RESUMO
Great progress has been made in understanding gut microbiomes' products and their effects on health and disease. Less attention, however, has been given to the inputs that gut bacteria consume. Here, we quantitatively examine inputs and outputs of the mouse gut microbiome, using isotope tracing. The main input to microbial carbohydrate fermentation is dietary fiber and to branched-chain fatty acids and aromatic metabolites is dietary protein. In addition, circulating host lactate, 3-hydroxybutyrate, and urea (but not glucose or amino acids) feed the gut microbiome. To determine the nutrient preferences across bacteria, we traced into genus-specific bacterial protein sequences. We found systematic differences in nutrient use: most genera in the phylum Firmicutes prefer dietary protein, Bacteroides dietary fiber, and Akkermansia circulating host lactate. Such preferences correlate with microbiome composition changes in response to dietary modifications. Thus, diet shapes the microbiome by promoting the growth of bacteria that preferentially use the ingested nutrients.
Assuntos
Microbioma Gastrointestinal , Animais , Bactérias , Dieta , Fibras na Dieta/metabolismo , Proteínas Alimentares/metabolismo , Lactatos/metabolismo , Camundongos , NutrientesRESUMO
Development of microbiota-directed foods (MDFs) that selectively increase the abundance of beneficial human gut microbes, and their expressed functions, requires knowledge of both the bioactive components of MDFs and the mechanisms underlying microbe-microbe interactions. Here, gnotobiotic mice were colonized with a defined consortium of human-gut-derived bacterial strains and fed different combinations of 34 food-grade fibers added to a representative low-fiber diet consumed in the United States. Bioactive carbohydrates in fiber preparations targeting particular Bacteroides species were identified using community-wide quantitative proteomic analyses of bacterial gene expression coupled with forward genetic screens. Deliberate manipulation of community membership combined with administration of retrievable artificial food particles, consisting of paramagnetic microscopic beads coated with dietary polysaccharides, disclosed the contributions of targeted species to fiber degradation. Our approach, including the use of bead-based biosensors, defines nutrient-harvesting strategies that underlie, as well as alleviate, competition between Bacteroides and control the selectivity of MDF components.
Assuntos
Bacteroides/genética , Fibras na Dieta/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Vida Livre de Germes/fisiologia , Interações Microbianas/efeitos dos fármacos , Polissacarídeos/farmacologia , Proteômica/métodos , Animais , Dieta/métodos , Fibras na Dieta/metabolismo , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polissacarídeos/metabolismoRESUMO
Many US immigrant populations develop metabolic diseases post immigration, but the causes are not well understood. Although the microbiome plays a role in metabolic disease, there have been no studies measuring the effects of US immigration on the gut microbiome. We collected stool, dietary recalls, and anthropometrics from 514 Hmong and Karen individuals living in Thailand and the United States, including first- and second-generation immigrants and 19 Karen individuals sampled before and after immigration, as well as from 36 US-born European American individuals. Using 16S and deep shotgun metagenomic DNA sequencing, we found that migration from a non-Western country to the United States is associated with immediate loss of gut microbiome diversity and function in which US-associated strains and functions displace native strains and functions. These effects increase with duration of US residence and are compounded by obesity and across generations.
Assuntos
Povo Asiático , Emigração e Imigração , Microbioma Gastrointestinal , Adulto , Bacteroides/isolamento & purificação , Fibras na Dieta/metabolismo , Emigrantes e Imigrantes , Humanos , Metagenoma , Obesidade/epidemiologia , Obesidade/microbiologia , Prevotella/isolamento & purificação , Estados UnidosRESUMO
Dietary soluble fibers are fermented by gut bacteria into short-chain fatty acids (SCFA), which are considered broadly health-promoting. Accordingly, consumption of such fibers ameliorates metabolic syndrome. However, incorporating soluble fiber inulin, but not insoluble fiber, into a compositionally defined diet, induced icteric hepatocellular carcinoma (HCC). Such HCC was microbiota-dependent and observed in multiple strains of dysbiotic mice but not in germ-free nor antibiotics-treated mice. Furthermore, consumption of an inulin-enriched high-fat diet induced both dysbiosis and HCC in wild-type (WT) mice. Inulin-induced HCC progressed via early onset of cholestasis, hepatocyte death, followed by neutrophilic inflammation in liver. Pharmacologic inhibition of fermentation or depletion of fermenting bacteria markedly reduced intestinal SCFA and prevented HCC. Intervening with cholestyramine to prevent reabsorption of bile acids also conferred protection against such HCC. Thus, its benefits notwithstanding, enrichment of foods with fermentable fiber should be approached with great caution as it may increase risk of HCC.
Assuntos
Carcinoma Hepatocelular/etiologia , Colestase/complicações , Fibras na Dieta/metabolismo , Disbiose/complicações , Fermentação , Microbioma Gastrointestinal , Neoplasias Hepáticas/etiologia , Animais , Carcinoma Hepatocelular/microbiologia , Linhagem Celular Tumoral , Colestase/microbiologia , Dieta Hiperlipídica/efeitos adversos , Disbiose/microbiologia , Inulina/efeitos adversos , Neoplasias Hepáticas/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
The small intestinal tuft cell-ILC2 circuit mediates epithelial responses to intestinal helminths and protists by tuft cell chemosensory-like sensing and IL-25-mediated activation of lamina propria ILC2s. Small intestine ILC2s constitutively express the IL-25 receptor, which is negatively regulated by A20 (Tnfaip3). A20 deficiency in ILC2s spontaneously triggers the circuit and, unexpectedly, promotes adaptive small-intestinal lengthening and remodeling. Circuit activation occurs upon weaning and is enabled by dietary polysaccharides that render mice permissive for Tritrichomonas colonization, resulting in luminal accumulation of acetate and succinate, metabolites of the protist hydrogenosome. Tuft cells express GPR91, the succinate receptor, and dietary succinate, but not acetate, activates ILC2s via a tuft-, TRPM5-, and IL-25-dependent pathway. Also induced by parasitic helminths, circuit activation and small intestinal remodeling impairs infestation by new helminths, consistent with the phenomenon of concomitant immunity. We describe a metabolic sensing circuit that may have evolved to facilitate mutualistic responses to luminal pathosymbionts.
Assuntos
Intestino Delgado/fisiologia , Tritrichomonas/metabolismo , Acetatos/metabolismo , Animais , Fibras na Dieta/metabolismo , Metabolismo Energético , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/parasitologia , Interleucinas/genética , Interleucinas/metabolismo , Mucosa Intestinal/citologia , Intestino Delgado/microbiologia , Intestino Delgado/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microbiota , Plasmídeos/genética , Plasmídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Interleucina/metabolismo , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , Ácido Succínico/metabolismo , Canais de Cátion TRPM/metabolismo , Tritrichomonas/crescimento & desenvolvimento , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismoRESUMO
A compelling set of links between the composition of the gut microbiota, the host diet, and host physiology has emerged. Do these links reflect cause-and-effect relationships, and what might be their mechanistic basis? A growing body of work implicates microbially produced metabolites as crucial executors of diet-based microbial influence on the host. Here, we will review data supporting the diverse functional roles carried out by a major class of bacterial metabolites, the short-chain fatty acids (SCFAs). SCFAs can directly activate G-coupled-receptors, inhibit histone deacetylases, and serve as energy substrates. They thus affect various physiological processes and may contribute to health and disease.
Assuntos
Fibras na Dieta/metabolismo , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal/fisiologia , Animais , Histonas/metabolismo , Humanos , Intestinos/imunologia , Intestinos/microbiologia , Transdução de SinaisRESUMO
Soluble dietary fibers promote metabolic benefits on body weight and glucose control, but underlying mechanisms are poorly understood. Recent evidence indicates that intestinal gluconeogenesis (IGN) has beneficial effects on glucose and energy homeostasis. Here, we show that the short-chain fatty acids (SCFAs) propionate and butyrate, which are generated by fermentation of soluble fiber by the gut microbiota, activate IGN via complementary mechanisms. Butyrate activates IGN gene expression through a cAMP-dependent mechanism, while propionate, itself a substrate of IGN, activates IGN gene expression via a gut-brain neural circuit involving the fatty acid receptor FFAR3. The metabolic benefits on body weight and glucose control induced by SCFAs or dietary fiber in normal mice are absent in mice deficient for IGN, despite similar modifications in gut microbiota composition. Thus, the regulation of IGN is necessary for the metabolic benefits associated with SCFAs and soluble fiber.
Assuntos
Gluconeogênese , Mucosa Intestinal/metabolismo , Intestinos/inervação , Animais , Encéfalo/metabolismo , Gorduras na Dieta/metabolismo , Fibras na Dieta/metabolismo , Ácidos Graxos Voláteis/metabolismo , Glucose/metabolismo , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Homeostase , Resistência à Insulina , Camundongos , Microbiota , Obesidade/metabolismo , Oligossacarídeos/metabolismo , RatosRESUMO
BACKGROUND & AIMS: Dietary fibers are mainly fermented by the gut microbiota, but their roles in colorectal cancer (CRC) are largely unclear. Here, we investigated the associations of different fibers with colorectal tumorigenesis in mice. METHODS: Apcmin/+ mice and C57BL/6 mice with azoxymethane (AOM) injection were used as CRC mouse models. Mice were fed with mixed high-fiber diet (20% soluble fiber and 20% insoluble fiber), high-inulin diet, high-guar gum diet, high-cellulose diet, or diets with different inulin dose. Germ-free mice were used for validation. Fecal microbiota and metabolites were profiled by shotgun metagenomic sequencing and liquid chromatography-mass spectrometry, respectively. RESULTS: Mixed high-fiber diet promoted colorectal tumorigenesis with increased tumor number and tumor load in AOM-treated and Apcmin/+ mice. Antibiotics use abolished the pro-tumorigenic effect of mixed high-fiber diet, while transplanting stools from mice fed with mixed high-fiber diet accelerated tumor growth in AOM-treated germ-free mice. We therefore characterized the contribution of soluble and insoluble fiber in CRC separately. Our results revealed that soluble fiber inulin or guar gum, but not insoluble fiber cellulose, promoted colorectal tumorigenesis in AOM-treated and Apcmin/+ mice. Soluble fiber induced gut dysbiosis with Bacteroides uniformis enrichment and Bifidobacterium pseudolongum depletion, accompanied by increased fecal butyrate and serum bile acids and decreased inosine. We also identified a positive correlation between inulin dosage and colorectal tumorigenesis. Moreover, transplanting stools from mice fed with high-inulin diet increased colonic cell proliferation and oncogene expressions in germ-free mice. CONCLUSION: High-dose soluble but not insoluble fiber potentiates colorectal tumorigenesis in a dose-dependent manner by dysregulating gut microbiota and metabolites in mice.
Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Camundongos , Animais , Inulina/farmacologia , Camundongos Endogâmicos C57BL , Carcinogênese , Fibras na Dieta/metabolismo , Celulose/farmacologia , Azoximetano , Neoplasias Colorretais/patologiaRESUMO
The erosion of the colonic mucus layer by a dietary fiber-deprived gut microbiota results in heightened susceptibility to an attaching and effacing pathogen, Citrobacter rodentium. Nevertheless, the questions of whether and how specific mucolytic bacteria aid in the increased pathogen susceptibility remain unexplored. Here, we leverage a functionally characterized, 14-member synthetic human microbiota in gnotobiotic mice to deduce which bacteria and functions are responsible for the pathogen susceptibility. Using strain dropouts of mucolytic bacteria from the community, we show that Akkermansia muciniphila renders the host more vulnerable to the mucosal pathogen during fiber deprivation. However, the presence of A. muciniphila reduces pathogen load on a fiber-sufficient diet, highlighting the context-dependent beneficial effects of this mucin specialist. The enhanced pathogen susceptibility is not owing to altered host immune or pathogen responses, but is driven by a combination of increased mucus penetrability and altered activities of A. muciniphila and other community members. Our study provides novel insights into the mechanisms of how discrete functional responses of the same mucolytic bacterium either resist or enhance enteric pathogen susceptibility.
Assuntos
Akkermansia , Citrobacter rodentium , Microbioma Gastrointestinal , Animais , Camundongos , Citrobacter rodentium/patogenicidade , Humanos , Suscetibilidade a Doenças , Fibras na Dieta/metabolismo , Vida Livre de Germes , Dieta , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/imunologia , Verrucomicrobia/genética , Infecções por Enterobacteriaceae/microbiologia , Colo/microbiologia , Camundongos Endogâmicos C57BLRESUMO
Increases in snack consumption associated with Westernized lifestyles provide an opportunity to introduce nutritious foods into poor diets. We describe two 10-wk-long open label, single group assignment human studies that measured the effects of two snack prototypes containing fiber preparations from two sustainable and scalable sources; the byproducts remaining after isolation of protein from the endosperm of peas and the vesicular pulp remaining after processing oranges for the manufacture of juices. The normal diets of study participants were supplemented with either a pea- or orange fiber-containing snack. We focused our analysis on quantifying the abundances of genes encoding carbohydrate-active enzymes (CAZymes) (glycoside hydrolases and polysaccharide lyases) in the fecal microbiome, mass spectrometric measurements of glycan structures (glycosidic linkages) in feces, plus aptamer-based assessment of levels of 1,300 plasma proteins reflecting a broad range of physiological functions. Computational methods for feature selection identified treatment-discriminatory changes in CAZyme genes that correlated with alterations in levels of fiber-associated glycosidic linkages; these changes in turn correlated with levels of plasma proteins representing diverse biological functions, including transforming growth factor type ß/bone morphogenetic protein-mediated fibrosis, vascular endothelial growth factor-related angiogenesis, P38/MAPK-associated immune cell signaling, and obesity-associated hormonal regulators. The approach used represents a way to connect changes in consumer microbiomes produced by specific fiber types with host responses in the context of varying background diets.
Assuntos
Microbioma Gastrointestinal , Microbiota , Fibras na Dieta/metabolismo , Microbioma Gastrointestinal/fisiologia , Humanos , Polissacarídeos/metabolismo , ProteomaRESUMO
The present study deals with the production of cellulase-free endoxylanase by Aspergillus niger ISL-9 using wheat bran as a solid substrate. Endoxylanase was produced under a solid-state fermentation. Various growth parameters were optimized for the improved production of the enzyme. The Substrate level of 15 g was optimized as it provided the fungus with balanced aeration and nutrition. Among the six moisture contents investigated, Moisture Content 5 (MC5) was optimized (g/l: malt extract, 10; (NH4)2HPO4, 2.5; urea, 1.0) and 10 mL of MC5 was found to give the highest production of endoxylanase. The pH and time of incubation were optimized to 6.2 and 48 h respectively. The Inoculum size of 2 mL (1.4 × 106 spores/mL) gave the maximum enzyme production. After optimization of these growth parameters, a significantly high endoxylanase activity of 21.87 U/g was achieved. Very negligible Carboxymethylcellulase (CMCase) activity was observed indicating the production of cellulase-free endoxylanase. The notable finding is that the endoxylanase activity was increased by 1.4-fold under optimized conditions (p ≤ 0.05). The overall comparison of kinetic parameters for enhanced production of endoxylanase by A. niger ISL-9 under Solid State Fermentation (SSF) was also studied. Different kinetic variables which included specific growth rate, product yield coefficients, volumetric rates and specific rates were observed at 48, 72 and 96 h incubation time and were compared for MC1 and MC5. Among the kinetic parameters, the most significant result was obtained with volumetric rate constant for product formation (Qp) that was found to be optimum (1.89 U/h) at 72 h incubation period and a high value of Qp i.e.1.68 U/h was also observed at 48 h incubation period. Thus, the study demonstrates a cost-effective and environmentally sustainable process for xylanase production and exhibits scope towards successful industrial applications.
Assuntos
Aspergillus niger , Fibras na Dieta , Endo-1,4-beta-Xilanases , Fermentação , Aspergillus niger/enzimologia , Aspergillus niger/metabolismo , Fibras na Dieta/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Endo-1,4-beta-Xilanases/biossíntese , Cinética , Concentração de Íons de Hidrogênio , Meios de Cultura/metabolismo , Meios de Cultura/químicaRESUMO
Members of the mammalian gut microbiota metabolize diverse complex carbohydrates that are not digested by the host, which are collectively labeled "dietary fiber." While the enzymes and transporters that each strain uses to establish a nutrient niche in the gut are often exquisitely specific, the relationship between carbohydrate structure and microbial ecology is imperfectly understood. The present study takes advantage of recent advances in complex carbohydrate structure determination to test the effects of fiber monosaccharide composition on microbial fermentation. Fifty-five fibers with varied monosaccharide composition were fermented by a pooled feline fecal inoculum in a modified MiniBioReactor array system over a period of 72 hours. The content of the monosaccharides glucose and xylose was significantly associated with the reduction of pH during fermentation, which was also predictable from the concentrations of the short-chain fatty acids lactic acid, propionic acid, and the signaling molecule indole-3-acetic acid. Microbiome diversity and composition were also predictable from monosaccharide content and SCFA concentration. In particular, the concentrations of lactic acid and propionic acid correlated with final alpha diversity and were significantly associated with the relative abundance of several of the genera, including Lactobacillus and Dubosiella. Our results suggest that monosaccharide composition offers a generalizable method to compare any dietary fiber of interest and uncover links between diet, gut microbiota, and metabolite production. IMPORTANCE: The survival of a microbial species in the gut depends on the availability of the nutrients necessary for that species to survive. Carbohydrates in the form of non-host digestible fiber are of particular importance, and the set of genes possessed by each species for carbohydrate consumption can vary considerably. Here, differences in the monosaccharides that are the building blocks of fiber are considered for their impact on both the survival of different species of microbes and on the levels of microbial fermentation products produced. This work demonstrates that foods with similar monosaccharide content will have consistent effects on the survival of microbial species and on the production of microbial fermentation products.
Assuntos
Bactérias , Fibras na Dieta , Fermentação , Microbioma Gastrointestinal , Monossacarídeos , Fibras na Dieta/metabolismo , Monossacarídeos/metabolismo , Monossacarídeos/análise , Animais , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Fezes/microbiologia , Fezes/química , Ácidos Graxos Voláteis/metabolismoRESUMO
Dietary fiber metabolism by gut microorganisms plays important roles in host physiology and health. Alginate, the major dietary fiber of daily diet seaweeds, is drawing more attention because of multiple biological activities. To advance the understanding of alginate assimilation mechanism in the gut, we show the presence of unsaturated alginate oligosaccharides (uAOS)-specific alginate utilization loci (AUL) in human gut microbiome. As a representative example, a working model of the AUL from the gut microorganism Bacteroides clarus was reconstructed from biochemistry and transcriptome data. The fermentation of resulting monosaccharides through Entner-Doudoroff pathway tunes the metabolism of short-chain fatty acids and amino acids. Furthermore, we show that uAOS feeding protects the mice against dextran sulfate sodium-induced acute colitis probably by remodeling gut microbiota and metabolome. IMPORTANCE: Alginate has been included in traditional Chinese medicine and daily diet for centuries. Recently discovered biological activities suggested that alginate-derived alginate oligosaccharides (AOS) might be an active ingredient in traditional Chinese medicine, but how these AOS are metabolized in the gut and how it affects health need more information. The study on the working mechanism of alginate utilization loci (AUL) by the gut microorganism uncovers the role of unsaturated alginate oligosaccharides (uAOS) assimilation in tuning short-chain fatty acids and amino acids metabolism and demonstrates that uAOS metabolism by gut microorganisms results in a variation of cell metabolites, which potentially contributes to the physiology and health of gut.
Assuntos
Alginatos , Microbioma Gastrointestinal , Oligossacarídeos , Alginatos/metabolismo , Oligossacarídeos/metabolismo , Camundongos , Animais , Humanos , Colite/microbiologia , Colite/induzido quimicamente , Camundongos Endogâmicos C57BL , Ácidos Graxos Voláteis/metabolismo , Inflamação/metabolismo , Sulfato de Dextrana , Fibras na Dieta/metabolismoRESUMO
Dairy buffaloes are typically fed a high-forage, low-quality diet with high fiber. These conditions result in an inherent energy and protein inefficiency. In order to make full and rational use of feed resources and improve the production level and breeding efficiency of dairy buffaloes, the effects of various roughages on nutrient digestibility, ruminal fermentation parameters, and microorganisms in dairy buffaloes were studied in this experiment. Three ternary hybrid buffaloes, with an average body weight of 365 ± 22.1 kg, were selected and fitted with permanent rumen fistulas. They were fed six different diets, each consisting of 1 kg concentrate supplement and one of six types of roughage, including alfalfa hay (A diet), oat hay (O diet), whole corn silage (W diet), king grass (K diet), sugarcane shoot silage (S diet), and rice straw hay (R diet) according to an incomplete Latin square design of 3 × 6, respectively. The pre-feeding period of each period was 12 d. From day 13 to 15 was the official experimental period. During the prefeeding period, free feed intake for each roughage was determined, and during the experiment, the roughage was fed at 90% of the voluntary feed intake. Digestion and metabolism tests were carried out using the total manure collection method to determine the feed intake and fecal output of each buffalo, and to collect feed and fecal samples for chemical analysis. On day 15, rumen fluid samples were collected two hours after morning feeding to determine rumen fermentation parameters and bacterial 16 S rRNA high-throughput sequencing was performed. The results showed that DM and OM digestibility were greatest for the W diet and lowest for the S diet. The rumen pH of the O diet was significantly greater than that of the W diet. The concentration of rumen fluid NH3-N (mg/dL) increased with increased CP content. The concentration of total volatile fatty acids (mmol/L) in the rumen decreased with increased NDF content but increased with increased NFC content. The relative abundances of Bacteroidetes, Firmicutes, and Spirochaetes were 57.03-74.84%, 14.29-21.86%, and 0.44-1.43% in the different quality roughage groups. Bacteroidetes were mainly Prevotellaceae1 and Rikenellaceae RC_gut_group with relative abundances of 30.17-45.75% and 3.23-7.82%. The relative abundance of Patescibacteria and Spirochaetes decreased with increasing roughage quality. These results provide a theoretical and practical basis for evaluating the nutritional value of dairy buffalo feed, utilizing feed resources, matching rations, feeding scientifically, and protecting animal health.
Assuntos
Ração Animal , Bactérias , Búfalos , Fermentação , Rúmen , Animais , Búfalos/microbiologia , Rúmen/microbiologia , Rúmen/metabolismo , Ração Animal/análise , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Fibras na Dieta/metabolismo , Silagem , Nutrientes/metabolismo , Digestão/fisiologia , Dieta/veterinária , RNA Ribossômico 16S/genética , Microbioma Gastrointestinal/fisiologia , Feminino , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/análiseRESUMO
BACKGROUND: High-fiber diets are supplemented with lipids to meet the required energy content, but data on the interactions between dietary fiber (DF) and lipid types on gastrointestinal fermentation in pigs are scant. OBJECTIVES: This study aimed to use a combination of in vivo and in vitro fermentation methodologies to determine the interactive effects of DF and lipid types on short-chain fatty acid (SCFA) production and absorption and organic matter (OM) fermentability in the cecum and colorectal tract of pigs. METHODS: Eight ileal- and cecal-cannulated Yorkshire barrows were fed either pectin- or cellulose-containing diets that were supplemented with either corn oil or beef tallow in 2 independent Youden squares with a 2 × 2 factorial arrangement of treatments (n = 6). Ileal and cecal digesta were collected, freeze-dried, and fermented using inoculum from fresh cecal digesta and feces, respectively, to determine individual SCFA production and absorption and fermentability of OM. RESULTS: Interactions (P < 0.001) between DF and lipid types were observed in which the addition of beef tallow decreased the quantity of cecal and colorectal acetic acid production and cecal acetic absorption, cecal butyric production, predicted cecal OM fermentability, and predicted colorectal propionic acid in pectin diets, but the effects were not observed for cellulose diets. The addition of beef tallow increased (P < 0.001) the production of cecal butyric and propionic acids during in vitro fermentation in cellulose diets and apparent total tract digestibility (ATTD) of OM in pectin diets. CONCLUSIONS: The interactions between DF and lipids on gastrointestinal fermentation largely depend on the degree of saturation of fatty acids in dietary lipids. The addition of beef tallow selectively decreased the production and absorption of individual SCFAs in pectin and cellulose diets but increased cecal butyric and propionic acid production in cellulose diets and the ATTD of OM in pectin diets.
Assuntos
Ceco , Fibras na Dieta , Ácidos Graxos Voláteis , Fermentação , Animais , Fibras na Dieta/metabolismo , Ácidos Graxos Voláteis/metabolismo , Ceco/metabolismo , Suínos , Masculino , Colo/metabolismo , Pectinas/metabolismo , Dieta/veterinária , Ração Animal/análise , Gorduras na Dieta/metabolismo , Celulose/metabolismo , Digestão , GordurasRESUMO
Lignocellulose biomass raw materials have a high value in energy conversion. Recently, there has been growing interest in using microorganisms to secret a series of enzymes for converting low-cost biomass into high-value products such as biofuels. We previously isolated a strain of Penicillium oxalicun 5-18 with promising lignocellulose-degrading capability. However, the mechanisms of lignocellulosic degradation of this fungus on various substrates are still unclear. In this study, we performed transcriptome-wide profiling and comparative analysis of strain 5-18 cultivated in liquid media with glucose (Glu), xylan (Xyl) or wheat bran (WB) as sole carbon source. In comparison to Glu culture, the number of differentially expressed genes (DEGs) induced by WB and Xyl was 4134 and 1484, respectively, with 1176 and 868 genes upregulated. Identified DEGs were enriched in many of the same pathways in both comparison groups (WB vs. Glu and Xly vs. Glu). Specially, 118 and 82 CAZyme coding genes were highly upregulated in WB and Xyl cultures, respectively. Some specific pathways including (Hemi)cellulose metabolic processes were enriched in both comparison groups. The high upregulation of these genes also confirmed the ability of strain 5-18 to degrade lignocellulose. Co-expression and co-upregulated of genes encoding CE and AA CAZy families, as well as other (hemi)cellulase revealed a complex degradation strategy in this strain. Our findings provide new insights into critical genes, key pathways and enzyme arsenal involved in the biomass degradation of P. oxalicum 5-18.
Assuntos
Perfilação da Expressão Gênica , Lignina , Penicillium , Transcriptoma , Xilanos , Penicillium/genética , Penicillium/metabolismo , Lignina/metabolismo , Xilanos/metabolismo , Biomassa , Glucose/metabolismo , Fibras na Dieta/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismoRESUMO
The human gut microbiota relies on complex carbohydrates (glycans) for energy and growth, primarily dietary fiber and host-derived mucins. We introduce a mathematical model of a glycan generalist and a mucin specialist in a two-compartment chemostat model of the human colon. Our objective is to characterize the influence of dietary fiber and mucin supply on the abundance of mucin-degrading species within the gut ecosystem. Current mathematical gut reactor models that include the enzymatic degradation of glycans do not differentiate between glycan types and their degraders. The model we present distinguishes between a generalist that can degrade both dietary fiber and mucin, and a specialist species that can only degrade mucin. The integrity of the colonic mucus barrier is essential for overall human health and well-being, with the mucin specialist Akkermanisa muciniphila being associated with a healthy mucus layer. Competition, particularly between the specialist and generalists like Bacteroides thetaiotaomicron, may lead to mucus layer erosion, especially during periods of dietary fiber deprivation. Our model treats the colon as a gut reactor system, dividing it into two compartments that represent the lumen and the mucus of the gut, resulting in a complex system of ordinary differential equations with a large and uncertain parameter space. To understand the influence of model parameters on long-term behavior, we employ a random forest classifier, a supervised machine learning method. Additionally, a variance-based sensitivity analysis is utilized to determine the sensitivity of steady-state values to changes in model parameter inputs. By constructing this model, we can investigate the underlying mechanisms that control gut microbiota composition and function, free from confounding factors.
Assuntos
Fibras na Dieta , Microbioma Gastrointestinal , Modelos Biológicos , Mucinas , Muco , Mucinas/metabolismo , Fibras na Dieta/metabolismo , Humanos , Microbioma Gastrointestinal/fisiologia , Muco/metabolismo , Colo/metabolismo , Colo/microbiologia , Polissacarídeos/metabolismoRESUMO
PURPOSE: To investigate the relationships between the habitual diet, the protein to fiber ratio (P/F), and the gut microbiome in one Italian and one Dutch cohort of healthy subjects consuming an omnivore diet. METHODS: The Italian cohort included 19 males (M_IT, BMI 25.2 ± 0.72 kg/m2, age 25.4 ± 0.96 years) and 20 females (F_IT, BMI 23.9 ± 0.81 kg/m2, age 23.8 ± 0.54 years); the Dutch cohort included 30 females (F_NL, BMI: 23.9 ± 0.81 kg/m2, age: 23.8 ± 0.54 years). Individual diets were recorded through Food Frequency Questionnaires and analyzed to assess the nutrient composition. Gut microbiome was assessed in fecal samples. RESULTS: M_IT consumed higher levels of proteins than F_NL and F_IT, whereas dietary fiber intake did not differ among groups. Data showed that consumption of plant protein to animal protein (PP/AP) and PP to total proteins ratio can determine a differentiation of F_NL more than the absolute amount of dietary fiber. Conversely, the protein to fiber (P/F) and AP to total proteins better characterized M_IT. M_IT harbored the highest abundance of proteolytic microorganisms and the lowest microbial gene richness. Conversely, F_NL had more fiber-degrading microorganisms like Bacteroides thetaiotaomicron, Bacteroides xylanisolvens, Roseburia sp., Coprococcus eutactus and Parabacteroides along with the highest number of genes encoding carbohydrate-active enzymes and gene richness. It was predicted that by each unit decrease in the P/F a 3% increase in gene richness occurred. CONCLUSION: Study findings suggested that dietary P/F, rather than the absolute amount of dietary fiber, could contribute to the shaping of the microbiome towards a more proteolytic or fiber-degrading gut ecosystem. CLINICALTRIALS: gov Identifier NCT04205045-01-10-2018, retrospectively registered. Dutch Trial Register NTR7531-05-10-2018.
Assuntos
Microbioma Gastrointestinal , Microbiota , Masculino , Feminino , Animais , Humanos , Adulto Jovem , Adulto , Dieta , Carboidratos , Fibras na Dieta/metabolismo , Fezes/química , Proteínas Alimentares , ItáliaRESUMO
The importance of dietary fiber (DF) in animal diets is increasing with the advancement of nutritional research. DF is fermented by gut microbiota to produce metabolites, which are important in improving intestinal health. This review is a systematic review of DF in pig nutrition using in vitro and in vivo models. The fermentation characteristics of DF and the metabolic mechanisms of its metabolites were summarized in an in vitro model, and it was pointed out that SCFAs and gases are the important metabolites connecting DF, gut microbiota, and intestinal health, and they play a key role in intestinal health. At the same time, some information about host-microbe interactions could have been improved through traditional animal in vivo models, and the most direct feedback on nutrients was generated, confirming the beneficial effects of DF on sow reproductive performance, piglet intestinal health, and growing pork quality. Finally, the advantages and disadvantages of different fermentation models were compared. In future studies, it is necessary to flexibly combine in vivo and in vitro fermentation models to profoundly investigate the mechanism of DF on the organism in order to promote the development of precision nutrition tools and to provide a scientific basis for the in-depth and rational utilization of DF in animal husbandry. KEY POINTS: ⢠The fermentation characteristics of dietary fiber in vitro models were reviewed. ⢠Metabolic pathways of metabolites and their roles in the intestine were reviewed. ⢠The role of dietary fiber in pigs at different stages was reviewed.
Assuntos
Ração Animal , Fibras na Dieta , Fermentação , Microbioma Gastrointestinal , Animais , Fibras na Dieta/metabolismo , Suínos , Microbioma Gastrointestinal/fisiologia , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Ácidos Graxos Voláteis/metabolismoRESUMO
Microbial xylanases are enzymes of great importance due to their wide industrial applications, especially in the degradation of lignocellulosic biomass into fermentable sugars. This study aimed to describe the production optimization and partial characterization of an ultra-thermostable, acidophilic, cellulase-free xylanase from an obligate thermophilic eubacterium Geobacillus thermoleovorans strain-AKNT10 (Ac.No. LT158229) isolated from a hot-spring of Puga Valley located at an altitude of 4419 m in Ladakh, India. The optimization of cultural conditions improved enzyme yield by 10.49-fold under submerged fermentation. The addition of 1% (w/v) xylose induced the enzyme synthesis by ~ 165 and 371% when supplemented in the fermentation medium containing wheat bran (WB) 1 and 3%, respectively. The supplementation of sucrose reduced the xylanase production by ~ 25%. Results of partial characterization exhibited that xylanase was optimally active at pH 6.0 and 100 °C. Enzyme retained > 75%, > 83%, and > 84% of activity at 4 °C for 28 days, 100 °C for 60 min, and pHs 3-8 for 60 min, respectively. An outstanding property of AKNT10-xylanase, was the retention of > 71% residual activity at extreme conditions (121 °C and 15 psi pressure) for 15 min. Enzymatic saccharification showed that enzyme was also capable to liberate maximum reducing sugars within 4-8 h under optimized conditions thus it could be a potential candidate for the bioconversion of lignocellulosic biomass as well as other industrial purposes. To the best of our knowledge, this is the first report on such an ultra-thermo-pressure-tolerant xylanase optimally active at pH 6 and 100 °C from the genus Geobacillus.