Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nature ; 604(7904): 127-133, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35355010

RESUMO

Many aspects of plant photoperception are mediated by the phytochrome (Phy) family of bilin-containing photoreceptors that reversibly interconvert between inactive Pr and active Pfr conformers1,2. Despite extensive biochemical studies, full understanding of plant Phy signalling has remained unclear due to the absence of relevant 3D models. Here we report a cryo-electron microscopy structure of Arabidopsis PhyB in the Pr state that reveals a topologically complex dimeric organization that is substantially distinct from its prokaryotic relatives. Instead of an anticipated parallel architecture, the C-terminal histidine-kinase-related domains (HKRDs) associate head-to-head, whereas the N-terminal photosensory regions associate head-to-tail to form a parallelogram-shaped platform with near two-fold symmetry. The platform is internally linked by the second of two internal Per/Arnt/Sim domains that binds to the photosensory module of the opposing protomer and a preceding 'modulator' loop that assembles tightly with the photosensory module of its own protomer. Both connections accelerate the thermal reversion of Pfr back to Pr, consistent with an inverse relationship between dimer assembly and Pfr stability. Lopsided contacts between the HKRDs and the platform create profound asymmetry to PhyB that might imbue distinct signalling potentials to the protomers. We propose that this unique structural dynamism creates an extensive photostate-sensitive surface for conformation-dependent interactions between plant Phy photoreceptors and their signalling partners.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo B , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Microscopia Crioeletrônica , Luz , Fitocromo B/química , Fitocromo B/metabolismo , Domínios Proteicos , Subunidades Proteicas/metabolismo
2.
Nano Lett ; 18(11): 7133-7140, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30295028

RESUMO

Reconstituting functional modules of biological systems in vitro is an important yet challenging goal of bottom-up synthetic biology, in particular with respect to their precise spatiotemporal regulation. One of the most desirable external control parameters for the engineering of biological systems is visible light, owing to its specificity and ease of defined application in space and time. Here we engineered the PhyB-PIF6 system to spatiotemporally target proteins by light onto model membranes and thus sequentially guide protein pattern formation and structural assembly in vitro from the bottom up. We show that complex micrometer-sized protein patterns can be printed on time scales of seconds, and the pattern density can be precisely controlled by protein concentration, laser power, and activation time. Moreover, when printing self-assembling proteins such as the bacterial cytoskeleton protein FtsZ, the targeted assembly into filaments and large-scale structures such as artificial rings can be accomplished. Thus, light mediated sequential protein assembly in cell-free systems represents a promising approach to hierarchically building up the next level of complexity toward a minimal cell.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Bactérias/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Proteínas do Citoesqueleto/química , Membranas Artificiais , Fitocromo B/química
3.
Proc Natl Acad Sci U S A ; 112(35): 11108-13, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26283376

RESUMO

The red/far red light absorbing photoreceptor phytochrome-B (phyB) cycles between the biologically inactive (Pr, λmax, 660 nm) and active (Pfr; λmax, 730 nm) forms and functions as a light quality and quantity controlled switch to regulate photomorphogenesis in Arabidopsis. At the molecular level, phyB interacts in a conformation-dependent fashion with a battery of downstream regulatory proteins, including PHYTOCHROME INTERACTING FACTOR transcription factors, and by modulating their activity/abundance, it alters expression patterns of genes underlying photomorphogenesis. Here we report that the small ubiquitin-like modifier (SUMO) is conjugated (SUMOylation) to the C terminus of phyB; the accumulation of SUMOylated phyB is enhanced by red light and displays a diurnal pattern in plants grown under light/dark cycles. Our data demonstrate that (i) transgenic plants expressing the mutant phyB(Lys996Arg)-YFP photoreceptor are hypersensitive to red light, (ii) light-induced SUMOylation of the mutant phyB is drastically decreased compared with phyB-YFP, and (iii) SUMOylation of phyB inhibits binding of PHYTOCHROME INTERACTING FACTOR 5 to phyB Pfr. In addition, we show that OVERLY TOLERANT TO SALT 1 (OTS1) de-SUMOylates phyB in vitro, it interacts with phyB in vivo, and the ots1/ots2 mutant is hyposensitive to red light. Taken together, we conclude that SUMOylation of phyB negatively regulates light signaling and it is mediated, at least partly, by the action of OTS SUMO proteases.


Assuntos
Arabidopsis/metabolismo , Luz , Fitocromo B/metabolismo , Transdução de Sinais , Sumoilação , Sequência de Aminoácidos , Dados de Sequência Molecular , Fitocromo B/química , Fitocromo B/genética , Homologia de Sequência de Aminoácidos
4.
Proc Natl Acad Sci U S A ; 111(28): 10179-84, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24982198

RESUMO

Many aspects of plant photomorphogenesis are controlled by the phytochrome (Phy) family of bilin-containing photoreceptors that detect red and far-red light by photointerconversion between a dark-adapted Pr state and a photoactivated Pfr state. Whereas 3D models of prokaryotic Phys are available, models of their plant counterparts have remained elusive. Here, we present the crystal structure of the photosensing module (PSM) from a seed plant Phy in the Pr state using the PhyB isoform from Arabidopsis thaliana. The PhyB PSM crystallized as a head-to-head dimer with strong structural homology to its bacterial relatives, including a 5(Z)syn, 10(Z)syn, 15(Z)anti configuration of the phytochromobilin chromophore buried within the cGMP phosphodiesterase/adenylyl cyclase/FhlA (GAF) domain, and a well-ordered hairpin protruding from the Phy-specific domain toward the bilin pocket. However, its Per/Arnt/Sim (PAS) domain, knot region, and helical spine show distinct structural differences potentially important to signaling. Included is an elongated helical spine, an extended ß-sheet connecting the GAF domain and hairpin stem, and unique interactions between the region upstream of the PAS domain knot and the bilin A and B pyrrole rings. Comparisons of this structure with those from bacterial Phys combined with mutagenic studies support a toggle model for photoconversion that engages multiple features within the PSM to stabilize the Pr and Pfr end states after rotation of the D pyrrole ring. Taken together, this Arabidopsis PhyB structure should enable molecular insights into plant Phy signaling and provide an essential scaffold to redesign their activities for agricultural benefit and as optogenetic reagents.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/química , Fitocromo B/química , Multimerização Proteica , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cristalografia por Raios X , Luz , Fitocromo B/genética , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
5.
J Biol Chem ; 289(5): 2552-62, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24327657

RESUMO

Phytochrome photoreceptors in plants and microorganisms switch photochromically between two states, controlling numerous important biological processes. Although this phototransformation is generally considered to involve rotation of ring D of the tetrapyrrole chromophore, Ulijasz et al. (Ulijasz, A. T., Cornilescu, G., Cornilescu, C. C., Zhang, J., Rivera, M., Markley, J. L., and Vierstra, R. D. (2010) Nature 463, 250-254) proposed that the A-ring rotates instead. Here, we apply magic angle spinning NMR to the two parent states following studies of the 23-kDa GAF (cGMP phosphodiesterase/adenylyl cyclase/FhlA) domain fragment of phytochrome from Synechococcus OS-B'. Major changes occur at the A-ring covalent linkage to the protein as well as at the protein residue contact of ring D. Conserved contacts associated with the A-ring nitrogen rule out an A-ring photoflip, whereas loss of contact of the D-ring nitrogen to the protein implies movement of ring D. Although none of the methine bridges showed a chemical shift change comparable with those characteristic of the D-ring photoflip in canonical phytochromes, denaturation experiments showed conclusively that the same occurs in Synechococcus OS-B' phytochrome upon photoconversion. The results are consistent with the D-ring being strongly tilted in both states and the C15=C16 double bond undergoing a Z/E isomerization upon light absorption. More subtle changes are associated with the A-ring linkage to the protein. Our findings thus disprove A-ring rotation and are discussed in relation to the position of the D-ring, photoisomerization, and photochromicity in the phytochrome family.


Assuntos
Proteínas de Bactérias/química , Fitocromo B/química , Fitocromo/química , Transdução de Sinais/fisiologia , Synechococcus/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Fótons , Fotorreceptores Microbianos , Fitocromo/genética , Fitocromo/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Synechococcus/genética , Synechococcus/metabolismo
6.
Photochem Photobiol Sci ; 14(2): 270-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25373866

RESUMO

Automation can vastly reduce the cost of experimental labor and thus facilitate high experimental throughput, but little off-the-shelf hardware for the automation of illumination experiments is commercially available. Here, we use inexpensive open-source electronics to add programmable illumination capabilities to a multimode microplate reader. We deploy this setup to characterize light-triggered phenomena in three different sensory photoreceptors. First, we study the photoactivation of Arabidopsis thaliana phytochrome B by light of different wavelengths. Second, we investigate the dark-state recovery kinetics of the Synechocystis sp. blue-light sensor Slr1694 at multiple temperatures and imidazole concentrations; while the kinetics of the W91F mutant of Slr1694 are strongly accelerated by imidazole, the wild-type protein is hardly affected. Third, we determine the light response of the Beggiatoa sp. photoactivatable adenylate cyclase bPAC in Chinese hamster ovary cells. bPAC is activated by blue light in dose-dependent manner with a half-maximal intensity of 0.58 mW cm(-2); intracellular cAMP spikes generated upon bPAC activation decay with a half time of about 5 minutes after light switch-off. Taken together, we present a setup which is easily assembled and which thus offers a facile approach to conducting illumination experiments at high throughput, reproducibility and fidelity.


Assuntos
Automação Laboratorial/instrumentação , Dispositivos Ópticos , Fotobiologia/instrumentação , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Animais , Arabidopsis , Proteínas de Arabidopsis/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Beggiatoa , Células CHO , Cricetulus , AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Inibidores Enzimáticos/farmacologia , Imidazóis/farmacologia , Luz , Mutação , Processos Fotoquímicos , Fitocromo B/química , Synechocystis , Temperatura
7.
Plant Physiol ; 161(3): 1445-57, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23321421

RESUMO

Phytochromes (phys) encompass a diverse collection of biliproteins that enable cellular light perception by photoconverting between a red-light-absorbing ground state (Pr) and a far-red light-absorbing active state (Pfr). Based on the central role of plant phys in controlling numerous agriculturally important processes, their rational redesign offers great promise toward accelerating crop improvement. Employing as templates the available three-dimensional models of the photosensory module within bacterial phys, we report here our initial attempt to apply structure-guided mutagenesis to phy engineering using Arabidopsis (Arabidopsis thaliana) phyB, the dominant isoform in light-grown plants, as the example. A collection of phyB mutants was generated affecting the bilin-binding pocket that altered photochemistry, thermal stability, and/or nuclear localization patterns, some of which also impacted phenotypic outputs. Of particular interest are the Y361F substitution, which created Arabidopsis plants with greatly enhanced light sensitivity, mutants variably altered in Pfr-to-Pr thermal reversion and nuclear aggregation, and the D307A substitution, which failed to photoconvert from Pr to Pfr and display light-induced nuclear aggregation but retained some biological activity and accelerated turnover in red light. Taken together, this collection provides variants potentially useful to agriculture as well as new tools to better understand the molecular mechanisms underpinning phy signaling.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Transdução de Sinal Luminoso/efeitos da radiação , Luz , Processos Fotoquímicos/efeitos da radiação , Fitocromo B/química , Engenharia de Proteínas , Absorção , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácido Aspártico/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/efeitos da radiação , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Fenótipo , Fitocromo A/genética , Fitocromo B/metabolismo , Plantas Geneticamente Modificadas , Relação Estrutura-Atividade , Transgenes/genética
8.
Biochemistry ; 50(51): 10987-9, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-22124256

RESUMO

The red/far-red-sensing biological photoreceptor phytochrome is a paradigmatic two-state signaling system. The two thermally stable states are interconverted via a photoreaction of the covalently bound tetrapyrrole chromophore. Applying recently developed solid-state nuclear magnetic resonance, we study both the chromophore and its protein pocket in the Pr (red-absorbing) and Pfr (far-red-absorbing) states. The observations show that the phototransformation combines local chemical reactions with a mesoscopic transition of order. Both the chromophore and its binding pocket are quasi-liquid and disordered in Pr, yet quasi-solid and ordered in Pfr. Possible biochemical implications are discussed.


Assuntos
Fotorreceptores de Plantas/química , Fitocromo/química , Proteínas de Bactérias/química , Sítios de Ligação , Biocatálise , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Ressonância Magnética Nuclear Biomolecular/métodos , Fragmentos de Peptídeos/química , Processos Fotoquímicos , Fotorreceptores Microbianos , Ficobilinas/química , Ficocianina/química , Fitocromo A/química , Fitocromo B/química , Proteínas Quinases/química , Transdução de Sinais , Tetrapirróis/química
9.
Plant Cell Physiol ; 52(12): 2088-102, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22006939

RESUMO

Phytochrome B (phyB) is the major informational photoreceptor in light-grown plants. The phyB polypeptide is folded into two domains, the N-terminal domain and the C-terminal domain. The N-terminal domain covalently binds to the chromophore via a particular cysteine residue, which allows the holoprotein to absorb light and undergo a photoreversible conformational change. The N-terminal domain of phyB interacts with transcription factors, such as PIF3 (PHYTOCHROME-INTERACTING FACTOR 3), to transduce the light signal to downstream components. Since substitution of the chromophore attachment site, Cys357, with alanine (C357A) abolishes the biological activity of Arabidopsis phyB, the covalent attachment with the chromophore is widely assumed to be necessary for phyB signal transduction. In this study, we show that Arabidopsis phyB is capable of transducing signals with a non-covalently retained chromophore. Substituting the Tyr276 residue of phyB with histidine (Y276H) is known to confer constitutive phyB signaling. PhyB containing both Y276H and C357A substitutions exhibited light-independent biological activity in transgenic Arabidopsis plants in a chromophore-dependent manner. Spectrophotometric analysis showed that the N-terminal domain of phyB containing just the C357A substitution could retain the chromophore non-covalently. The N-terminal domain containing both the Y276H and C357A substitutions interacted with PIF3 in a light-independent but chromophore-dependent fashion in yeast two-hybrid assays. From these results, we conclude that the constitutive phyB signaling conferred by Y276H requires the chromophore, but that the chromophore does not need to be covalently bonded to phyB.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fitocromo B/metabolismo , Transdução de Sinais , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Proteínas de Fluorescência Verde/metabolismo , Luz , Proteínas Mutantes/metabolismo , Fitocromo B/química , Estrutura Terciária de Proteína , Transporte Proteico/efeitos da radiação , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/efeitos da radiação , Frações Subcelulares/metabolismo , Frações Subcelulares/efeitos da radiação
10.
Plant Physiol ; 153(4): 1834-45, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20530216

RESUMO

At the core of the circadian network in Arabidopsis (Arabidopsis thaliana), clock genes/proteins form multiple transcriptional/translational negative feedback loops and generate a basic approximately 24-h oscillation, which provides daily regulation for a wide range of processes. This temporal organization enhances the fitness of plants only if it corresponds to the natural day/night cycles. Light, absorbed by photoreceptors, is the most effective signal in synchronizing the oscillator to environmental cycles. Phytochrome B (PHYB) is the major red/far-red light-absorbing phytochrome receptor in light-grown plants. Besides modulating the pace and phase of the circadian clock, PHYB controls photomorphogenesis and delays flowering. It has been demonstrated that the nuclear-localized amino-terminal domain of PHYB is capable of controlling photomorphogenesis and, partly, flowering. Here, we show (1) that PHYB derivatives containing 651 or 450 amino acid residues of the amino-terminal domains are functional in mediating red light signaling to the clock, (2) that circadian entrainment is a nuclear function of PHYB, and (3) that a 410-amino acid amino-terminal fragment does not possess any functions of PHYB due to impaired chromophore binding. However, we provide evidence that the carboxyl-terminal domain is required to mediate entrainment in white light, suggesting a role for this domain in integrating red and blue light signaling to the clock. Moreover, careful analysis of the circadian phenotype of phyB-9 indicates that PHYB provides light signaling for different regulatory loops of the circadian oscillator in a different manner, which results in an apparent decoupling of the loops in the absence of PHYB under specific light conditions.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/química , Ritmo Circadiano , Fitocromo B/química , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Luz , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , RNA de Plantas/genética , Proteínas Recombinantes de Fusão/química
11.
PLoS Genet ; 4(8): e1000158, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18704165

RESUMO

The phytochromes (phyA to phyE) are a major plant photoreceptor family that regulate a diversity of developmental processes in response to light. The N-terminal 651-amino acid domain of phyB (N651), which binds an open tetrapyrrole chromophore, acts to perceive and transduce regulatory light signals in the cell nucleus. The N651 domain comprises several subdomains: the N-terminal extension, the Per/Arnt/Sim (PAS)-like subdomain (PLD), the cGMP phosphodiesterase/adenyl cyclase/FhlA (GAF) subdomain, and the phytochrome (PHY) subdomain. To define functional roles for these subdomains, we mutagenized an Arabidopsis thaliana line expressing N651 fused in tandem to green fluorescent protein, beta-glucuronidase, and a nuclear localization signal. A large-scale screen for long hypocotyl mutants identified 14 novel intragenic missense mutations in the N651 moiety. These new mutations, along with eight previously identified mutations, were distributed throughout N651, indicating that each subdomain has an important function. In vitro analysis of the spectral properties of these mutants enabled them to be classified into two principal classes: light-signal perception mutants (those with defective spectral activity), and signaling mutants (those normal in light perception but defective in intracellular signal transfer). Most spectral mutants were found in the GAF and PHY subdomains. On the other hand, the signaling mutants tend to be located in the N-terminal extension and PLD. These observations indicate that the N-terminal extension and PLD are mainly involved in signal transfer, but that the C-terminal GAF and PHY subdomains are responsible for light perception. Among the signaling mutants, R110Q, G111D, G112D, and R325K were particularly interesting. Alignment with the recently described three-dimensional structure of the PAS-GAF domain of a bacterial phytochrome suggests that these four mutations reside in the vicinity of the phytochrome light-sensing knot.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/química , Arabidopsis/fisiologia , Mutação de Sentido Incorreto , Complexo de Proteínas do Centro de Reação Fotossintética/química , Fitocromo B/química , Transdução de Sinais , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Luz , Dados de Sequência Molecular , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo , Polietilenoglicóis/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Alinhamento de Sequência
12.
FEBS J ; 287(8): 1612-1625, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31621187

RESUMO

Phytochrome B (phyB) is a plant photoreceptor protein that regulates various photomorphogenic responses to optimize plant growth and development. PhyB exists in two photoconvertible forms: a red light-absorbing (Pr) and a far-red light-absorbing (Pfr) form. Therefore, to understand the mechanism of phototransformation, the structural characterization of full-length phyB in these two forms is necessary. Here, we report the molecular structure of Arabidopsis thaliana phyB in Pr form and the molecular properties of the Pfr form determined by small-angle X-ray scattering coupled with size-exclusion chromatography. In solution, the Pr form associated as a dimer with a radius of gyration of 50 Å. The molecular shape was a crossed shape, in which the orientation of the photosensory modules differed from that in the crystal structure of dimeric photosensory module. PhyB exhibited structural reversibility in the Pfr-to-Pr phototransformation and thermal reversion from Pfr to Pr in the dark. In addition, Pfr only exhibited nonspecific association, which distinguished molecular properties of Pfr form from those of the inactive Pr form.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/química , Luz , Fitocromo B/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/isolamento & purificação , Cristalografia por Raios X , Modelos Moleculares , Fitocromo B/química , Fitocromo B/isolamento & purificação , Conformação Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X
13.
J Mol Biol ; 432(16): 4327-4340, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32534065

RESUMO

Plant phytochromes enable vital adaptations to red and far-red light. At the molecular level, these responses are mediated by light-regulated interactions between phytochromes and partner proteins, foremost the phytochrome-interacting factors (PIF). Although known for decades, quantitative analyses of these interactions have long been sparse. To address this deficit, we here studied by an integrated fluorescence-spectroscopic approach the equilibrium and kinetics of Arabidopsis thaliana phytochrome B binding to a tetramerized PIF6 variant. Several readouts consistently showed the stringently light-regulated interaction to be little affected by PIF tetramerization. Analysis of the binding kinetics allowed the determination of bimolecular association and unimolecular dissociation rate constants as a function of light. Unexpectedly, the stronger affinity of A. thaliana phytochrome B under red light relative to far-red light is entirely due to accelerated association rather than decelerated dissociation. The association reaction under red light is highly efficient and only 3-fold slower than the diffusion limit. The present findings pertain equally to the analysis of signal transduction in plants and to the biotechnological application of phytochromes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fitocromo B/metabolismo , Arabidopsis/química , Proteínas de Arabidopsis/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Transferência de Energia , Polarização de Fluorescência , Cinética , Transdução de Sinal Luminoso , Fitocromo B/química , Ligação Proteica , Multimerização Proteica , Transdução de Sinais , Espectrometria de Fluorescência
14.
Methods Mol Biol ; 2026: 121-133, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31317407

RESUMO

Mathematical models are important tools in helping us to understand complex biological systems. Models of phytochrome-regulated systems in Arabidopsis thaliana have shown the importance of dimerization, nuclear transport, and thermal/dark reversion in mediating phytochrome activity and plant development. Here we go through the steps required to calculate the steady-state amounts of phytochrome subspecies relative to the total phytochrome molecule population. Starting from a simplified two-state system we expand and apply the technique to the extended phytochrome dimer model. Additionally, we provide a Python package that can automatically calculate the proportion of phytochrome B in a particular state given specific experimental conditions.


Assuntos
Modelos Teóricos , Fitocromo B/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/análise
15.
Nat Protoc ; 14(7): 2205-2228, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31235951

RESUMO

Optogenetic probes can be powerful tools for dissecting complexity in cell biology, but there is a lack of instrumentation to exploit their potential for automated, high-information-content experiments. This protocol describes the construction and use of the optoPlate-96, a platform for high-throughput three-color optogenetics experiments that allows simultaneous manipulation of common red- and blue-light-sensitive optogenetic probes. The optoPlate-96 enables illumination of individual wells in 96-well microwell plates or in groups of wells in 384-well plates. Its design ensures that there will be no cross-illumination between microwells in 96-well plates, and an active cooling system minimizes sample heating during light-intensive experiments. This protocol details the steps to assemble, test, and use the optoPlate-96. The device can be fully assembled without specialized equipment beyond a 3D printer and a laser cutter, starting from open-source design files and commercially available components. We then describe how to perform a typical optogenetics experiment using the optoPlate-96 to stimulate adherent mammalian cells. Although optoPlate-96 experiments are compatible with any plate-based readout, we describe analysis using quantitative single-cell immunofluorescence. This workflow thus allows complex optogenetics experiments (independent control of stimulation colors, intensity, dynamics, and time points) with high-dimensional outputs at single-cell resolution. Starting from 3D-printed and laser-cut components, assembly and testing of the optoPlate-96 can be accomplished in 3-4 h, at a cost of ~$600. A full optoPlate-96 experiment with immunofluorescence analysis can be performed within ~24 h, but this estimate is variable depending on the cell type and experimental parameters.


Assuntos
Optogenética/instrumentação , Optogenética/métodos , Animais , Técnicas de Cultura de Células , Cor , Desenho de Equipamento , Lasers , Camundongos , Células NIH 3T3 , Fitocromo B/química , Impressão Tridimensional
16.
Nat Commun ; 10(1): 4216, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527679

RESUMO

CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) is a highly conserved E3 ubiquitin ligase from plants to animals and acts as a central repressor of photomorphogenesis in plants. SUPPRESSOR OF PHYA-105 1 family members (SPA1-SPA4) directly interact with COP1 and enhance COP1 activity. Despite the presence of a kinase domain at the N-terminus, no COP1-independent role of SPA proteins has been reported. Here we show that SPA1 acts as a serine/threonine kinase and directly phosphorylates PIF1 in vitro and in vivo. SPAs are necessary for the light-induced phosphorylation, ubiquitination and subsequent degradation of PIF1. Moreover, the red/far-red light photoreceptor phyB interacts with SPA1 through its C-terminus and enhances the recruitment of PIF1 for phosphorylation. These data provide a mechanistic view on how the COP1-SPA complexes serve as an example of a cognate kinase-E3 ligase complex that selectively triggers rapid phosphorylation and removal of its substrates, and how phyB modulates this process to promote photomorphogenesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fitocromo B/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Ciclo Celular/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Fitocromo B/química , Fitocromo B/genética , Ligação Proteica/efeitos da radiação , Domínios Proteicos
17.
PLoS One ; 14(6): e0218605, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31233537

RESUMO

The integration of conflicting signals in response to environmental constraints is essential to efficient plant growth and development. The light-dependent and the stress hormone abscisic acid (ABA)-dependent signaling pathways play opposite roles in many aspects of plant development. While these pathways have been extensively studied, the complex nature of their molecular dialogue is still obscure. When mobilized by the Arabidopsis thaliana ß-glucosidase 1 (AtBG1), the glucose ester-conjugated inactive form of ABA has proven to be a source of the active hormone that is essential for the adaptation of the plant to water deficit, as evidenced by the impaired stomatal closure of atbg1 mutants in response to water stress. In a suppressor screen designed to identify the molecular components of AtBG1-associated physiological and developmental mechanisms, we identified the mutation variant of AtBG1 traits (vat1), a new mutant allele of the red light/far-red light photoreceptor PHYTOCHROME B (PHYB). Our study reveals that atbg1 plants harbor increased stomatal density in addition to impaired stomatal closure. We also provide evidence that the vat1/phyb mutation can restore the apparent transpiration of the atbg1 mutant by decreasing stomatal aperture and restoring a stomatal density similar to wild-type plants. Expression of key regulators of stomatal development showed a crosstalk between AtBG1-mediated ABA signaling and PHYB-mediated stomatal development. We conclude that the AtBG1-dependent regulation of ABA homeostasis and the PHYB-mediated light signaling pathways act antagonistically in the control of stomatal development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fitocromo B/metabolismo , beta-Glucosidase/metabolismo , Ácido Abscísico/análogos & derivados , Ácido Abscísico/metabolismo , Aclimatação/genética , Aclimatação/fisiologia , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Secas , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Luz , Modelos Moleculares , Mutação , Fitocromo B/química , Fitocromo B/genética , Estômatos de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/metabolismo , Domínios Proteicos , Homologia de Sequência de Aminoácidos , Transdução de Sinais , beta-Glucosidase/genética
18.
FEBS J ; 274(8): 2088-98, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17388813

RESUMO

Bacteriophytochromes constitute a light-sensing subgroup of sensory kinases with a chromophore-binding motif in the N-terminal half and a C-terminally located histidine kinase activity. The cyanobacterium Fremyella diplosiphon (also designated Calothrix sp.) expresses two sequentially very similar bacteriophytochromes, cyanobacterial phytochrome A (CphA) and cyanobacterial phytochrome B (CphB). Cyanobacterial phytochrome A has the canonical cysteine residue, by which covalent chromophore attachment is accomplished in the same manner as in plant phytochromes; however, its paralog cyanobacterial phytochrome B carries a leucine residue at that position. On the basis of in vitro experiments that showed, for both cyanobacterial phytochrome A and cyanobacterial phytochrome B, light-induced autophosphorylation and phosphate transfer to their cognate response regulator proteins RcpA and RcpB [Hübschmann T, Jorissen HJMM, Börner T, Gärtner W & deMarsac NT (2001) Eur J Biochem268, 3383-3389], we aimed at the identification of a chromophore that is incorporated in vivo into cyanobacterial phytochrome B within the cyanobacterial cell. The approach was based on the introduction of a copy of cphB into the cyanobacterium via triparental conjugation. The His-tagged purified, recombinant protein (CphBcy) showed photoreversible absorption bands similar to those of plant and bacterial phytochromes, but with remarkably red-shifted maxima [lambda(max) 700 and 748 nm, red-absorbing (P(r)) and far red-absorbing (P(fr)) forms of phytochrome, respectively]. A comparison of the absorption maxima with those of the heterologously generated apoprotein, assembled with phycocyanobilin (lambda(max) 686 and 734 nm) or with biliverdin IXalpha (lambda(max) 700 and 750 +/- 2 nm), shows biliverdin IXalpha to be a genuine chromophore. The kinase activity of CphBcy and phosphotransfer to its cognate response regulator was found to be strictly P(r)-dependent. As an N-terminally located cysteine was found as an alternative covalent binding site for several bacteriophytochrome photoreceptors that bind biliverdin and lack the canonical cysteine residue (e.g. Agrobacterium tumefaciens and Deinococcus radiodurans), this corresponding residue in heterologously expressed cyanobacterial phytochrome B was mutated into a serine (C24S); however, there was no change in its spectral properties. On the other hand, the mutation of His267, which is located directly after the canonical cysteine, into alanine (H267A), caused complete loss of the capability of cyanobacterial phytochrome B to form a chromoprotein.


Assuntos
Biliverdina/metabolismo , Cianobactérias/metabolismo , Fitocromo B/metabolismo , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Dados de Sequência Molecular , Mutação , Fosforilação , Fitocromo B/análise , Fitocromo B/química , Fitocromo B/genética
19.
Photochem Photobiol ; 93(6): 1525-1531, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28503745

RESUMO

The dynamic behavior of the plant red/far-red light photoreceptor phytochrome B (phyB) has been elucidated in natural and synthetic systems. Red light switches phyB from the inactive Pr state to the active Pfr state, a process that is reversed by far-red light. Alongside light signals, phyB activity is constrained by thermal reversion (that is prominent in the dark) and protein-protein interactions between phyB, other phytochrome molecules, and, among others, PHYTOCHROME INTERACTING FACTORs (PIFs). Requirements for phyB-PIF association have been well studied and are central to light-regulated synthetic tools. However, it is unknown whether PIF interactions influence transitions of phyB between different conformers. Here, we show that the in vitro thermal reversion of phyB involves multiple reactions. Thermal reversion of phyB in vitro is inhibited by PIF6, and this effect is observed at all temperatures tested. We analyzed our experimental data using a mathematical model containing multiple Pfr conformers, in accordance with previous findings. Remarkably, each Pfr conformer is differentially regulated by PIF6 and temperature. As a result, we speculate that in vivo phytochrome signaling networks may require similar levels of complexity to fine-tune responses to the external environment.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis , Fitocromo B/química , Temperatura , Fatores de Transcrição/química , Proteínas de Arabidopsis/fisiologia , Luz , Fitocromo/metabolismo
20.
FEBS Lett ; 591(9): 1258-1265, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28376244

RESUMO

The N-terminal extension (NTE) of plant phytochromes has been suggested to play a functional role in signaling photoinduced structural changes. Here, we use resonance Raman spectroscopy to study the effect of the NTE on the chromophore structure of B-type phytochromes from two evolutionarily distant plants. NTE deletion seems to have no effect on the chromophore in the inactive Pr state, but alters the torsion of the C-D ring methine bridge and the surrounding hydrogen bonding network in the physiologically active Pfr state. These changes are accompanied by a shift of the conformational equilibrium between two Pfr substates, which might affect the thermal isomerization rate of the C-D double bond and, thus, account for the effect of the NTE on the dark reversion kinetics.


Assuntos
Fitocromo B/química , Fitocromo B/metabolismo , Plantas/metabolismo , Domínios Proteicos , Arabidopsis/genética , Arabidopsis/metabolismo , Sítios de Ligação/genética , Ligação de Hidrogênio , Cinética , Luz , Modelos Moleculares , Mutação , Fitocromo B/genética , Plantas/genética , Ligação Proteica/efeitos da radiação , Sorghum/genética , Sorghum/metabolismo , Análise Espectral Raman , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa