Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.357
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Gastroenterology ; 167(2): 333-342, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38401741

RESUMO

BACKGROUND & AIMS: The efficacy of a low fermentable oligo-, di-, monosaccharides and polyols (FODMAP) diet in irritable bowel syndrome (IBS) is well established. After the elimination period, a reintroduction phase aims to identify triggers. We studied the impact of a blinded reintroduction using FODMAP powders to objectively identify triggers and evaluated the effect on symptoms, quality of life, and psychosocial comorbidities. METHODS: Responders to a 6-week low FODMAP diet, defined by a drop in IBS symptom severity score (IBS-SSS) compared with baseline, entered a 9-week blinded randomized reintroduction phase with 6 FODMAP powders (fructans, fructose, galacto-oligosaccharides, lactose, mannitol, sorbitol) or control (glucose). A rise in IBS-SSS (≥50 points) defined a FODMAP trigger. Patients completed daily symptom diaries and questionnaires for quality of life and psychosocial comorbidities. RESULTS: In 117 recruited patients with IBS, IBS-SSS improved significantly after the elimination period compared with baseline (150 ± 116 vs 301 ± 97, P < .0001, 80% responders). Symptom recurrence was triggered in 85% of the FODMAP powders, by an average of 2.5 ± 2 FODMAPs/patient. The most prevalent triggers were fructans (56%) and mannitol (54%), followed by galacto-oligosaccharides, lactose, fructose, sorbitol, and glucose (respectively 35%, 28%, 27%, 23%, and 26%) with a significant increase in abdominal pain at day 1 for sorbitol/mannitol, day 2 for fructans/galacto-oligosaccharides, and day 3 for lactose. CONCLUSION: We confirmed the significant benefit of the low FODMAP diet in tertiary-care IBS. A blinded reintroduction revealed a personalized pattern of symptom recurrence, with fructans and mannitol as the most prevalent, and allows the most objective identification of individual FODMAP triggers. Ethical commission University hospital of Leuven reference number: s63629; Clinicaltrials.gov number: NCT04373304.


Assuntos
Dieta com Restrição de Carboidratos , Dissacarídeos , Fermentação , Síndrome do Intestino Irritável , Lactose , Manitol , Monossacarídeos , Oligossacarídeos , Qualidade de Vida , Humanos , Síndrome do Intestino Irritável/dietoterapia , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Oligossacarídeos/administração & dosagem , Oligossacarídeos/efeitos adversos , Manitol/administração & dosagem , Manitol/efeitos adversos , Dieta com Restrição de Carboidratos/métodos , Dieta com Restrição de Carboidratos/efeitos adversos , Resultado do Tratamento , Lactose/efeitos adversos , Lactose/administração & dosagem , Monossacarídeos/administração & dosagem , Monossacarídeos/efeitos adversos , Dissacarídeos/administração & dosagem , Dissacarídeos/efeitos adversos , Polímeros/administração & dosagem , Frutose/administração & dosagem , Frutose/efeitos adversos , Sorbitol/administração & dosagem , Sorbitol/efeitos adversos , Frutanos/administração & dosagem , Frutanos/efeitos adversos , Índice de Gravidade de Doença , Método Duplo-Cego , Inquéritos e Questionários , Pós , Recidiva , Adulto Jovem , Dieta FODMAP
2.
Cell ; 141(7): 1241-52, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20603004

RESUMO

The intestinal microbiota impacts many facets of human health and is associated with human diseases. Diet impacts microbiota composition, yet mechanisms that link dietary changes to microbiota alterations remain ill-defined. Here we elucidate the basis of Bacteroides proliferation in response to fructans, a class of fructose-based dietary polysaccharides. Structural and genetic analysis disclosed a fructose-binding, hybrid two-component signaling sensor that controls the fructan utilization locus in Bacteroides thetaiotaomicron. Gene content of this locus differs among Bacteroides species and dictates the specificity and breadth of utilizable fructans. BT1760, an extracellular beta2-6 endo-fructanase, distinguishes B. thetaiotaomicron genetically and functionally, and enables the use of the beta2-6-linked fructan levan. The genetic and functional differences between Bacteroides species are predictive of in vivo competitiveness in the presence of dietary fructans. Gene sequences that distinguish species' metabolic capacity serve as potential biomarkers in microbiomic datasets to enable rational manipulation of the microbiota via diet.


Assuntos
Bacteroides/isolamento & purificação , Dieta , Frutanos/metabolismo , Intestinos/microbiologia , Inulina/metabolismo , Metagenoma , Polissacarídeos/metabolismo , Animais , Bacteroides/genética , Bacteroides/metabolismo , Vida Livre de Germes , Camundongos , Modelos Moleculares , Transcrição Gênica , Regulação para Cima
3.
Proteins ; 92(2): 170-178, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37753539

RESUMO

Due to its bioactivity and versatile applications, levan has appeared as a promising biomaterial. Levansucrase is responsible for the conversion of sucrose into levan. With the goal of enhancing levan production, the strategy for enhancing the stability of levansucrase is being intensively studied. To make proteins more stable under high temperatures, proline, the most rigid residue, can be introduced into previously flexible regions. Herein, G249, D250, N251, and H252 on the flexible coil close to the calcium binding site of Bacillus licheniformis levansucrase were replaced with proline. Mutations at G249P greatly enhance both the enzyme's thermodynamic and kinetic stability, while those at H252P improve solely the enzyme's kinetic stability. GPC analysis revealed that G249P synthesize more levan, but H252P generate primarily oligosaccharides. Molecular dynamics simulations (MD) and MM/GBSA analysis revealed that G249P mutation increased not only the stability of levansucrase, but also affinity toward fructan.


Assuntos
Cálcio , Simulação de Dinâmica Molecular , Sítios de Ligação , Frutanos/química , Frutanos/metabolismo , Sacarose/metabolismo
4.
Am J Physiol Gastrointest Liver Physiol ; 326(3): G216-G227, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38193197

RESUMO

Ulcerative colitis (UC) is an inflammatory disease with abdominal pain, diarrhea, and bloody stool as the main symptoms. Several studies have confirmed that polysaccharides are effective against UC. It is commonly accepted that the traditional benefits of Radix Codonopsis can be attributed to its polysaccharide contents, and inulin-type fructan CP-A is the main active monomer in the polysaccharide components. Herein, we established a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced UC rat model and lipopolysaccharide (LPS)-induced colonic epithelial cell model (NCM460) to investigate the effect of CP-A on UC. Untargeted metabolomics studies were conducted to identify differential metabolites using ultra-high performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UHPLC-Q-TOF/MS) and enrich metabolic pathways in rat serum. The in vivo assays demonstrated that CP-A reduces colonic macroscopic injury, disease activity index (DAI), histopathological score, interleukin (IL)-8, and tumor necrosis factor-α (TNF-α) levels, as well as the expression of intercellular adhesion molecules. On the other hand, CP-A increases IL-10 and transforming growth factor-ß (TGF-ß) levels. The in vitro experiments indicated that CP-A treatment could reduce nitric oxide (NO) and IL-1ß after LPS stimulation. The metabolomics results suggested that CP-A therapy for UC may be related to the mammalian target of rapamycin (mTOR) signaling pathway. The in vitro and in vivo validation of the pathway showed similar results, indicating that CP-A alleviates UC by preventing the activation of mTOR/p70S6K signaling pathway. These findings offer a fresh approach to treating UC and a theoretical foundation for the future advancement of CP-A.NEW & NOTEWORTHY We report that an inulin-type fructan from Codonopsis pilosula CP-A exhibits a therapeutic effect on experimental colitis. Its mechanism may be to alleviate intestinal inflammation by preventing the activation of mammalian target of rapamycin (mTOR)/p70S6K signaling pathway. These findings offer a fresh approach to treating ulcerative colitis (UC) and a theoretical foundation for the future advancement of CP-A.


Assuntos
Codonopsis , Colite Ulcerativa , Colite , Ratos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Inulina/farmacologia , Frutanos/efeitos adversos , Frutanos/química , Codonopsis/química , Proteínas Quinases S6 Ribossômicas 70-kDa/uso terapêutico , Ácidos Sulfônicos/efeitos adversos , Lipopolissacarídeos , Polissacarídeos , Serina-Treonina Quinases TOR , Colite/induzido quimicamente , Colite/tratamento farmacológico , Modelos Animais de Doenças , Mamíferos
5.
Gastroenterology ; 164(2): 228-240, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36183751

RESUMO

BACKGROUND & AIMS: Inflammatory bowel diseases (IBD) are affected by dietary factors, including nondigestible carbohydrates (fibers), which are fermented by colonic microbes. Fibers are overall beneficial, but not all fibers are alike, and some patients with IBD report intolerance to fiber consumption. Given reproducible evidence of reduced fiber-fermenting microbes in patients with IBD, we hypothesized that fibers remain intact in select patients with reduced fiber-fermenting microbes and can then bind host cell receptors, subsequently promoting gut inflammation. METHODS: Colonic biopsies cultured ex vivo and cell lines in vitro were incubated with oligofructose (5 g/L), or fermentation supernatants (24-hour anaerobic fermentation) and immune responses (cytokine secretion [enzyme-linked immunosorbent assay/meso scale discovery] and expression [quantitative polymerase chain reaction]) were assessed. Influence of microbiota in mediating host response was examined and taxonomic classification of microbiota was conducted with Kraken2 and metabolic profiling by HUMAnN2, using R software. RESULTS: Unfermented dietary ß-fructan fibers induced proinflammatory cytokines in a subset of IBD intestinal biopsies cultured ex vivo, and immune cells (including peripheral blood mononuclear cells). Results were validated in an adult IBD randomized controlled trial examining ß-fructan supplementation. The proinflammatory response to intact ß-fructan required activation of the NLRP3 and TLR2 pathways. Fermentation of ß-fructans by human gut whole microbiota cultures reduced the proinflammatory response, but only when microbes were collected from patients without IBD or patients with inactive IBD. Fiber-induced immune responses correlated with microbe functions, luminal metabolites, and dietary fiber avoidance. CONCLUSION: Although fibers are typically beneficial in individuals with normal microbial fermentative potential, some dietary fibers have detrimental effects in select patients with active IBD who lack fermentative microbe activities. The study is publicly accessible at the U.S. National Institutes of Health database (clinicaltrials.gov identification number NCT02865707).


Assuntos
Frutanos , Doenças Inflamatórias Intestinais , Adulto , Humanos , Leucócitos Mononucleares , Intestinos , Fibras na Dieta , Inflamação
6.
BMC Plant Biol ; 24(1): 352, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689209

RESUMO

BACKGROUND: Fructans are water-soluble carbohydrates that accumulate in wheat and are thought to contribute to a pool of stored carbon reserves used in grain filling and tolerance to abiotic stress. RESULTS: In this study, transgenic wheat plants were engineered to overexpress a fusion of two fructan biosynthesis pathway genes, wheat sucrose: sucrose 1-fructosyltransferase (Ta1SST) and wheat sucrose: fructan 6-fructosyltransferase (Ta6SFT), regulated by a wheat ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (TaRbcS) gene promoter. We have shown that T4 generation transgene-homozygous single-copy events accumulated more fructan polymers in leaf, stem and grain when compared in the same tissues from transgene null lines. Under water-deficit (WD) conditions, transgenic wheat plants showed an increased accumulation of fructan polymers with a high degree of polymerisation (DP) when compared to non-transgenic plants. In wheat grain of a transgenic event, increased deposition of particular fructan polymers such as, DP4 was observed. CONCLUSIONS: This study demonstrated that the tissue-regulated expression of a gene fusion between Ta1SST and Ta6SFT resulted in modified fructan accumulation in transgenic wheat plants and was influenced by water-deficit stress conditions.


Assuntos
Proteínas de Bactérias , Frutanos , Hexosiltransferases , Plantas Geneticamente Modificadas , Triticum , Triticum/genética , Triticum/metabolismo , Plantas Geneticamente Modificadas/genética , Frutanos/metabolismo , Frutanos/biossíntese , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Fusão Gênica
7.
Plant Cell Environ ; 47(7): 2410-2425, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38517937

RESUMO

Bainong sterility (BNS) is a thermo-sensitive genic male sterile wheat line, characterised by anther fertility transformation in response to low temperature (LT) stress during meiosis, the failure of vacuole decomposition and the absence of starch accumulation in sterile bicellular pollen. Our study demonstrates that the late microspore (LM) stage marks the transition from the anther growth to anther maturation phase, characterised by the changes in anther structure, carbohydrate metabolism and the main transport pathway of sucrose (Suc). Fructan is a main storage polysaccharide in wheat anther, and its synthesis and remobilisation are crucial for anther development. Moreover, the process of pollen amylogenesis and the fate of the large vacuole in pollen are closely intertwined with fructan synthesis and remobilisation. LT disrupts the normal physiological metabolism of BNS anthers during meiosis, particularly affecting carbohydrate metabolism, thus determining the fate of male gametophytes and pollen abortion. Disruption of fructan synthesis and remobilisation regulation serves as a decisive event that results in anther abortion. Sterile pollen exhibits common traits of pollen starvation and impaired starch accumulation due to the inhibition of apoplastic transport starting from the LM stage, which is regulated by cell wall invertase TaIVR1 and Suc transporter TaSUT1.


Assuntos
Metabolismo dos Carboidratos , Flores , Infertilidade das Plantas , Pólen , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Triticum/fisiologia , Infertilidade das Plantas/genética , Pólen/crescimento & desenvolvimento , Pólen/genética , Pólen/metabolismo , Flores/crescimento & desenvolvimento , Flores/genética , Flores/fisiologia , Flores/metabolismo , Amido/metabolismo , Sacarose/metabolismo , Frutanos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
8.
J Clin Gastroenterol ; 58(5): 475-482, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37389917

RESUMO

GOAL: The aim of this study was to evaluate the efficacy of supplementation with Agave tequilana Weber blue variety fructans (Predilife) in the improvement of symptoms in functional constipation. BACKGROUND: Fiber supplementation is the first-line treatment for constipation. Fibers-like fructans have a known prebiotic effect. MATERIALS AND METHODS: A randomized, double-blind, study comparing agave fructans (AF) against psyllium plantago (PP). Four groups were randomized. Group 1: AF 5 g (Predilife), group 2: AF 10 g (Predilife), group 3: AF 5 g (Predilife)+10 g maltodextrin (MTDx), and group 4: PP 5 g+10 g MTDx. The fiber was administered once daily for 8 weeks. All fibers were similarly flavored and packaged. Patients kept their usual diet and fiber sources were quantified. Responders were defined as ≥1 complete spontaneous bowel movement from baseline to 8 weeks. Adverse events were reported. The study was registered in Clinicaltrials.gov with registration number NCT04716868. RESULTS: Seventy-nine patients were included (group 1: 21, group 2: 18, group 3: 20, and group 4: 20), of which 62 (78.4%) were women. The responders were similar across groups (73.3%, 71.4%, 70.6%, and 69%, P >0.050). After 8 weeks, all groups significantly increased complete spontaneous bowel movements, showing the greatest increase in spontaneous bowel movements in group 3 ( P =0.008). All groups improved in symptoms, stool consistency, and quality of life. Diet and fiber intake were similar between groups. Adverse events were mild and similar between groups. CONCLUSIONS: AF (Predilife) are as effective at different doses and combined with MTDx as PP and are a feasible option for the treatment of functional constipation.


Assuntos
Agave , Plantago , Psyllium , Humanos , Feminino , Masculino , Psyllium/efeitos adversos , Frutanos , Qualidade de Vida , Constipação Intestinal/terapia , Método Duplo-Cego
9.
Physiol Plant ; 176(4): e14427, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39005156

RESUMO

The perennity of grassland species such as Lolium perenne greatly depends on their ability to regrow after cutting or grazing. Refoliation largely relies on the mobilization of fructans in the remaining tissues and on the associated sucrose synthesis and transport towards the basal leaf meristems. However, nothing is known yet about the sucrose synthesis pathway. Sucrose Phosphate Synthase (SPS) and Sucrose Synthase (SuS) activities, together with their transcripts, were monitored during the first hours after defoliation along the leaf axis of mature leaf sheaths and elongating leaf bases (ELB) where the leaf meristems are located. In leaf sheaths, which undergo a sink-source transition, fructan and sucrose contents declined while SPS and SuS activities increased, along with the expression of LpSPSA, LpSPSD.2, LpSuS1, LpSuS2, and LpSuS4. In ELB, which continue to act as a strong carbon sink, SPS and SuS activities increased to varying degrees while the expression of all the LpSPS and LpSuS genes decreased after defoliation. SPS and SuS both contribute to refoliation but are regulated differently depending on the source or sink status of the tissues. Together with fructan metabolism, they represent key determinants of ryegrass perennity and, more generally, of grassland sustainability.


Assuntos
Frutanos , Regulação da Expressão Gênica de Plantas , Glucosiltransferases , Pradaria , Lolium , Folhas de Planta , Proteínas de Plantas , Sacarose , Lolium/enzimologia , Lolium/genética , Lolium/metabolismo , Glucosiltransferases/metabolismo , Glucosiltransferases/genética , Folhas de Planta/metabolismo , Folhas de Planta/genética , Frutanos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Sacarose/metabolismo
10.
Physiol Plant ; 176(3): e14325, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715548

RESUMO

Boosting plant immunity by priming agents can lower agrochemical dependency in plant production. Levan and levan-derived oligosaccharides (LOS) act as priming agents against biotic stress in several crops. Additionally, beneficial microbes can promote plant growth and protect against fungal diseases. This study assessed possible synergistic effects caused by levan, LOS and five levan- and LOS-metabolizing Bacillaceae (Bacillus and Priestia) strains in tomato and wheat. Leaf and seed defense priming assays were conducted in non-soil (semi-sterile substrate) and soil-based systems, focusing on tomato-Botrytis cinerea and wheat-Magnaporthe oryzae Triticum (MoT) pathosystems. In the non-soil system, seed defense priming with levan, the strains (especially Bacillus velezensis GA1), or their combination significantly promoted tomato growth and protection against B. cinerea. While no growth stimulatory effects were observed for wheat, disease protective effects were also observed in the wheat-MoT pathosystem. When grown in soil and subjected to leaf defense priming, tomato plants co-applied with levan and the bacterial strains showed increased resistance to B. cinerea compared with plants treated with levan or single strains, and these effects were synergistic in some cases. For seed defense priming in soil, more synergistic effects on disease tolerance were observed in a non-fertilized soil as compared to a fertilized soil, suggesting that potential prebiotic effects of levan are more prominent in poor soils. The potential of using combinations of Bacilliaceae and levan in sustainable agriculture is discussed.


Assuntos
Bacillus , Frutanos , Doenças das Plantas , Solanum lycopersicum , Triticum , Frutanos/metabolismo , Triticum/microbiologia , Triticum/metabolismo , Triticum/imunologia , Triticum/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Bacillus/fisiologia , Botrytis , Imunidade Vegetal , Resistência à Doença , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Folhas de Planta/imunologia , Oligossacarídeos/metabolismo , Oligossacarídeos/farmacologia , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Sementes/microbiologia , Sementes/imunologia , Ascomicetos
11.
BMC Gastroenterol ; 24(1): 143, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38654193

RESUMO

BACKGROUND: Food malabsorption and intolerance is implicated in gastrointestinal symptoms among patients with irritable bowel syndrome (IBS). Key triggers include fructose and fructan. Prior studies examined fructose and fructan malabsorption separately in IBS patients. None have concurrently assessed both within the same patient group. We aimed to investigate the association between fructose and fructan malabsorption in the same patients with IBS using hydrogen breath testing (HBT). METHODS: We retrospectively identified patients with IBS who underwent fructose and fructan HBTs and abstracted their results from the electronic medical record. Fructose and fructan HBTs were performed by administering a 25 g fructose solution or 10 g fructan solution, followed by breath hydrogen readings every 30 min for 3 h. Patients were positive for fructose or fructan malabsorption if breath hydrogen levels exceeded 20 ppm. RESULTS: Of 186 IBS patients, 71 (38.2%) were positive for fructose malabsorption and 91 (48.9%) were positive for fructan malabsorption. Of these patients, 42 (22.6%) were positive for fructose malabsorption and fructan malabsorption. Positive fructose HBT readings were significantly associated with positive fructan HBT readings (p = 0.0283). Patients positive for fructose malabsorption or fructan malabsorption had 1.951 times higher odds of testing positive for the other carbohydrate. CONCLUSIONS: Our results reveal a clinically significant association between fructose malabsorption and fructan malabsorption in patients with IBS. Fructan malabsorption should be assessed in patients with fructose malabsorption, and vice versa. Further studies are required to identify the mechanisms underlying our findings.


Assuntos
Testes Respiratórios , Frutanos , Frutose , Síndrome do Intestino Irritável , Síndromes de Malabsorção , Humanos , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/complicações , Frutose/metabolismo , Feminino , Masculino , Estudos Retrospectivos , Síndromes de Malabsorção/metabolismo , Síndromes de Malabsorção/etiologia , Síndromes de Malabsorção/complicações , Frutanos/metabolismo , Adulto , Pessoa de Meia-Idade , Hidrogênio/análise , Hidrogênio/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-38253396

RESUMO

Amylosucrase (EC 2.4.1.4) is a versatile enzyme with significant potential in biotechnology and food production. To facilitate its efficient preparation, a novel expression strategy was implemented in Bacillus licheniformis for the secretory expression of Neisseria polysaccharea amylosucrase (NpAS). The host strain B. licheniformis CBBD302 underwent genetic modification through the deletion of sacB, a gene responsible for encoding levansucrase that synthesizes extracellular levan from sucrose, resulting in a levan-deficient strain, B. licheniformis CBBD302B. Neisseria polysaccharea amylosucrase was successfully expressed in B. licheniformis CBBD302B using the highly efficient Sec-type signal peptide SamyL, but its extracellular translocation was unsuccessful. Consequently, the expression of NpAS via the twin-arginine translocation (TAT) pathway was investigated using the signal peptide SglmU. The study revealed that NpAS could be effectively translocated extracellularly through the TAT pathway, with the signal peptide SglmU facilitating the process. Remarkably, 62.81% of the total expressed activity was detected in the medium. This study marks the first successful secretory expression of NpAS in Bacillus species host cells, establishing a foundation for its future efficient production. ONE-SENTENCE SUMMARY: Amylosucrase was secreted in Bacillus licheniformis via the twin-arginine translocation pathway.


Assuntos
Bacillus licheniformis , Glucosiltransferases , Neisseria , Bacillus licheniformis/metabolismo , Sinais Direcionadores de Proteínas/genética , Frutanos , Arginina , Proteínas de Bactérias/genética
13.
Phytother Res ; 38(2): 662-693, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37966040

RESUMO

Diabetes mellitus is a globally metabolic endocrine syndrome marked by a deficiency of insulin secretion (type-1 DM) or glucose intolerance arising from insulin response impairment (type-2 DM) leading to abnormal glucose metabolism. With an increasing interest in natural dietary components for diabetes management, the identification of novel agents witnessed major discoveries. Plant-derived mucilage, pectin, and inulin are important non-starch polysaccharides that exhibit effective antidiabetic properties often termed soluble dietary fiber (SDF). SDF affects sugar metabolism through multiple mechanisms affecting glucose absorption and diffusion, modulation of carbohydrate metabolizing enzymes (α-amylase and α-glucosidase), ameliorating ß-pancreatic cell dysfunction, and improving insulin release or sensitivity. Certain SDFs inhibit dipeptidyl peptidase-4 and influence the expression levels of genes related to glucose metabolism. This review is designed to discuss holistically and critically the antidiabetic effects of major SDF and their underlying mechanisms of action. This review should aid drug discovery approaches in developing novel natural antidiabetic drugs from SDF.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemiantes , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/química , Inulina , Pectinas/farmacologia , Pectinas/uso terapêutico , Frutanos , Polissacarídeos , Insulina , Glucose , Diabetes Mellitus Tipo 2/tratamento farmacológico
14.
Int J Food Sci Nutr ; 75(6): 571-581, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38982571

RESUMO

Fructans are commonly used as dietary fibre supplements for their ability to promote the growth of beneficial gut microbes. However, fructan consumption has been associated with various dosage-dependent side effects. We characterised side effects in an exploratory analysis of a randomised trial in healthy adults (n = 40) who consumed 18 g/day inulin or placebo. We found that individuals weighing more or habitually consuming higher fibre exhibited the best tolerance. Furthermore, we identified associations between gut microbiome composition and host tolerance. Specifically, higher levels of Christensenellaceae R-7 group were associated with gastrointestinal discomfort, and a machine-learning-based approach successfully predicted high levels of flatulence, with [Ruminococcus] torques group and (Oscillospiraceae) UCG-002 sp. identified as key predictive taxa. These data reveal trends that can help guide personalised recommendations for initial inulin dosage. Our results support prior ecological findings indicating that fibre supplementation has the greatest impact on individuals whose baseline fibre intake is lowest.


Assuntos
Fibras na Dieta , Suplementos Nutricionais , Frutanos , Microbioma Gastrointestinal , Inulina , Humanos , Fibras na Dieta/farmacologia , Masculino , Adulto , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Frutanos/farmacologia , Inulina/farmacologia , Adulto Jovem , Peso Corporal , Pessoa de Meia-Idade , Flatulência
15.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39000470

RESUMO

Agave tequilana stems store fructan polymers, the main carbon source for tequila production. This crop takes six or more years for industrial maturity. In conducive conditions, agave wilt disease increases the incidence of dead plants after the fourth year. Plant susceptibility induced for limited photosynthates for defense is recognized in many crops and is known as "sink-induced loss of resistance". To establish whether A. tequilana is more prone to agave wilt as it ages, because the reduction of water-soluble carbohydrates in roots, as a consequence of greater assembly of highly polymerized fructans, were quantified roots sucrose, fructose, and glucose, as well as fructans in stems of agave plants of different ages. The damage induced by inoculation with Fusarium solani or F. oxysporum in the roots or xylem bundles, respectively, was recorded. As the agave plant accumulated fructans in the stem as the main sink, the amount of these hexoses diminished in the roots of older plants, and root rot severity increased when plants were inoculated with F. solani, as evidence of more susceptibility. This knowledge could help to structure disease management that reduces the dispersion of agave wilt, dead plants, and economic losses at the end of agave's long crop cycle.


Assuntos
Agave , Frutanos , Fusarium , Doenças das Plantas , Raízes de Plantas , Agave/microbiologia , Agave/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Frutanos/metabolismo , Doenças das Plantas/microbiologia , Fusarium/patogenicidade , Hexoses/metabolismo , Caules de Planta/microbiologia , Caules de Planta/metabolismo
16.
Prep Biochem Biotechnol ; 54(3): 407-418, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37632396

RESUMO

The present study demonstrates the usage of deep eutectic solvent to recover microbial levan from the clarified fermented broth. The classic ethanol precipitation method for levan recovery is expensive because ethanol can be utilized as a biofuel. Production of ethanol consumes more energy and is not easily recycled. As a result, the current work concentrates on using environmentally friendly solvents for levan recovery. Deep Eutectic Solvents (DES) are greener and can replace ethanol from the microbial polysaccharides precipitation. Thus the proposed approach is environment friendly, technically feasible, reliable and economically viable. The levan was produced from a microbial isolate of aged sugarcane molasses, recovered using traditional ethanol and proposed DES (Choline Chloride and Ethylene Glycol) assisted precipitation. The levan-producing strain was characterized and identified as Neobacillus pocheonensis BPSCM4. The DES-precipitated levan has a high molecular weight of levan, 1.54 × 106 KDa, compared with the ethanol-precipitated levan, 4.246 KDa. The high molecular weight of DES-precipitated levan is due to the low viscosity and hydrogen interaction of ChCl:EG with the levan present in the fermented broth. Further, the optimization enhanced the levan yield to 32.56 g/L when the sucrose concentration was 250 g/L.


Assuntos
Bacillus , Solventes Eutéticos Profundos , Etanol , Solventes , Peso Molecular , Frutanos
17.
Molecules ; 29(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38257195

RESUMO

Grains, essential for maintaining good health, contain short-chain carbohydrates like fructans, which can contribute to disorders in some individuals. Understanding and managing these FODMAPs (fermentable oligo-, di-, and monosaccharides and polyols) are essential for enhanced dietary guidance and well-being. The primary objective of the study was to establish safe portion sizes for grains and rice within low-FODMAP diets. A comprehensive analysis of fructan levels in diverse commercial cereal products contributes to an understanding of the potential digestive impact of FODMAPs in grains and supporting enhanced dietary guidance for individuals with FODMAP-related disorders. Various grains, like white and brown rice, barley, wheat groats, and buckwheat, highlight the challenges of handling fructans in a low-FODMAP diet. Fructans to heat-induced degradation, as demonstrated in bulgur, emphasize the need to consider cooking methods for managing their intake. Identification of potentially safe grains, like white long-grain rice and arborio rice, is significant, but caution is advised with barley groats and couscous, stressing personalized dietary decisions. Correlation analyses linking color parameters, moisture content, and fructan levels in cooked grains reveal a positive relationship, suggesting water content's potential impact on fructan stability and grain hydration properties. In conclusion, the study provides valuable insights into the intricate details of FODMAPs in grains, supporting the development of dietary strategies that enhance both health and sensory satisfaction.


Assuntos
Produtos Biológicos , Hordeum , Humanos , Dieta FODMAP , Grão Comestível , Culinária , Frutanos
18.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474615

RESUMO

The valorization of byproducts from the sugarcane industry represents a potential alternative method with a low energy cost for the production of metabolites that are of commercial and industrial interest. The production of exopolysaccharides (EPSs) was carried out using the yeast Suhomyces kilbournensis isolated from agro-industrial sugarcane, and the products and byproducts of this agro-industrial sugarcane were used as carbon sources for their recovery. The effect of pH, temperature, and carbon and nitrogen sources and their concentration in EPS production by submerged fermentation (SmF) was studied in 170 mL glass containers of uniform geometry at 30 °C with an initial pH of 6.5. The resulting EPSs were characterized with Fourier-transform infrared spectroscopy (FT-IR). The results showed that the highest EPS production yields were 4.26 and 44.33 g/L after 6 h of fermentation using sucrose and molasses as carbon sources, respectively. Finally, an FT-IR analysis of the EPSs produced by S. kilbournensis corresponded to levan, corroborating its origin. It is important to mention that this is the first work that reports the production of levan using this yeast. This is relevant because, currently, most studies are focused on the use of recombinant and genetically modified microorganisms; in this scenario, Suhomyces kilbournensis is a native yeast isolated from the sugar production process, giving it a great advantage in the incorporation of carbon sources into their metabolic processes in order to produce levan sucrose, which uses fructose to polymerize levan.


Assuntos
Saccharomycetales , Saccharum , Fermentação , Saccharum/metabolismo , Melaço/análise , Carbono , Espectroscopia de Infravermelho com Transformada de Fourier , Saccharomyces cerevisiae/metabolismo , Frutanos/química , Sacarose/metabolismo
19.
Cryo Letters ; 45(4): 221-230, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38809786

RESUMO

BACKGROUND: Today, synthetic chemicals are used in vitrification solutions for cryopreservation studies to mimic natural cryoprotectants that supply tolerance to organisms in nature against freezing stress. In the case of plants, PVS2, containing glycerol, dimethyl sulfoxide (Me2SO), ethylene glycol and sucrose, is considered as the golden standard for successful cryopreservation. However, Me2SO can generally cause toxicity to certain plant cells, adversely affecting viability after freezing and/or thawing. Hence, the replacement (or substantial reduction) of Me2SO by cheap, non-toxic and natural cryoprotectants became a matter of high priority to vitrification solutions or reducing their content gained escalating importance for the cryopreservation of plants. Fructans, sucrose derivatives mainly consisting of fructose residues, are candidate cryoprotectants. OBJECTIVE: Inspired by their protective role in nature, we here explored, for the first time, the potential of an array of 8 structurally different fructans as cryoprotectants in plant cryopreservation. MATERIALS AND METHODS: Arabidopsis thaliana L. seedlings were used as a model system with a one-step vitrification method. PVS2 solutions with different Me2SO and fructan contents were evaluated. RESULTS: It was found that branched low DP graminan, extracted from milky stage wheat kernels, led to the highest recovery (85%) among tested fructans with 12.5% Me2SO after cryopreservation, which was remarkably close to the viability (90%) observed with the original PVS2 containing 15% Me2SO. Moreover, its protective efficacy could be further optimized by addition of vitamin C acting as an antioxidant. CONCLUSION: Such novel formulations offer great perspectives for cryopreservation of various crop species. Doi.org/10.54680/fr24410110512.


Assuntos
Arabidopsis , Criopreservação , Crioprotetores , Dimetil Sulfóxido , Frutanos , Vitrificação , Crioprotetores/farmacologia , Crioprotetores/química , Criopreservação/métodos , Frutanos/farmacologia , Frutanos/química , Arabidopsis/efeitos dos fármacos , Vitrificação/efeitos dos fármacos , Dimetil Sulfóxido/farmacologia , Glicerol/farmacologia , Glicerol/química , Plântula/efeitos dos fármacos , Congelamento , Sacarose/farmacologia , Sacarose/química , Etilenoglicol/farmacologia , Etilenoglicol/química , Antioxidantes/farmacologia
20.
J Sci Food Agric ; 104(12): 7476-7487, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38742546

RESUMO

BACKGROUND: Garlic polysaccharides (GPs) constitute over 75% of the dry weight of garlic. They are characterized by fructan with a 2,1-ß-d-Fruf backbone and 2,6-ß-d-Fruf branches. Studies have suggested a role for GPs in regulating gut microbiota but whether they possess a comprehensive function in maintaining intestinal well-being and can serve as effective prebiotics remains unknown. To explore this, varied doses of GPs (1.25-5.0 g kg-1 body weight) and inulin (as a positive control) were administered to Kunming mice via gavage, and their effects on the intestinal epithelial, chemical, and biological barriers were assessed. A constipation model was also established using loperamide to investigate the potential effects of GPs on the relief of constipation. RESULTS: Administration of GPs significantly upregulated expression of tight-junction proteins and mucins in Kunming mouse small-intestine tissue. Garlic polysaccharides elevated cecal butyric acid content, reduced the abundance of Desulfobacterota, and decreased the ratio of Firmicutes to Bacteroidetes (the F/B ratio). Garlic polysaccharides also promoted the growth of Bacteroides acidifaciens and Clostridium saccharogumia. Tax4Fun functional predictions suggested the potential of GPs to prevent human diseases, reducing the risk of insulin resistance, infectious diseases, and drug resistance. Garlic polysaccharides also exhibited a beneficial effect in alleviating loperamide-induced constipation symptoms by enhancing small intestinal transit, softening stool consistency, accelerating bowel movements, and promoting the release of excitatory neurotransmitters. CONCLUSIONS: These findings highlight the important role of GPs in maintaining gut fitness by enhancing intestinal barrier function and peristalsis. Garlic polysaccharides are promising prebiotics, potentially contributing to overall intestinal well-being and health. © 2024 Society of Chemical Industry.


Assuntos
Constipação Intestinal , Frutanos , Alho , Microbioma Gastrointestinal , Oligossacarídeos , Extratos Vegetais , Prebióticos , Animais , Constipação Intestinal/tratamento farmacológico , Constipação Intestinal/induzido quimicamente , Camundongos , Alho/química , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Prebióticos/administração & dosagem , Frutanos/química , Oligossacarídeos/administração & dosagem , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Bactérias/genética , Humanos , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Polissacarídeos/farmacologia , Polissacarídeos/administração & dosagem , Polissacarídeos/química , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Intestino Delgado/efeitos dos fármacos , Animais não Endogâmicos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa