Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.475
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 589(7843): 554-561, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33505037

RESUMO

Historically, human uses of land have transformed and fragmented ecosystems1,2, degraded biodiversity3,4, disrupted carbon and nitrogen cycles5,6 and added prodigious quantities of greenhouse gases (GHGs) to the atmosphere7,8. However, in contrast to fossil-fuel carbon dioxide (CO2) emissions, trends and drivers of GHG emissions from land management and land-use change (together referred to as 'land-use emissions') have not been as comprehensively and systematically assessed. Here we present country-, process-, GHG- and product-specific inventories of global land-use emissions from 1961 to 2017, we decompose key demographic, economic and technical drivers of emissions and we assess the uncertainties and the sensitivity of results to different accounting assumptions. Despite steady increases in population (+144 per cent) and agricultural production per capita (+58 per cent), as well as smaller increases in emissions per land area used (+8 per cent), decreases in land required per unit of agricultural production (-70 per cent) kept global annual land-use emissions relatively constant at about 11 gigatonnes CO2-equivalent until 2001. After 2001, driven by rising emissions per land area, emissions increased by 2.4 gigatonnes CO2-equivalent per decade to 14.6 gigatonnes CO2-equivalent in 2017 (about 25 per cent of total anthropogenic GHG emissions). Although emissions intensity decreased in all regions, large differences across regions persist over time. The three highest-emitting regions (Latin America, Southeast Asia and sub-Saharan Africa) dominate global emissions growth from 1961 to 2017, driven by rapid and extensive growth of agricultural production and related land-use change. In addition, disproportionate emissions are related to certain products: beef and a few other red meats supply only 1 per cent of calories worldwide, but account for 25 per cent of all land-use emissions. Even where land-use change emissions are negligible or negative, total per capita CO2-equivalent land-use emissions remain near 0.5 tonnes per capita, suggesting the current frontier of mitigation efforts. Our results are consistent with existing knowledge-for example, on the role of population and economic growth and dietary choice-but provide additional insight into regional and sectoral trends.


Assuntos
Agricultura/estatística & dados numéricos , Dióxido de Carbono/análise , Combustíveis Fósseis , Atividades Humanas , Internacionalidade , Metano/análise , Óxido Nitroso/análise , África Subsaariana , Animais , Sudeste Asiático , Produtos Agrícolas/provisão & distribuição , Grão Comestível/provisão & distribuição , Mapeamento Geográfico , História do Século XX , História do Século XXI , América Latina , Esterco , Oryza , Carne Vermelha/provisão & distribuição , Solo , Desenvolvimento Sustentável/tendências , Madeira
2.
Proc Natl Acad Sci U S A ; 120(52): e2312962120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109547

RESUMO

After 500 y of colonizing the forest-steppe area northwest of the Black Sea, on the territories of what is today Moldova and Ukraine, Trypillia societies founded large, aggregated settlements from ca. 4150 BCE and mega-sites (>100 ha) from ca. 3950 BCE. Covering up to 320 ha and housing up to 15,000 inhabitants, the latter were the world's largest settlements to date. Some 480 δ13C and δ15N measurements on bones of humans, animals, and charred crops allow the detection of spatio-temporal patterns and the calculation of complete agricultural Bayesian food webs for Trypillia societies. The isotope data come from settlements of the entire Trypillia area between the Prut and the Dnieper rivers. The datasets cover the development of the Trypillia societies from the early phase (4800-4200/4100 BCE), over the agglomeration of mega-sites (4200/4100-3650 BCE), to the dispersal phase (3650-3000 BCE). High δ15N values mostly come from the mega-sites. Our analyses show that the subsistence of Trypillia mega-sites depended on pulses cultivated on strongly manured (dung-)soils and on cattle that were kept fenced on intensive pastures to easy collect the manure for pulse cultivation. The food web models indicate a low proportion of meat in human diet (approximately 10%). The largely crop-based diet, consisting of cereals plus up to 46% pulses, was balanced in calories and indispensable amino acids. The flourishing of Europe's first mega-populations depended on an advanced, integral mega-economy that included sophisticated dung management. Their demise was therefore not economically, but socially, conditioned [Hofmann et al., PLoS One. 14, e0222243 (2019)].


Assuntos
Agricultura , Isótopos , Animais , Humanos , Bovinos , Teorema de Bayes , Produtos Agrícolas , Produção Agrícola , Esterco/análise , Isótopos de Carbono/análise
3.
Nature ; 575(7781): 180-184, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31695210

RESUMO

Methane is a powerful greenhouse gas and is targeted for emissions mitigation by the US state of California and other jurisdictions worldwide1,2. Unique opportunities for mitigation are presented by point-source emitters-surface features or infrastructure components that are typically less than 10 metres in diameter and emit plumes of highly concentrated methane3. However, data on point-source emissions are sparse and typically lack sufficient spatial and temporal resolution to guide their mitigation and to accurately assess their magnitude4. Here we survey more than 272,000 infrastructure elements in California using an airborne imaging spectrometer that can rapidly map methane plumes5-7. We conduct five campaigns over several months from 2016 to 2018, spanning the oil and gas, manure-management and waste-management sectors, resulting in the detection, geolocation and quantification of emissions from 564 strong methane point sources. Our remote sensing approach enables the rapid and repeated assessment of large areas at high spatial resolution for a poorly characterized population of methane emitters that often appear intermittently and stochastically. We estimate net methane point-source emissions in California to be 0.618 teragrams per year (95 per cent confidence interval 0.523-0.725), equivalent to 34-46 per cent of the state's methane inventory8 for 2016. Methane 'super-emitter' activity occurs in every sector surveyed, with 10 per cent of point sources contributing roughly 60 per cent of point-source emissions-consistent with a study of the US Four Corners region that had a different sectoral mix9. The largest methane emitters in California are a subset of landfills, which exhibit persistent anomalous activity. Methane point-source emissions in California are dominated by landfills (41 per cent), followed by dairies (26 per cent) and the oil and gas sector (26 per cent). Our data have enabled the identification of the 0.2 per cent of California's infrastructure that is responsible for these emissions. Sharing these data with collaborating infrastructure operators has led to the mitigation of anomalous methane-emission activity10.


Assuntos
Monitoramento Ambiental , Metano/análise , Gerenciamento de Resíduos , California , Efeito Estufa , Esterco , Metano/química , Metano/metabolismo , Gás Natural , Indústria de Petróleo e Gás/métodos , Petróleo , Águas Residuárias
4.
Bioessays ; 45(12): e2300153, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37987191

RESUMO

It is necessary to complement next-generation sequencing data on the soil resistome with theoretical knowledge provided by ecological studies regarding the spread of antibiotic resistant bacteria (ARB) in the abiotic and, especially, biotic fraction of the soil ecosystem. Particularly, when ARB enter agricultural soils as a consequence of the application of animal manure as fertilizer, from a microbial ecology perspective, it is important to know their fate along the soil food web, that is, throughout that complex network of feeding interactions among members of the soil biota that has crucial effects on species richness and ecosystem productivity and stability. It is critical to study how the ARB that enter the soil through the application of manure can reach other taxonomical groups (e.g., fungi, protists, nematodes, arthropods, earthworms), paying special attention to their presence in the gut microbiomes of mesofauna-macrofauna and to the possibilities for horizontal gene transfer of antibiotic resistant genes.


Assuntos
Bactérias , Solo , Animais , Bactérias/genética , Esterco/microbiologia , Cadeia Alimentar , Ecossistema , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Antibacterianos/farmacologia , Microbiologia do Solo , Genes Bacterianos
5.
BMC Plant Biol ; 24(1): 423, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38760709

RESUMO

BACKGROUND: Soil salinity is one of the major menaces to food security, particularly in dealing with the food demand of the ever-increasing global population. Production of cereal crops such as wheat is severely affected by soil salinity and improper fertilization. The present study aimed to examine the effect of selected microbes and poultry manure (PM) on seedling emergence, physiology, nutrient uptake, and growth of wheat in saline soil. A pot experiment was carried out in research area of Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan. Saline soil (12 dS m- 1 w/w) was developed by spiking using sodium chloride, and used in experiment along with two microbial strains (i.e., Alcaligenes faecalis MH-2 and Achromobacter denitrificans MH-6) and PM. Finally, wheat seeds (variety Akbar-2019) were sown in amended and unamended soil, and pots were placed following a completely randomized design. The wheat crop was harvested after 140 days of sowing. RESULTS: The results showed a 10-39% increase (compared to non-saline control) in agronomic, physiological, and nutritive attributes of wheat plants when augmented with PM and microbes. Microbes together with PM significantly enhanced seedling emergence (up to 38%), agronomic (up to 36%), and physiological (up to 33%) in saline soil as compared to their respective unamended control. Moreover, the co-use of microbes and PM also improved soil's physicochemical attributes and enhanced N (i.e., 21.7%-17.1%), P (i.e., 24.1-29.3%), and K (i.e., 28.7%-25.3%) availability to the plant (roots and shoots, respectively). Similarly, the co-use of amendments also lowered the Na+ contents in soil (i.e., up to 62%) as compared to unamended saline control. This is the first study reporting the effects of the co-addition of newly identified salt-tolerant bacterial strains and PM on seedling emergence, physiology, nutrient uptake, and growth of wheat in highly saline soil. CONCLUSION: Our findings suggest that co-using a multi-trait bacterial culture and PM could be an appropriate option for sustainable crop production in salt-affected soil.


Assuntos
Esterco , Aves Domésticas , Salinidade , Solo , Triticum , Triticum/crescimento & desenvolvimento , Solo/química , Animais , Microbiologia do Solo , Plântula/crescimento & desenvolvimento , Fertilizantes/análise , Alcaligenes faecalis/crescimento & desenvolvimento
6.
BMC Plant Biol ; 24(1): 498, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834982

RESUMO

Biochar (BC) is an organic compound formed by the pyrolysis of organic wastes. Application of BCs as soil amendments has many benefits including carbon sequestration, enhanced soil fertility and sustainable agriculture production. In the present study, we acidified the different BCs prepared from rice straw, rice husk, wheat straw, cotton stalk, poultry manure, sugarcane press mud and vegetable waste; following which, we applied them in a series of pot experiments. Comparisons were made between acidified and non- acidified BCs for their effects on seed germination, soil properties (EC, pH) nutrient contents (P, K, Na) and organic matter. The treatments comprised of a control, and all above-described BCs (acidified as well as non-acidified) applied to soil at the rate of 1% (w/w). The maize crop was selected as a test crop. The results showed that acidified poultry manure BC significantly improved germination percentage, shoot length, and biomass of maize seedlings as compared to other BCs and their respective control plants. However, acidified BCs caused a significant decrease in nutrient contents (P, K, Na) of soil,maize seedlings, and the soil organic matter contents as compared to non- acidified BCs. But when compared with control treatments, all BCs treatments (acidified and non-acidified) delivered higher levels of nutrients and organic matter contents. It was concluded that none of the BCs (acidified and non-acidified) had caused negative effect on soil conditions and growth of maize. In addition, the acidification of BC prior to its application to alkaline soils might had altered soil chemistry and delivered better maize growth. Moving forward, more research is needed to understand the long-term effects of modified BCs on nutrient dynamics in different soils. In addition, the possible effects of BC application timings, application rates, particle size, and crop species have to be evaluated systemtically.


Assuntos
Carvão Vegetal , Germinação , Solo , Zea mays , Zea mays/crescimento & desenvolvimento , Zea mays/efeitos dos fármacos , Zea mays/metabolismo , Carvão Vegetal/química , Carvão Vegetal/farmacologia , Solo/química , Germinação/efeitos dos fármacos , Nutrientes/metabolismo , Esterco , Agricultura/métodos , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos
7.
Appl Environ Microbiol ; 90(4): e0175223, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38445903

RESUMO

Transcriptomic evidence is needed to determine whether composting is more effective than conventional stockpiling in mitigating the risk of resistome in livestock manure. The objective of this study is to compare composting and stockpiling for their effectiveness in reducing the risk of antibiotic resistance in beef cattle manure. Samples collected from the center and the surface of full-size manure stockpiling and composting piles were subject to metagenomic and metatranscriptomic analyses. While the distinctions in resistome between stockpiled and composted manure were not evident at the DNA level, the advantages of composting over stockpiling were evident at the transcriptomic level in terms of the abundance of antibiotic resistance genes (ARGs), the number of ARG subtypes, and the prevalence of high-risk ARGs (i.e., mobile ARGs associated with zoonotic pathogens). DNA and transcript contigs show that the pathogen hosts of high-risk ARGs included Escherichia coli O157:H7 and O25b:H4, Klebsiella pneumoniae, and Salmonella enterica. Although the average daily temperatures for the entire composting pile exceeded 55°C throughout the field study, more ARG and ARG transcripts were removed at the center of the composting pile than at the surface. This work demonstrates the advantage of composting over stockpiling in reducing ARG risk in active populations in beef cattle manure.IMPORTANCEProper treatment of manure before land application is essential to mitigate the spread of antibiotic resistance in the environment. Stockpiling and composting are two commonly used methods for manure treatment. However, the effectiveness of composting in reducing antibiotic resistance in manure has been debated. This work compared the ability of these two methods to reduce the risk of antibiotic resistance in beef cattle manure. Our results demonstrate that composting reduced more high-risk resistance genes at the transcriptomic level in cattle manure than conventional stockpiling. This finding not only underscores the effectiveness of composting in reducing antibiotic resistance in manure but also highlights the importance of employing RNA analyses alongside DNA analyses.


Assuntos
Compostagem , Esterco , Bovinos , Animais , Esterco/análise , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Antibacterianos/farmacologia , DNA
8.
Plant Cell Environ ; 47(4): 1141-1159, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38098148

RESUMO

Intercropping is a widely recognised technique that contributes to agricultural sustainability. While intercropping leguminous green manure offers advantages for soil health and tea plants growth, the impact on the accumulation of theanine and soil nitrogen cycle are largely unknown. The levels of theanine, epigallocatechin gallate and soluble sugar in tea leaves increased by 52.87% and 40.98%, 22.80% and 6.17%, 22.22% and 29.04% in intercropping with soybean-Chinese milk vetch rotation and soybean alone, respectively. Additionally, intercropping significantly increased soil amino acidnitrogen content, enhanced extracellular enzyme activities, particularly ß-glucosidase and N-acetyl-glucosaminidase, as well as soil multifunctionality. Metagenomics analysis revealed that intercropping positively influenced the relative abundances of several potentially beneficial microorganisms, including Burkholderia, Mycolicibacterium and Paraburkholderia. Intercropping resulted in lower expression levels of nitrification genes, reducing soil mineral nitrogen loss and N2 O emissions. The expression of nrfA/H significantly increased in intercropping with soybean-Chinese milk vetch rotation. Structural equation model analysis demonstrated that the accumulation of theanine in tea leaves was directly influenced by the number of intercropping leguminous green manure species, soil ammonium nitrogen and amino acid nitrogen. In summary, the intercropping strategy, particularly intercropping with soybean-Chinese milk vetch rotation, could be a novel way for theanine accumulation.


Assuntos
Camellia sinensis , Fabaceae , Glutamatos , Fabaceae/metabolismo , Esterco , Leguminas , Solo/química , Camellia sinensis/metabolismo , Glycine max , Chá , Nitrogênio/metabolismo
9.
Glob Chang Biol ; 30(5): e17303, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38741339

RESUMO

Nitrous oxide (N2O) emissions from livestock manure contribute significantly to the growth of atmospheric N2O, a powerful greenhouse gas and dominant ozone-depleting substance. Here, we estimate global N2O emissions from livestock manure during 1890-2020 using the tier 2 approach of the 2019 Refinement to the 2006 IPCC Guidelines. Global N2O emissions from livestock manure increased by ~350% from 451 [368-556] Gg N year-1 in 1890 to 2042 [1677-2514] Gg N year-1 in 2020. These emissions contributed ~30% to the global anthropogenic N2O emissions in the decade 2010-2019. Cattle contributed the most (60%) to the increase, followed by poultry (19%), pigs (15%), and sheep and goats (6%). Regionally, South Asia, Africa, and Latin America dominated the growth in global emissions since the 1990s. Nationally, the largest emissions were found in India (329 Gg N year-1), followed by China (267 Gg N year-1), the United States (163 Gg N year-1), Brazil (129 Gg N year-1) and Pakistan (102 Gg N year-1) in the 2010s. We found a substantial impact of livestock productivity, specifically animal body weight and milk yield, on the emission trends. Furthermore, a large spread existed among different methodologies in estimates of global N2O emission from livestock manure, with our results 20%-25% lower than those based on the 2006 IPCC Guidelines. This study highlights the need for robust time-variant model parameterization and continuous improvement of emissions factors to enhance the precision of emission inventories. Additionally, urgent mitigation is required, as all available inventories indicate a rapid increase in global N2O emissions from livestock manure in recent decades.


Assuntos
Gado , Esterco , Óxido Nitroso , Óxido Nitroso/análise , Esterco/análise , Animais , Poluentes Atmosféricos/análise
10.
Arch Microbiol ; 206(3): 106, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363349

RESUMO

Uncaria rhynchophylla is an important herbal medicine, and the predominant issues affecting its cultivation include a single method of fertilizer application and inappropriate chemical fertilizer application. To reduce the use of inorganic nitrogen fertilization and increase the yield of Uncaria rhynchophylla, field experiments in 2020-2021 were conducted. The experimental treatments included the following categories: S1, no fertilization; S2, application of chemical NPK fertilizer; and S3-S6, application of chemical fertilizers and green manures, featuring nitrogen fertilizers reductions of 0%, 15%, 30%, and 45%, respectively. The results showed that a moderate application of nitrogen fertilizer when combined with green manure, can help alleviate soil acidification and increase urease activity. Specifically, the treatment with green manure provided in a 14.71-66.67% increase in urease activity compared to S2. Metagenomics sequencing results showed a decrease in diversity in S3, S4, S5, and S6 compared to S2, but the application of chemical fertilizer with green manure promoted an increase in the relative abundance of Acidobacteria and Chloroflexi. In addition, the nitrification pathway displayed a progressive augmentation in tandem with the reduction in nitrogen fertilizer and application of green manure, reaching its zenith at S5. Conversely, other nitrogen metabolism pathways showed a decline in correlation with diminishing nitrogen fertilizer dosages. The rest of the treatments showed an increase in yield in comparison to S1, S5 showing significant differences (p < 0.05). In summary, although S2 demonstrate the ability to enhance soil microbial diversity, it is important to consider the long-term ecological impacts, and S5 may be a better choice.


Assuntos
Microbiota , Uncaria , Vicia sativa , Solo , Agricultura/métodos , Esterco , Fertilizantes/análise , Nitrogênio/metabolismo , Urease , Microbiota/genética , Microbiologia do Solo , Fertilização
11.
Environ Sci Technol ; 58(22): 9658-9668, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38768036

RESUMO

Manure application is a global approach for enhancing soil organic carbon (SOC) sequestration. However, the response of SOC decomposition in manure-applied soil to abrupt warming, often occurring during diurnal temperature fluctuations, remains poorly understood. We examined the effects of long-term (23 years) continuous application of manure on SOC chemical composition, soil respiration, and microbial communities under temperature shifts (15 vs 25 °C) in the presence of plant residues. Compared to soil without fertilizer, manure application reduced SOC recalcitrance indexes (i.e., aliphaticity and aromaticity) by 17.45 and 21.77%, and also reduced temperature sensitivity (Q10) of native SOC decomposition, plant residue decomposition, and priming effect by 12.98, 15.98, and 52.83%, respectively. The relative abundances of warm-stimulated chemoheterotrophic bacteria and fungi were lower in the manure-applied soil, whereas those of chemoautotrophic Thaumarchaeota were higher. In addition, the microbial network of the manure-applied soil was more interconnected, with more negative connections with the warm-stimulated taxa than soils without fertilizer or with chemical fertilizer applied. In conclusion, our study demonstrated that the reduced loss of SOC to abrupt warming by manure application arises from C chemistry modification, less warm-stimulated microorganisms, a more complex microbial community, and the higher CO2 intercepting capability by Thaumarchaeota.


Assuntos
Carbono , Esterco , Microbiota , Microbiologia do Solo , Solo , Solo/química , Fertilizantes , Temperatura
12.
Environ Sci Technol ; 58(8): 3883-3894, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38347804

RESUMO

Denitrifying anaerobic methane oxidation (DAMO) can mitigate methane emissions; however, this process has not been studied in cattle manure, an important source of methane emissions in animal agriculture. The objective of this study was to investigate the occurrence of DAMO microbes in cattle manure and examine the impacts of veterinary antibiotics on the DAMO process in cattle manure. Results show that DAMO archaea and bacteria consistently occur at high concentrations in beef cattle manure. During the long-term operation of a sequencing batch reactor seeded with beef cattle manure, the DAMO activities intensified, and DAMO microbial biomass increased. Exposure to chlortetracycline at initial concentrations up to 5000 µg L-1 did not inhibit DAMO activities or affect the concentrations of the 16S rRNA gene and functional genes of DAMO microbes. In contrast, exposure to tylosin at initial concentrations of 50 and 500 µg L-1 increased the activities of the DAMO microbes. An initial concentration of 5000 µg L-1 TYL almost entirely halted DAMO activities and reduced the concentrations of DAMO microbes. These results show the occurrence of DAMO microbes in cattle manure and reveal that elevated concentrations of dissolved antibiotics could inhibit the DAMO process, potentially affecting net methane emissions from cattle manure.


Assuntos
Esterco , Metano , Bovinos , Animais , Antibacterianos/farmacologia , RNA Ribossômico 16S/genética , Anaerobiose , Desnitrificação , Reatores Biológicos/microbiologia , Oxirredução , Nitritos
13.
J Appl Microbiol ; 135(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38664008

RESUMO

AIM: The aim of this study was to determine the prevalence of microbial pathogens in manure of dairy lagoons in California. METHODS AND RESULTS: To determine pathogens in dairy manure stored in anaerobic lagoons of dairy farm, an extensive field study was conducted across California to sample manure from 20 dairy farms. Samples were analyzed to determine the prevalence of indicator Escherichia coli, Shiga toxin producing E. coli (STEC), Salmonella, and E. coli O157: H7. To test the E. coli, STEC, and Salmonella, we used agar culture-based method followed by polymerase chain reaction (PCR) method. In addition, a real- time PCR based method was used to determine the presence of E coli O157: H7. Study demonstrated that the prevalence of Salmonella in manure sample is lower than E. coli. The presence of Salmonella was found in 2.26% of the samples, and both the culture-based and PCR methods yielded comparable outcomes in detecting Salmonella. Moreover, ∼11.30% of the total samples out of the 177 were identified as positive for STEC by qPCR. CONCLUSION: These findings demonstrate that indicator E. coli are abundantly present in anaerobic lagoons. However, the presence of STEC, and Salmonella is substantially low.


Assuntos
Indústria de Laticínios , Escherichia coli , Esterco , Salmonella , Escherichia coli Shiga Toxigênica , Esterco/microbiologia , Salmonella/isolamento & purificação , Salmonella/genética , Escherichia coli Shiga Toxigênica/isolamento & purificação , Escherichia coli Shiga Toxigênica/genética , Animais , Prevalência , Escherichia coli/isolamento & purificação , Escherichia coli/genética , Bovinos , California , Reação em Cadeia da Polimerase em Tempo Real
14.
J Appl Microbiol ; 135(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38849313

RESUMO

AIMS: Understanding the inhibitory effects of natural organic substances on soil-borne pathogenic fungi and the relevant molecular mechanisms are highly important for future development of green prevention and control technology against soil-borne diseases. Our study elucidates the inhibitory effect of the combined application of humic acids (HAs) and chitosan on Alternariasolani and the light on the corresponding mechanism. METHODS AND RESULTS: The effect on A. solani growth by HAs incorporated with chitosan was investigated by plate culture and the corresponding mechanism was revealed using transcriptomics. The colony growth of A. solani was suppressed with the highest inhibition rate 33.33% when swine manure HAs was compounded with chitosan at a ratio of 1:4. Chitosan changed the colony morphology from round to irregularly. RNA-seq in the HAs and chitosan (HC) treatment revealed 239 differentially expressed genes compared with the control. The unigenes associated with enzymes activities related to growth and biological processes closely related to mycelial growth and metabolism were downregulated. RNA-seq also revealed that chitosan altered the expression of genes related to secondary metabolism, fungal cell wall formation and polysaccharide synthesis, and metabolism. Meanwhile, weighted gene co-expression network analysis showed that, genes expression in the module positively correlated with mycelial growth was significantly reduced in the HC treatment; and the results were verified by real-time quantitative polymerase chain reaction. CONCLUSIONS: The co-inhibition effect of HAs and chitosan on A. solani is associated with downregulated genes expression correlated with mycelial growth.


Assuntos
Alternaria , Quitosana , Perfilação da Expressão Gênica , Substâncias Húmicas , Quitosana/farmacologia , Alternaria/efeitos dos fármacos , Alternaria/genética , Alternaria/crescimento & desenvolvimento , Animais , Transcriptoma , Suínos , Esterco/microbiologia , Microbiologia do Solo , Micélio/crescimento & desenvolvimento , Micélio/efeitos dos fármacos , Micélio/genética
15.
Environ Res ; 243: 117835, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38052358

RESUMO

In Greece, there is no organized practice in agricultural and animal wastes management. Their exploitation is still set aside, due mainly to economic reasons and lack of incentives for their efficient utilization. Therefore, in the present work a technoeconomic assessment for the environmentally friendly useful exploitation of biomass residues produced in the Prefectures of Ilia and Achaia (Western Greece) for the generation of energy by an integrated anaerobic digestion (AD)-pyrolysis processing plant was carried out. The processed biomass of the AD unit is corn residues and cattle manure, while the feedstock of pyrolysis unit is olive tree prunings. The residues will be transferred to collection areas by field tractors. Then an integrated harvester is used and afterwards, the residues are discharged from the lifting bin of the harvester to trucks and are transported to the processing unit. The total fixed capital for a capacity of 328,716 t/y is equal to 11.5 M€, while the initial working capital is equal to 2.1 M€. The total operational cost of this investment is estimated at 18.3 M€/y, the projected revenues amount to 21.4 M€/y and the net profit is equal to 3.1 M€/y. The return on investment is estimated at 23% and the payback period becomes equal to 4.4 years. From the sensitivity analysis becomes apparent that the capacity, the incentive cost, the fuel price, the products price and the total fixed capital affect significantly the investment characteristics of the proposed AD-pyrolysis processing unit. The amount of the expected profit is considered quite significant, and the evaluation criteria (return on investment and payback period) advocate for a more detailed examination of the investment plan, in the direction of undertaking the project.


Assuntos
Biocombustíveis , Pirólise , Animais , Bovinos , Biomassa , Anaerobiose , Esterco
16.
Environ Res ; 245: 118062, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38157959

RESUMO

Hydrothermal carbonization (HTC) is considered a promising technology for biomass waste management without pre-drying. This study explores the potential for swine manure management by comparing batch and continuous processes, emphasizing the benefits of the continuous mode, particularly for its potential full-scale application. The continuous process at low temperature (180 °C) resulted in a hydrochar with a lower degree of carbonization compared to the batch process, but similar characteristics were found in both hydrochars at higher operating temperatures (230-250 °C), such as C content (∼ 52 wt%), fixed carbon (∼ 24 wt%) and higher calorific value (21 MJ kg-1). Thermogravimetric and combustion analyses showed that hydrochars exhibited characteristics suitable as solid biofuels for industrial use. The process water showed a high content of organic matter as soluble chemical oxygen demand (7-22 g L-1) and total organic carbon (4-10 g L-1), although a high amount of refractory species such as N- and O-containing long aromatic compounds were detected in the process water from the batch process, while the process water from the continuous process presented more easily biodegradable compounds such as acids and alcohols, among others. The longer time required to reach operating temperature in the case of the batch system (longer heating time to reach operating temperature) resulted in lower H/C and O/C ratios compared to hydrochar from the continuous process. This indicates that the dehydration and decarboxylation reactions of the feedstock play a more important role in the batch process. This study shows the efficiency of the continuous process to obtain carbonaceous materials suitable for use as biofuel, providing a solution for swine manure management.


Assuntos
Carbono , Esterco , Animais , Suínos , Temperatura , Temperatura Alta , Biocombustíveis , Água
17.
Environ Res ; 241: 117718, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37995998

RESUMO

The use of manure, mycelium dregs and other waste as organic fertilizer is the main source of antibiotic resistance genes (ARGs) and pathogens in farmland. Composting of waste may effectively remove ARGs and pathogens. However, the profiles and drivers of changes in metal resistance genes (MRGs), biocide resistance genes (BRGs), and virulence genes (VGs) in soil-crop rhizosphere systems after compost application remain largely unknown. Here, we prepared two kinds of microbial organic fertilizers (MOF) by using Trichoderma dregs (TDs) and organic fertilizer mixing method (MOF1) and TDs co-composting method (MOF2). The effects of different types and doses of MOF on resistance genes, VGs and pathogens in soil-rhizosphere system and their potential mechanisms were studied. The results showed that co-composting of TDs promoted the decomposition of organic carbon and decreased the absolute abundance of ARGs and mobile genetic elements (MGEs) by 53.4-65.0%. MOF1 application significantly increased the abundance and diversity of soil ARGs, BRGs, and VGs, while low and medium doses of MOF2 significantly decreased their abundance and diversity in soil and rhizosphere. Patterns of positive co-occurrence between MGEs and VGs/MRGs/BRGs/ARGs were observed through statistical analysis and gene arrangements. ARGs/MRGs reductions in MOF2 soil were directly driven by weakened horizontal gene transfer triggered by MGEs. Furthermore, MOF2 reduced soil BRGs/VGs levels by shifting bacterial communities (e.g., reduced bacterial host) or improving soil property. Our study provided new insights into the rational use of waste to minimize the spread of resistomes and VGs in soil.


Assuntos
Compostagem , Trichoderma , Solo , Fertilizantes/análise , Trichoderma/genética , Genes Bacterianos , Rizosfera , Virulência , Bactérias , Antibacterianos/farmacologia , Esterco/análise , Esterco/microbiologia , Microbiologia do Solo
18.
Environ Res ; 252(Pt 3): 118923, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38636641

RESUMO

Symbiotic nitrogen fixation of Chinese milk vetch (Astragalus sinicus L.) can fix nitrogen from the atmosphere and serve as an organic nitrogen source in agricultural ecosystems. Exogenous organic material application is a common practice of affecting symbiotic nitrogen fixation; however, the results of the regulation activities remain under discussion. Studies on the impact of organic amendments on symbiotic nitrogen fixation have focused on dissolved organic carbon content changes, whereas the impact on dissolved organic carbon composition and the underlying mechanism remain unclear. In situ pot experiments were carried out using soils from a 40-year-old field experiment platform to investigate symbiotic nitrogen fixation rate trends, dissolved organic carbon concentration and component, and diazotroph community structure in roots and in rhizosphere soils following long-term application of different exogenous organic substrates, i.e., green manure, green manure and pig manure, and green manure and rice straw. Remarkable increases in rate were observed in and when compared with that in green manure treatment, with the greatest enhancement observed in the treatment. Moreover, organic amendments, particularly pig manure application, altered diazotroph community composition in rhizosphere soils, therefore increasing the abundance of the host-specific genus Mesorhizobium. Furthermore, organic amendments influence the diazotroph communities through two primary mechanisms. Firstly, the components of dissolved organic carbon promote an increase in available iron, facilitated by the presence of humus substrates. Secondly, the elevated content of dissolved organic carbon and available iron expands the niche breadth of Mesorhizobium within the rhizosphere. Consequently, these alterations result in a modified diazotroph community within the rhizosphere, which in turn influences Mesorhizobium nodulation in the root and symbiotic nitrogen fixation rate. The results of the present study enhance our understanding of the impact of organic amendments on symbiotic nitrogen fixation and the underlying mechanism, highlighting the key role of dissolved organic carbon composition on diazotroph community composition in the rhizosphere.


Assuntos
Astrágalo , Mesorhizobium , Fixação de Nitrogênio , Rizosfera , Microbiologia do Solo , Simbiose , Mesorhizobium/fisiologia , Astrágalo/microbiologia , Astrágalo/química , Esterco/microbiologia , Esterco/análise , Animais , Raízes de Plantas/microbiologia , Solo/química
19.
Environ Res ; 251(Pt 1): 118525, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38408629

RESUMO

Cheese whey (CW) and dairy manure (DM) are the main residues from the dairy industry, both of which can led to significant negative environment impacts if not properly managed. However, their combined anaerobic digestion represents an opportunity to obtain bioenergy and a stabilised material as a soil improver on the farm. Biochemical potential of methane (BMP) assays were carried out at psychrophilic conditions (20 °C) to analyse the influence on biomethane production of different CW:DM mixtures (% w/w) at different of inoculum-to-substrate ratios (ISR). Based on the BMP results, a life cycle assessment (LCA) of the cheese manufacturing process was carried out considering two scenarios (i) considering the current process, where propane gas and electricity are used for cheese production (ii) the incorporation of the biogas generated in the cheese production process in the company. BMP results showed that the best mixture between CW and DM was 65:35 (weight basis) at an organic load of 0.6 gVS/L (ISR of X). The LCA showed that CW and DM anaerobic digestion allowed to reduce the cheese manufacturing carbon footprint from through the substitution of propane by the biogas produced, changing from 5.5 to 3.1 kg CO2-eq/kg cheese produced, which indicates that according to the monthly production (633.6 kg) it would stop emitting about 1519 kg CO2-eq, i.e. a saving in terms of emissions of approximately 43,6% of the total currently generated.


Assuntos
Biocombustíveis , Queijo , Indústria de Laticínios , Esterco , Soro do Leite , Esterco/análise , Queijo/análise , Queijo/microbiologia , Anaerobiose , Biocombustíveis/análise , Soro do Leite/química , Metano/análise , Animais
20.
Environ Res ; 251(Pt 2): 118721, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490624

RESUMO

The gradual increase in cattle farming has led to a huge production of cattle manure (CM), but the conventional treatment methods are less efficient. In this study, the treatment method of anaerobic digestion (AD) of high-solids CM by combining nanobubble water (NBW) with different gases was proposed to present a new idea for the reduction, harmlessness, and resourcefulness of CM. It was found that the performance of the digester with added NBW was better than the control. Among them, the cumulative methane yield T-Air: 227.09 mL g-1 VSadded and T-CO2: 226.12 mL g-1 VSadded increased by 17.72 % and 17.22 %, respectively, compared with the control T: 192.90 mL g-1 VSadded under thermophilic conditions. Under mesophilic conditions, M-Air: 162.39 mL g-1 VSadded increased by 9.68 % compared with control M: 148.05 mL g-1 VSadded. Microbial communities analyzed at the genus level revealed that the relative abundance of bacteria favorable to hydrolysis and acid-producing processes, such as Defluviitalea, Haloplasma, and Bacillus, increased to varying degrees. Moreover, the relative abundance of archaea favorable for methanogenesis, such as Methanoculleus, Methanobrevibacter, and Methanosarcina, also increased to varying degrees. Therefore, the addition of NBW promoted the hydrolysis of high-solids CM, enhanced the stability of the reaction, improved the methanogenic performance, and increased the RA of favorable genera, which ultimately led to a better performance of the AD of high-solids CM.


Assuntos
Esterco , Metano , Esterco/microbiologia , Animais , Bovinos , Anaerobiose , Metano/metabolismo , Metano/análise , Água/química , Reatores Biológicos , Bactérias/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa