabolismo , Epêndima/ultraestrutura , Células Epiteliais/citologia , Células Epiteliais/ultraestrutura , Epitélio/anatomia & histologia , Feminino , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imageamento por Ressonância Magnética , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica , Mutação/genética , Fosfoproteínas/metabolismo , Junções Íntimas/metabolismo , Junções Íntimas/ultraestrutura , Tubulina (Proteína)/metabolismo , Proteína da Zônula de Oclusão-1 , beta Catenina/metabolismo
8.
Development ; 136(23): 4021-31, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19906869

RESUMO

Neuronal specification occurs at the periventricular surface of the embryonic central nervous system. During early postnatal periods, radial glial cells in various ventricular zones of the brain differentiate into ependymal cells and astrocytes. However, mechanisms that drive this time- and cell-specific differentiation remain largely unknown. Here, we show that expression of the forkhead transcription factor FoxJ1 in mice is required for differentiation into ependymal cells and a small subset of FoxJ1(+) astrocytes in the lateral ventricles, where these cells form a postnatal neural stem cell niche. Moreover, we show that a subset of FoxJ1(+) cells harvested from the stem cell niche can self-renew and possess neurogenic potential. Using a transcriptome comparison of FoxJ1-null and wild-type microdissected tissue, we identified candidate genes regulated by FoxJ1 during early postnatal development. The list includes a significant number of microtubule-associated proteins, some of which form a protein complex that could regulate the transport of basal bodies to the ventricular surface of differentiating ependymal cells during FoxJ1-dependent ciliogenesis. Our results suggest that time- and cell-specific expression of FoxJ1 in the brain acts on an array of target genes to regulate the differentiation of ependymal cells and a small subset of astrocytes in the adult stem cell niche.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Diferenciação Celular/fisiologia , Epêndima/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Neuroglia/fisiologia , Animais , Astrócitos/citologia , Astrócitos/ultraestrutura , Encéfalo/citologia , Células Cultivadas , Epêndima/citologia , Epêndima/ultraestrutura , Técnica Direta de Fluorescência para Anticorpo , Fatores de Transcrição Forkhead/genética , Expressão Gênica , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Knockout , Neuroglia/citologia , Neuroglia/ultraestrutura
9.
Dev Neurosci ; 34(4): 299-309, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22831917

RESUMO

Much work has focused on the possible contribution of adult hippocampal neurogenesis to neuropsychiatric diseases. The hippocampal subgranular zone and the other stem cell-containing neurogenic niche, the subventricular zone (SVZ), share several cytological features and are regulated by some of the same molecular mechanisms. However, very little is known about the SVZ in neuropsychiatric disorders. This is important since it surrounds the lateral ventricles and in schizophrenia ventricular enlargement frequently follows forebrain nuclei shrinkage. Also, adult neurogenesis has been implicated in pharmacotherapy for affective disorders and many of the molecules associated with neuropsychiatric disorders affect SVZ biology. To assess the neurogenic niche, we examined material from 60 humans (Stanley Collection) and characterized the cytoarchitecture of the SVZ and ependymal layer in age-, sex- and post mortem interval-matched controls, and patients diagnosed with schizophrenia, bipolar illness, and depression (n = 15 each). There is a paucity of post mortem brains available for study in these diseases, so to maximize the number of possible parameters examined here, we quantified individual sections rather than a large series. Previous work showed that multiple sclerosis is associated with increased width of the hypocellular gap, a cell-sparse region that typifies the human SVZ. Statistically there were no differences between disease groups and controls in the width of the hypocellular gap or in the density of cells in the hypocellular gap. Because ventricular enlargement in schizophrenia may disrupt ependymal cells, we quantified them, but observed no difference between diagnostic groups and controls. There are significant differences in the prevalence of neuropsychiatric illness between the sexes. Therefore, we looked for male versus female differences, but did not observe any in the parameters quantified. We next turned to a finer spatial resolution and asked if there were differences amongst the disease groups in dorsal ventral subdivisions of the SVZ. Similar to when we treated the SVZ as a whole, we did not find such differences. However, compared to the dorsal SVZ, the ventral SVZ had a wider hypocellular gap and more ependymal cells in all four groups. In contrast, cell density was similar in dorsal ventral subregions of the SVZ hypocellular gap. These results show that though there are regional differences in the SVZ in humans, neuropsychiatric disorders do not seem to alter several fundamental histological features of this adult neurogenic zone.


Assuntos
Transtorno Bipolar/patologia , Núcleo Caudado/ultraestrutura , Transtorno Depressivo/patologia , Epêndima/ultraestrutura , Hipocampo/ultraestrutura , Ventrículos Laterais/ultraestrutura , Putamen/ultraestrutura , Esquizofrenia/patologia , Adulto , Astrócitos/ultraestrutura , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurogênese , Neurônios/ultraestrutura , Especificidade de Órgãos , Células-Tronco/ultraestrutura , Adulto Jovem
10.
Acta Neuropathol ; 124(4): 531-46, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22576081

RESUMO

Hydrocephalic hyh mutant mice undergo a programmed loss of the neuroepithelium/ependyma followed by a reaction of periventricular astrocytes, which form a new cell layer covering the denuded ventricular surface. We present a comparative morphological and functional study of the newly formed layer of astrocytes and the multiciliated ependyma of hyh mice. Transmission electron microscopy, immunocytochemistry for junction proteins (N-cadherin, connexin 43) and proteins involved in permeability (aquaporin 4) and endocytosis (caveolin-1, EEA1) were used. Horseradish peroxidase (HRP) and lanthanum nitrate were used to trace the intracellular and paracellular transport routes. The astrocyte layer shares several cytological features with the normal multiciliated ependyma, such as numerous microvilli projected into the ventricle, extensive cell-cell interdigitations and connexin 43-based gap junctions, suggesting that these astrocytes are coupled to play an unknown function as a cell layer. The ependyma and the astrocyte layers also share transport properties: (1) high expression of aquaporin 4, caveolin-1 and the endosome marker EEA1; (2) internalization into endocytic vesicles and early endosomes of HRP injected into the ventricle; (3) and a similar paracellular route of molecules moving between CSF, the subependymal neuropile and the pericapillary space, as shown by lanthanum nitrate and HRP. A parallel analysis performed in human hydrocephalic foetuses indicated that a similar phenomenon would occur in humans. We suggest that in foetal-onset hydrocephalus, the astrocyte assembly at the denuded ventricular walls functions as a CSF-brain barrier involved in water and solute transport, thus contributing to re-establish lost functions at the brain parenchyma-CSF interphase.


Assuntos
Astrócitos/ultraestrutura , Epêndima/ultraestrutura , Hidrocefalia/patologia , Animais , Astrócitos/metabolismo , Modelos Animais de Doenças , Epêndima/metabolismo , Feto , Imunofluorescência , Humanos , Hidrocefalia/congênito , Hidrocefalia/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Mutantes , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão
11.
Dev Biol ; 337(1): 42-62, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19835854

RESUMO

Accumulating evidence demonstrates that cilia play important roles in a variety of processes in embryogenesis. For functional survey of larval cilia at the cellular level, we exploited the simple cell organization of tadpole larvae in the ascidian Ciona intestinalis. Immunofluorescent microscopy showed distribution of cilia not only in previously described tissues but also in a subpopulation of ependymal cells in the sensory vesicle, gut primordium, papillae, apical trunk epidermal neurons, and the endodermal strand. Transmission electron microscopy revealed a variety of axonemal structures, including a 9+0 structure similar to vertebrate primary cilia, a 9+0 structure with electron-dense materials in the center, a 9+2 structure with no dynein arms, and an axoneme with a disorganized structure at the distal end. Extensive description of cilia in the present study gives important insights into the evolution of the ciliary structure and provides a basis for analysis of ciliary functions in establishment of chordate body plan.


Assuntos
Cílios/ultraestrutura , Ciona intestinalis/embriologia , Animais , Evolução Biológica , Cílios/fisiologia , Endoderma/ultraestrutura , Epêndima/ultraestrutura , Larva/ultraestrutura , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Tubo Neural/ultraestrutura , Células Fotorreceptoras/ultraestrutura , Células Receptoras Sensoriais/ultraestrutura
12.
Acta Neuropathol ; 121(6): 721-35, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21311902

RESUMO

A heterogeneous population of ependymal cells lines the brain ventricles. The evidence about the origin and birth dates of these cell populations is scarce. Furthermore, the possibility that mature ependymal cells are born (ependymogenesis) or self-renewed (ependymal proliferation) postnatally is controversial. The present study was designed to investigate both phenomena in wild-type (wt) and hydrocephalic α-SNAP mutant (hyh) mice at different postnatal stages. In wt mice, proliferating cells in the ventricular zone (VZ) were only found in two distinct regions: the dorsal walls of the third ventricle and Sylvian aqueduct (SA). Most proliferating cells were monociliated and nestin+, likely corresponding to radial glial cells. Postnatal cumulative BrdU-labeling showed that most daughter cells remained in the VZ of both regions and they lost nestin-immunoreactivity. Furthermore, some labeled cells became multiciliated and GLUT-1+, indicating they were ependymal cells born postnatally. Postnatal pulse BrdU-labeling and Ki-67 immunostaining further demonstrated the presence of cycling multiciliated ependymal cells. In hydrocephalic mutants, the dorsal walls of the third ventricle and SA expanded enormously and showed neither ependymal disruption nor ventriculostomies. This phenomenon was sustained by an increased ependymogenesis. Consequently, in addition to the physical and geometrical mechanisms traditionally explaining ventricular enlargement in fetal-onset hydrocephalus, we propose that postnatal ependymogenesis could also play a role. Furthermore, as generation of new ependymal cells during postnatal stages was observed in distinct regions of the ventricular walls, such as the roof of the third ventricle, it may be a key mechanism involved in the development of human type 1 interhemispheric cysts.


Assuntos
Encéfalo/patologia , Epêndima/crescimento & desenvolvimento , Hidrocefalia/patologia , Terceiro Ventrículo/fisiopatologia , Fatores Etários , Animais , Animais Recém-Nascidos , Bromodesoxiuridina/metabolismo , Contagem de Células , Proliferação de Células , Modelos Animais de Doenças , Epêndima/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteína Glial Fibrilar Ácida/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Camundongos , Camundongos Mutantes Neurológicos , Microscopia Eletrônica de Varredura , Antígeno Nuclear de Célula em Proliferação/metabolismo , Terceiro Ventrículo/citologia , Tubulina (Proteína)/metabolismo
13.
Sci Rep ; 11(1): 18537, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34535732

RESUMO

Ependymal cells have multiple apical cilia that line the ventricular surfaces and the central canal of spinal cord. In cancer, the loss of ependymal cell polarity promotes the formation of different types of tumors, such as supratentorial anaplastic ependymomas, which are highly aggressive in children. IIIG9 (PPP1R32) is a protein restricted to adult ependymal cells located in cilia and in the apical cytoplasm and has unknown function. In this work, we studied the expression and localization of IIIG9 in the adherens junctions (cadherin/ß-catenin-positive junctions) of adult brain ependymal cells using confocal and transmission electron microscopy. Through in vivo loss-of-function studies, ependymal denudation (single-dose injection experiments of inhibitory adenovirus) was observed, inducing the formation of ependymal cells with a "balloon-like" morphology. These cells had reduced cadherin expression (and/or delocalization) and cleavage of the cell death marker caspase-3, with "cilia rigidity" morphology (probably vibrational beating activity) and ventriculomegaly occurring prior to these events. Finally, after performing continuous infusions of adenovirus for 14 days, we observed total cell denudation and reactive parenchymal astrogliosis. Our data confirmed that IIIG9 is essential for the maintenance of adherens junctions of polarized ependymal cells. Eventually, altered levels of this protein in ependymal cell differentiation may increase ventricular pathologies, such as hydrocephalus or neoplastic transformation.


Assuntos
Junções Aderentes/metabolismo , Epêndima/citologia , Proteínas do Tecido Nervoso/metabolismo , Junções Aderentes/ultraestrutura , Animais , Adesão Celular , Células Cultivadas , Epêndima/metabolismo , Epêndima/ultraestrutura , Mutação com Perda de Função , Proteínas do Tecido Nervoso/genética , Ratos Sprague-Dawley
14.
Eur J Neurosci ; 31(9): 1533-48, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20525067

RESUMO

In the brain of adult rats neurogenesis persists in the subventricular zone of the lateral ventricles and in the dentate gyrus of the hippocampus. By contrast, low proliferative activity was observed in the hypothalamus. We report here that, after intracerebroventricular treatment with insulin-like growth factor I (IGF-I), cell proliferation significantly increased in both the periventricular and the parenchymal zones of the whole hypothalamus. Neurons, astrocytes, tanycytes, microglia and endothelial cells of the local vessels were stained with the proliferative marker 5-bromo-2'-deoxyuridine (BrdU) in response to IGF-I. Conversely, we never observed BrdU-positive ciliated cubic ependymal cells. Proliferation was intense in the subventricular area of a distinct zone of the mid third ventricle wall limited dorsally by ciliated cubic ependyma and ventrally by tanycytic ependyma. In this area, we saw a characteristic cluster of proliferating cells. This zone of the ventricular wall displayed three cell layers: ciliated ependyma, subependyma and underlying tanycytes. After IGF-I treatment, proliferating cells were seen in the subependyma and in the layer of tanycytes. In the subependyma, proliferating glial fibrillary acidic protein-positive astrocytes contacted the ventricle by an apical process bearing a single cilium and there were many labyrinthine extensions of the periventricular basement membranes. Both features are typical of neurogenic niches in other brain zones, suggesting that the central overlapping zone of the rat hypothalamic wall could be considered a neurogenic niche in response to IGF-I.


Assuntos
Células-Tronco Adultas/fisiologia , Hipotálamo/fisiologia , Fator de Crescimento Insulin-Like I/metabolismo , Neurogênese/fisiologia , Neurônios/fisiologia , Nicho de Células-Tronco/fisiologia , Células-Tronco Adultas/ultraestrutura , Envelhecimento , Animais , Astrócitos/fisiologia , Astrócitos/ultraestrutura , Proliferação de Células , Células Endoteliais/fisiologia , Células Endoteliais/ultraestrutura , Epêndima/fisiologia , Epêndima/ultraestrutura , Feminino , Hipotálamo/irrigação sanguínea , Hipotálamo/ultraestrutura , Masculino , Microglia/fisiologia , Microglia/ultraestrutura , Neurônios/ultraestrutura , Ratos , Ratos Wistar , Nicho de Células-Tronco/irrigação sanguínea , Nicho de Células-Tronco/ultraestrutura
15.
Microsc Res Tech ; 83(6): 667-675, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32048782

RESUMO

Classical electron microscopic morphological studies provide detailed ultrastructural information, which may lend insights into cellular functions. As a follow-up to our morphological investigation of the adult zebrafish (Danio rerio) optic tectum, in this study, we have analyzed the ependymal structures lining the surfaces of the tectal ventricle: the torus, tegmental surface of the valvula cerebelli and the periventricular gray zone of the optic tectal cortex. We used toluidine blue stained plastic (semithin) sections for light microscopy and scanning electron microscopy. Our morphological findings of gated entrances and/or egresses indicate that, at least in the adult zebrafish brain, there may be a bidirectional direct flow communication between the ventricular cerebrospinal fluid and the parenchymal interstitial fluid.


Assuntos
Encéfalo/fisiologia , Epêndima/ultraestrutura , Hidrodinâmica , Colículos Superiores/ultraestrutura , Peixe-Zebra/anatomia & histologia , Animais , Líquido Cefalorraquidiano/fisiologia , Epêndima/anatomia & histologia , Líquido Extracelular/fisiologia , Feminino , Masculino , Microscopia , Microscopia Eletrônica de Varredura , Colículos Superiores/citologia
16.
Sci Rep ; 10(1): 12435, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709945

RESUMO

Hydrocephalus is a brain disorder triggered by cerebrospinal fluid accumulation in brain cavities. Even though cerebrospinal fluid flow is known to be driven by the orchestrated beating of the bundled motile cilia of ependymal cells, little is known about the mechanism of ciliary motility. RSPH9 is increasingly becoming recognized as a vital component of radial spokes in ciliary "9 + 2" ultrastructure organization. Here, we show that deletion of the Rsph9 gene leads to the development of hydrocephalus in the early postnatal period. However, the neurodevelopment and astrocyte development are normal in embryonic Rsph9-/- mice. The tubular structure of the central aqueduct was comparable in Rsph9-/- mice. Using high-speed video microscopy, we visualized lower beating amplitude and irregular rotation beating pattern of cilia bundles in Rsph9-/- mice compared with that of wild-type mice. And the centriolar patch size was significantly increased in Rsph9-/- cells. TEM results showed that deletion of Rsph9 causes little impact in ciliary axonemal organization but the Rsph9-/- cilia frequently had abnormal ectopic ciliary membrane inclusions. In addition, hydrocephalus in Rsph9-/- mice results in the development of astrogliosis, microgliosis and cerebrovascular abnormalities. Eventually, the ependymal cells sloughed off of the lateral wall. Our results collectively suggested that RSPH9 is essential for ciliary structure and motility of mouse ependymal cilia, and its deletion causes the pathogenesis of hydrocephalus.


Assuntos
Cílios/patologia , Proteínas do Citoesqueleto/genética , Epêndima/crescimento & desenvolvimento , Hidrocefalia/genética , Animais , Animais Recém-Nascidos , Axonema/ultraestrutura , Cílios/metabolismo , Cílios/ultraestrutura , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Epêndima/citologia , Epêndima/patologia , Epêndima/ultraestrutura , Feminino , Humanos , Hidrocefalia/congênito , Hidrocefalia/patologia , Microscopia Intravital , Masculino , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Microscopia de Vídeo
17.
Ann Anat ; 231: 151549, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32512203

RESUMO

BACKGROUND: The regenerating blastema of the tail in the lizard Podarcis muralis contains numerous macrophages among the prevalent mesenchymal cells. Some macrophages are phagocytic but others are devoid of phagosomes suggesting that they have other roles aside phagocytosis. METHODS: The presence of healing macrophages (M2-like) has been tested using autoradiographic, immunohistochemical and ultrastructural studies. RESULTS: Autoradiography shows an uptake of tritiated arginine in sparse cells of the blastema and in the regenerating epidermis. Bioinformatics analysis suggests that epitopes for arginase-1 and -2, recognized by the employed antibody, are present in lizards. Immunofluorescence shows sparse arginase immunopositive macrophages in the blastema and few macrophages also in the apical wound epidermis. The ultrastructural study shows that macrophages contain dense secretory granules, most likely inactive lysosomes, and small cytoplasmic pale vesicles. Some of the small vesicles are arginase-positive while immunolabeling is very diffuse in the macrophage cytoplasm. CONCLUSIONS: The presence of cells incorporating arginine and of arginase 1-positive cells suggests that M2-like macrophages are present among mesenchymal and epidermal cells of the regenerative tail blastema. M2-like macrophages may promote tail regeneration differently from the numerous pro-inflammatory macrophages previously detected in the scarring limb. The presence of M2-like macrophages in addition to hyaluronate, support the hypothesis that the regenerative blastema of the tail in lizards is an immuno-privileged organ where cell proliferation and growth occur without degenerating in a tumorigenic outgrowth.


Assuntos
Lagartos/anatomia & histologia , Lagartos/fisiologia , Macrófagos/fisiologia , Regeneração/fisiologia , Cauda/fisiologia , Animais , Arginase/imunologia , Autorradiografia/veterinária , Biomarcadores/análise , Biologia Computacional , Epêndima/anatomia & histologia , Epêndima/fisiologia , Epêndima/ultraestrutura , Imunofluorescência/veterinária , Humanos , Imuno-Histoquímica/veterinária , Fígado/enzimologia , Macrófagos/enzimologia , Macrófagos/ultraestrutura , Medula Espinal/anatomia & histologia , Medula Espinal/fisiologia
18.
J Neurosci ; 28(14): 3804-13, 2008 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-18385338

RESUMO

The subventricular zone (SVZ) of the adult mouse brain is a narrow stem cell niche that lies along the length of the lateral wall of the lateral ventricles. The SVZ supports neurogenesis throughout adulthood; however, with increasing age, the ventral SVZ deteriorates and only the dorsolateral SVZ remains neurogenic. Associated with the elderly dorsolateral SVZ, we reported previously an increased number of astrocytes interposed within the adjacent ependymal lining. Here, we show that astrocytes integrated within the ependyma are dividing, BrdU-labeled astrocytes that share cellular adherens with neighboring ependymal cells. By tracking BrdU-labeled astrocytes over time, we observed that, as they incorporated within the ependyma, they took on antigenic and morphologic characteristics of ependymal cells, suggesting a novel form of SVZ-supported "regenerative" repair in the aging brain. A similar form of SVZ-mediated ependyma repair was also observed in young mice after mild ependymal cell denudation with low dosages of neuraminidase. Together, this work identifies a novel non-neuronal mechanism of regenerative repair by the adult SVZ.


Assuntos
Células-Tronco Adultas/fisiologia , Envelhecimento/patologia , Epêndima/lesões , Epêndima/fisiopatologia , Ventrículos Laterais/citologia , Células-Tronco Adultas/ultraestrutura , Fatores Etários , Animais , Astrócitos/fisiologia , Astrócitos/ultraestrutura , Encéfalo/anatomia & histologia , Bromodesoxiuridina/metabolismo , Contagem de Células/métodos , Relação Dose-Resposta a Droga , Epêndima/efeitos dos fármacos , Epêndima/ultraestrutura , Ventrículos Laterais/ultraestrutura , Masculino , Camundongos , Microscopia Confocal/métodos , Microscopia Eletrônica/métodos , Proteínas do Tecido Nervoso/metabolismo , Neuraminidase/efeitos adversos
19.
J Neurosci ; 28(48): 12887-900, 2008 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-19036983

RESUMO

Primary cilia are important sites of signal transduction involved in a wide range of developmental and postnatal functions. Proteolytic processing of the transcription factor Gli3, for example, occurs in primary cilia, and defects in intraflagellar transport (IFT), which is crucial for the maintenance of primary cilia, can lead to severe developmental defects and diseases. Here we report an essential role of primary cilia in forebrain development. Uncovered by N-ethyl-N-nitrosourea-mutagenesis, cobblestone is a hypomorphic allele of the IFT gene Ift88, in which Ift88 mRNA and protein levels are reduced by 70-80%. cobblestone mutants are distinguished by subpial heterotopias in the forebrain. Mutants show both severe defects in the formation of dorsomedial telencephalic structures, such as the choroid plexus, cortical hem and hippocampus, and also a relaxation of both dorsal-ventral and rostral-caudal compartmental boundaries. These defects phenocopy many of the abnormalities seen in the Gli3 mutant forebrain, and we show that Gli3 proteolytic processing is reduced, leading to an accumulation of the full-length activator isoform. In addition, we observe an upregulation of canonical Wnt signaling in the neocortex and in the caudal forebrain. Interestingly, the ultrastructure and morphology of ventricular cilia in the cobblestone mutants remains intact. Together, these results indicate a critical role for ciliary function in the developing forebrain.


Assuntos
Córtex Cerebral/anormalidades , Córtex Cerebral/metabolismo , Cílios/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Supressoras de Tumor/genética , Animais , Córtex Cerebral/ultraestrutura , Cílios/ultraestrutura , Epêndima/metabolismo , Epêndima/ultraestrutura , Feminino , Fatores de Transcrição Kruppel-Like/genética , Ventrículos Laterais/anormalidades , Ventrículos Laterais/metabolismo , Ventrículos Laterais/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Neurônios/ultraestrutura , Peptídeo Hidrolases/metabolismo , Prosencéfalo/anormalidades , Prosencéfalo/metabolismo , Prosencéfalo/ultraestrutura , Proteínas Supressoras de Tumor/metabolismo , Proteínas Wnt/metabolismo , Proteína Gli3 com Dedos de Zinco
20.
Glia ; 57(2): 136-52, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18709646

RESUMO

Neural stem cells (NSCs) in the subventricular zone (SVZ) continuously generate olfactory bulb interneurons in the adult rodent brain. Based on their ultrastructural and antigenic properties, NSCs, transient amplifying precursor cells, and neuroblasts (B, C, and A cells, respectively) have been distinguished in mouse SVZ. Here, we aimed to identify these cell types in rat SVZ ultrastructurally and at the light microscopy level, and to determine the antigenic properties of each cell type using gold and fluorescence immunolabeling. We found astrocytes with single cilia (NSCs, correspond to B cells) and neuroblasts (A cells). We also observed mitotic cells, ependymal cells, displaced ependymal cells, and mature astrocytes. In contrast, transient amplifying precursor cells (C cells) were not detected. The NSCs and neuroblasts had epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor alpha (PDGFRalpha) expressed on the ciliary apparatus and were the only cell types incorporating the proliferation marker BrdU. Throughout mitosis, EGFR and PDGFRalpha were associated with the microtubule of the mitotic spindle. Ependymal and displaced ependymal cells also expressed EGFR and PDGFRalpha on their cilia but did not incorporate BrdU. Our findings indicate that the NSCs in adult rat SVZ give rise directly to neuroblasts. During mitosis, the NSCs disassemble the primary cilium and symmetrically distribute EGFR and PDGFRalpha among their progeny.


Assuntos
Encéfalo/citologia , Neurogênese/fisiologia , Neurônios/imunologia , Neurônios/ultraestrutura , Células-Tronco/imunologia , Células-Tronco/ultraestrutura , Animais , Astrócitos/imunologia , Astrócitos/metabolismo , Astrócitos/ultraestrutura , Encéfalo/fisiologia , Bromodesoxiuridina , Diferenciação Celular/fisiologia , Proliferação de Células , Ventrículos Cerebrais/citologia , Ventrículos Cerebrais/fisiologia , Cílios/metabolismo , Cílios/ultraestrutura , Epêndima/imunologia , Epêndima/metabolismo , Epêndima/ultraestrutura , Receptores ErbB/metabolismo , Imuno-Histoquímica , Masculino , Microscopia de Fluorescência , Microscopia Imunoeletrônica , Mitose/fisiologia , Neurônios/metabolismo , Ratos , Ratos Wistar , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fuso Acromático/metabolismo , Fuso Acromático/ultraestrutura , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa