Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell Mol Life Sci ; 81(1): 212, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724675

RESUMO

Leydig cells are essential components of testicular interstitial tissue and serve as a primary source of androgen in males. A functional deficiency in Leydig cells often causes severe reproductive disorders; however, the transcriptional programs underlying the fate decisions and steroidogenesis of these cells have not been fully defined. In this study, we report that the homeodomain transcription factor PBX1 is a master regulator of Leydig cell differentiation and testosterone production in mice. PBX1 was highly expressed in Leydig cells and peritubular myoid cells in the adult testis. Conditional deletion of Pbx1 in Leydig cells caused spermatogenic defects and complete sterility. Histological examinations revealed that Pbx1 deletion impaired testicular structure and led to disorganization of the seminiferous tubules. Single-cell RNA-seq analysis revealed that loss of Pbx1 function affected the fate decisions of progenitor Leydig cells and altered the transcription of genes associated with testosterone synthesis in the adult testis. Pbx1 directly regulates the transcription of genes that play important roles in steroidogenesis (Prlr, Nr2f2 and Nedd4). Further analysis demonstrated that deletion of Pbx1 leads to a significant decrease in testosterone levels, accompanied by increases in pregnenolone, androstenedione and luteinizing hormone. Collectively, our data revealed that PBX1 is indispensable for maintaining Leydig cell function. These findings provide insights into testicular dysgenesis and the regulation of hormone secretion in Leydig cells.


Assuntos
Infertilidade Masculina , Células Intersticiais do Testículo , Fator de Transcrição 1 de Leucemia de Células Pré-B , Testículo , Testosterona , Animais , Masculino , Células Intersticiais do Testículo/metabolismo , Células Intersticiais do Testículo/patologia , Fator de Transcrição 1 de Leucemia de Células Pré-B/metabolismo , Fator de Transcrição 1 de Leucemia de Células Pré-B/genética , Camundongos , Testosterona/metabolismo , Testículo/metabolismo , Testículo/patologia , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Infertilidade Masculina/metabolismo , Diferenciação Celular/genética , Espermatogênese/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
Funct Integr Genomics ; 24(1): 15, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240925

RESUMO

Chronic psoriasis is a kind of immune-mediated skin illness and the underlying molecular mechanisms of pathogenesis remain incompletely understood. Here, we used small RNA microarray assays to scan the differential expressed RNAs in psoriasis patient samples. The downstream miRNAs and its targets were predicted using bioinformatics analysis from online bases and confirmed using fluorescence in situ hybridization and dual­luciferase report gene assay. Cell ability of proliferation and migration were detected using CCK-8 and transwell assays. The results showed that a new snoRNA Snora73 was upregulated in psoriasis patient samples. Overexpression of Snora73 significantly increased psoriasis cells viability and migration, while knockdown of Snora73 got the opposite results. Mechanistically, our results showed that Snora73 acted as a sponge for miR-3074-5p and PBX1 is a direct target of miR-3074-5p in psoriasis cells. Furthermore, miR-3074-5p suppressed psoriasis cell proliferation and migration, while PBX1 promoted cell proliferation and migration in psoriasis. Collectively, these findings reveal a crucial role of Snora73 in progression of psoriasis through miR-3074-5p/PBX1 signaling pathway and suggest a potential therapeutic strategy.


Assuntos
MicroRNAs , Fator de Transcrição 1 de Leucemia de Células Pré-B , Psoríase , RNA Longo não Codificante , RNA Nucleolar Pequeno , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Hibridização in Situ Fluorescente , MicroRNAs/genética , Psoríase/genética , RNA Longo não Codificante/genética , RNA Nucleolar Pequeno/genética , Fator de Transcrição 1 de Leucemia de Células Pré-B/genética
4.
Sci Adv ; 10(13): eadi4310, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38536923

RESUMO

The maintenance of regulatory T (Treg) cells critically prevents autoimmunity. Pre-B cell leukemia transcription factor 1 (Pbx1) variants are associated with lupus susceptibility, particularly through the expression of a dominant negative isoform Pbx1-d in CD4+ T cells. Pbx1-d overexpression impaired Treg cell homeostasis and promoted inflammatory CD4+ T cells. Here, we showed a high expression of Pbx1 in human and murine Treg cells, which is decreased in lupus patients and mice. Pbx1 deficiency or Pbx1-d overexpression reduced the number, stability, and suppressive activity of Treg cells, which increased murine responses to immunization and autoimmune induction. Mechanistically, Pbx1 deficiency altered the expression of genes implicated in cell cycle and apoptosis in Treg cells. Intriguingly, Rtkn2, a Rho-GTPase previously associated with Treg homeostasis, was directly transactivated by Pbx1. Our results suggest that the maintenance of Treg cell homeostasis and stability by Pbx1 through cell cycle progression prevent the expansion of inflammatory T cells that otherwise exacerbates lupus progression in the hosts.


Assuntos
Lúpus Eritematoso Sistêmico , Linfócitos T Reguladores , Animais , Humanos , Camundongos , Divisão Celular , Fator de Transcrição 1 de Leucemia de Células Pré-B/genética , Fator de Transcrição 1 de Leucemia de Células Pré-B/metabolismo , Isoformas de Proteínas/genética , Lúpus Eritematoso Sistêmico/genética
5.
Biochim Biophys Acta Rev Cancer ; 1879(2): 189085, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38341110

RESUMO

PBX1 is a critical transcription factor at the top of various cell fate-determining pathways. In cancer, PBX1 stands at the crossroads of multiple oncogenic signaling pathways and mediates responses by recruiting a broad repertoire of downstream targets. Research thus far has corroborated the involvement of PBX1 in cancer proliferation, resisting apoptosis, tumor-associated neoangiogenesis, epithelial-mesenchymal transition (EMT) and metastasis, immune evasion, genome instability, and dysregulating cellular metabolism. Recently, our understanding of the functional regulation of the PBX1 protein has advanced, as increasing evidence has depicted a regulatory network consisting of transcriptional, post-transcriptional, and post-translational levels of control mechanisms. Furthermore, accumulating studies have supported the clinical utilization of PBX1 as a prognostic or therapeutic target in cancer. Preliminary results showed that PBX1 entails vast potential as a targetable master regulator in the treatment of cancer, particularly in those with high-risk features and resistance to other therapeutic strategies. In this review, we will explore the regulation, protein-protein interactions, molecular pathways, clinical application, and future challenges of PBX1.


Assuntos
Neoplasias , Fatores de Transcrição , Humanos , Regulação da Expressão Gênica , Biologia Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Fator de Transcrição 1 de Leucemia de Células Pré-B/genética , Fator de Transcrição 1 de Leucemia de Células Pré-B/metabolismo , Fatores de Transcrição/genética
6.
Biochim Biophys Acta Mol Cell Res ; 1871(1): 119571, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37673222

RESUMO

Mesenchymal stem cells (MSCs) have favourable outcomes in the treatment of kidney diseases. Pre-B-cell leukaemia transcription factor 1 (PBX1) has been reported to be a regulator of self-renewal of stem cells. Whether PBX1 is beneficial to MSCs in the treatment of haemorrhagic shock (HS)-induced kidney damage is unknown. We overexpressed PBX1 in rat bone marrow-derived mesenchymal stem cells (rBMSCs) and human bone marrow-derived mesenchymal stem cells (hBMSCs) to treat rats with HS and hypoxia-treated human proximal tubule epithelial cells (HK-2), respectively. The results indicated that PBX1 enhanced the homing capacity of rBMSCs to kidney tissues and that treatment with rBMSCs overexpressing PBX1 improved the indicators of kidney function, alleviated structural damage to kidney tissues. Furthermore, administration with rBMSCs overexpressing PBX1 inhibited HS-induced NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation and the release of proinflammatory cytokines, and further attenuated apoptosis. We then determined whether NF-κB, an important factor in NLRP3 activation and the regulation of inflammation, participates in HS-induced kidney damage, and we found that rBMSCs overexpressing PBX1 inhibited NF-κB activation by decreasing the p-IκBα/IκBα and p-p65/p65 ratios and inhibiting the nuclear translocation and decreasing the DNA-binding capacity of NF-κB. hBMSCs overexpressing PBX1 also exhibited protective effects on HK-2 cells exposed to hypoxia, as shown by the increase in cell viability, the mitigation of apoptosis, the decrease in inflammation, and the inhibition of NF-κB and NLRP3 inflammasome activation. Our study demonstrates that MSCs overexpressing PBX1 ameliorates HS-induced kidney damage by inhibiting NF-κB pathway-mediated NLRP3 inflammasome activation and the inflammatory response.


Assuntos
Nefropatias , Células-Tronco Mesenquimais , NF-kappa B , Fator de Transcrição 1 de Leucemia de Células Pré-B , Choque Hemorrágico , Animais , Humanos , Ratos , Hipóxia , Inflamassomos , Inflamação , Rim , Nefropatias/genética , Nefropatias/metabolismo , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fator de Transcrição 1 de Leucemia de Células Pré-B/genética , Choque Hemorrágico/complicações , Choque Hemorrágico/genética , Choque Hemorrágico/terapia
7.
Clin Transl Med ; 14(6): e1723, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38877653

RESUMO

BACKGROUND: Cholangiocarcinoma (CCA) is a fatal cancer of the bile duct with a poor prognosis owing to limited therapeutic options. The incidence of intrahepatic CCA (iCCA) is increasing worldwide, and its molecular basis is emerging. Environmental factors may contribute to regional differences in the mutation spectrum of European patients with iCCA, which are underrepresented in systematic genomic and transcriptomic studies of the disease. METHODS: We describe an integrated whole-exome sequencing and transcriptomic study of 37 iCCAs patients in Germany. RESULTS: We observed as most frequently mutated genes ARID1A (14%), IDH1, BAP1, TP53, KRAS, and ATM in 8% of patients. We identified FGFR2::BICC1 fusions in two tumours, and FGFR2::KCTD1 and TMEM106B::ROS1 as novel fusions with potential therapeutic implications in iCCA and confirmed oncogenic properties of TMEM106B::ROS1 in vitro. Using a data integration framework, we identified PBX1 as a novel central regulatory gene in iCCA. We performed extended screening by targeted sequencing of an additional 40 CCAs. In the joint analysis, IDH1 (13%), BAP1 (10%), TP53 (9%), KRAS (7%), ARID1A (7%), NF1 (5%), and ATM (5%) were the most frequently mutated genes, and we found PBX1 to show copy gain in 20% of the tumours. According to other studies, amplifications of PBX1 tend to occur in European iCCAs in contrast to liver fluke-associated Asian iCCAs. CONCLUSIONS: By analyzing an additional European cohort of iCCA patients, we found that PBX1 protein expression was a marker of poor prognosis. Overall, our findings provide insight into key molecular alterations in iCCA, reveal new targetable fusion genes, and suggest that PBX1 is a novel modulator of this disease.


Assuntos
Colangiocarcinoma , Fator de Transcrição 1 de Leucemia de Células Pré-B , Proteínas Proto-Oncogênicas , Humanos , Colangiocarcinoma/genética , Fator de Transcrição 1 de Leucemia de Células Pré-B/genética , Masculino , Proteínas Proto-Oncogênicas/genética , Feminino , Prognóstico , Pessoa de Meia-Idade , Idoso , Neoplasias dos Ductos Biliares/genética , Alemanha/epidemiologia , Biomarcadores Tumorais/genética , Adulto , Genômica/métodos , Proteínas Tirosina Quinases
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa