RESUMO
The cyclic nucleotide cyclic guanosine monophosphate (cGMP) is a powerful cell signaling molecule involved in biotic and abiotic stress perception and signal transduction. In the model plant Arabidopsis thaliana, salt and osmotic stress rapidly induce increase in cGMP which plays role by modulating the activity of monovalent cation transporters, possibly by direct binding to these proteins and by altering the expression of many abiotic stress responsive genes. In a recent study, a membrane permeable analogue of cGMP (8-bromo-cGMP) was found to have a promotive effect on soluble sugar, flavonoids and lignin content, and membrane integrity in Solanum lycopersicum seedlings under salt stress. However, it remains to be elucidated how salt stress affects the endogenous cGMP level in S. lycopersicum and if Br-cGMP-induced improvement in salt tolerance in S. lycopersicum involves altered cation fluxes. The current study was conducted to answer these questions. A rapid increase (within 30 s) in endogenous cGMP level was determined in S. lycopersicum roots after treatment with 100 mM NaCl. Addition of membrane permeable Br-cGMP in growth medium remarkably ameliorated the inhibitory effects of NaCl on seedlings' growth parameters, chlorophyll content and net photosynthesis rate. In salt stressed plants, Br-cGMP significantly decreased Na+ content by reducing its influx and increasing efflux while it improved plants K+ content by reducing its efflux and enhancing influx. Furthermore, supplementation with Br-cGMP improved plant's proline content and total antioxidant capacity, resulting in markedly decreased electrolyte leakage under salt stress. Br-cGMP increased the expression of Na+/H+ antiporter genes in roots and shoots of S. lycopersicum growing under salt stress, potentially enhancing plant's ability to sequester Na+ into the vacuole. The findings of this study provide insights into the mechanism of cGMP-induced salt stress tolerance in S. lycopersicum.
Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Guanosina Monofosfato/metabolismo , Guanosina Monofosfato/farmacologia , Tolerância ao Sal/genética , Cloreto de Sódio/farmacologia , PlântulaRESUMO
INTRODUCTION: Male sexual potency and vigor are a complex neuroendocrine process and an important component of well-being. Psychological stress is one of the leading causes of male impotence worldwide. Therefore, to better understand the effects of psychological stress on male sexual potency, vigor, and the physiology of erection, we used the rat restraint stress (RS) model, which can most aptly simulate psychological stress. METHODS: Adult male SD rats were exposed to RS for 1.5 or 3 h/day for 30 days. Neuromodulators and hormones of sexual potency and penile erection were quantified using ELISA kit. The histoarchitecture of the penis was examined using Masson trichrome staining. Immunoblotting and immunofluorescence were used to assess the expression and immunolocalization patterns of penile erection markers. To assess sexual potency and vigor, a noncontact erection and a copulatory test were performed. RESULTS: RS exposure decreased the circulatory levels of gonadotropins and testosterone while increasing the serum corticosterone level. RS exposure altered the histomorphology of the penis by decreasing the smooth muscle/collagen ratio and increasing oxidative stress in penile tissue. Furthermore, RS adversely affected NO availability for penile erection by decreasing the neurotransmitter acetylcholine and other erection facilitatory markers such as p-Akt, nNOS, eNOS, and cGMP, while increasing the inhibitory marker PDE5α in the penis. RS exposure significantly reduced the frequencies of mount, intromission, and ejaculation, whereas it prolonged sexual exhaustion by increasing latencies of postejaculatory mount, intromission, and ejaculation. CONCLUSION: The current findings suggest that psychological stressors, such as RS, cause erectile dysfunction in adult male rats by modulating the hypothalamic-pituitary-testicular axis, oxidative balance, penile fibrosis, and the NO/cGMP/PDE5α pathway of penile erection.
Assuntos
Disfunção Erétil , Ereção Peniana , Animais , Masculino , Ratos , Disfunção Erétil/etiologia , Disfunção Erétil/metabolismo , Guanosina Monofosfato/farmacologia , Óxido Nítrico/farmacologia , Ereção Peniana/fisiologia , Diester Fosfórico Hidrolases/farmacologia , Ratos Sprague-Dawley , Hipotálamo/metabolismo , Hipófise/metabolismo , Testículo/metabolismo , Estresse FisiológicoRESUMO
ABSTRACT: Sodium ferulate (SF) is the sodium salt of ferulic acid, which is one of the effective components of Angelica sinensis and Lignsticum chuanxiong , and plays an important role in protecting the cardiovascular system. In this study, myocardial hypertrophy was induced by angiotensin II 0.1 µmol/L in neonatal Sprague-Dawley rat ventricular myocytes. Nine groups were designed, that is, normal, normal administration, model, L-arginine (L-arg 1000 µmol/L), SF (50, 100, 200 µmol/L) group, and N G -nitro-L-arg-methyl ester 1500 µmol/L combined with SF 200 µmol/L or L-arg 1000 µmol/L group, respectively. Cardiomyocyte hypertrophy was confirmed by observing histological changes and measurements of cell diameter, protein content and atrial natriuretic factor, and ß-myosin heavy chain levels of the cells. Notably, SF could inhibit significantly myocardial hypertrophy of neonatal rat cardiomyocytes in a concentration-dependent manner without producing cytotoxicity, and the levels of nitric oxide, NO synthase (NOS), endothelial NOS, and cyclic guanosine monophosphate were increased, but the level of cyclic adenosine monophosphate was decreased in cardiomyocytes. Simultaneously, levels of protein kinase C beta, Raf-1, and extracellular regulated protein kinase 1/2 (ERK1/2) were downregulated, whereas levels of mitogen-activated protein kinase phosphatase-1 were significantly upregulated. All the beneficial effects of SF were blunted by N G -nitro-L-arg-methyl ester. Overall, these findings reveal that SF can inhibit angiotensin II-induced myocardial hypertrophy of neonatal rat cardiomyocytes, which is closely related to activation of endothelial NOS/NO/cyclic guanosine monophosphate, and inhibition of protein kinase C and mitogen-activated protein kinase signaling pathways.
Assuntos
Angiotensina II , Óxido Nítrico Sintase Tipo III , Angiotensina II/metabolismo , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , Cardiomegalia/prevenção & controle , Ácidos Cumáricos , GMP Cíclico/metabolismo , Ésteres , Guanosina Monofosfato/metabolismo , Guanosina Monofosfato/farmacologia , Miócitos Cardíacos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de SinaisRESUMO
Blutaparon portulacoides is a Brazilian plant species that is widely used in folk medicine. The present study investigated the role of an aqueous extract of B. portulacoides against hypertension in spontaneously hypertensive rats. The aqueous extract of B. portulacoides was obtained from the whole plant. Its chemical profile was analyzed by ultraperformance liquid chromatography-tandem mass spectrometry. The acute toxicity of the aqueous extract of B. portulacoides was evaluated in female Wistar rats. Male 6-month-old spontaneously hypertensive rats then received the aqueous extract of B. portulacoides (30, 100, and 300 mg/kg), hydrochlorothiazide (25 mg/kg), or vehicle once daily for 28 days. On days 1, 14, and 28, the diuretic effects of the aqueous extract of B. portulacoides were evaluated. The role of prostaglandins and the nitric oxide-cyclic guanosine monophosphate-potassium channel pathway in the diuretic activity of the aqueous extract of B. portulacoides was also investigated. At the end of the treatment, hepatic and renal biochemical markers, serum nitrotyrosine, malondialdehyde, nitrite, and aldosterone levels, and angiotensin-converting enzyme activity were measured. The electrocardiographic profile, blood pressure, and renal vascular reactivity were also assessed. The heart, kidneys, and liver were collected to determine relative organ weight, histopathology, and cardiac morphometry. Caffeic acid, ferulic acid, and several flavonoids were identified in the aqueous extract of B. portulacoides. No signs of toxicity were observed. Prolonged treatment with the aqueous extract of B. portulacoides (300 mg/kg) induced significant diuretic activity by activating the nitric oxide-cyclic guanosine monophosphate-potassium channel pathway. These effects reduced blood pressure and oxidative stress and prevented renal vascular dysfunction and left ventricular hypertrophy that was induced by hypertension. Overall, the present data suggest that the aqueous extract of B. portulacoides has important diuretic and cardioprotective effects by activation of the nitric oxide-cyclic guanosine monophosphate-potassium channel pathway.
Assuntos
Amaranthaceae , Hipertensão , Ratos , Animais , Diuréticos/farmacologia , Ratos Endogâmicos SHR , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Nitritos/farmacologia , Aldosterona/farmacologia , Guanosina Monofosfato/farmacologia , Ratos Wistar , Extratos Vegetais/farmacologia , Pressão Sanguínea , Hipertensão/tratamento farmacológico , GMP Cíclico/metabolismo , Hidroclorotiazida/farmacologia , Prostaglandinas/farmacologia , Canais de Potássio , Biomarcadores , Flavonoides/farmacologia , Malondialdeído , Angiotensinas/metabolismo , Angiotensinas/farmacologia , Anti-Hipertensivos/farmacologiaRESUMO
The impact of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of COVID-19, is global and unprecedented. Although remdesivir has recently been approved by the FDA to treat SARS-CoV-2 infection, no oral antiviral is available for outpatient treatment. AT-527, an orally administered double prodrug of a guanosine nucleotide analog, was previously shown to be highly efficacious and well tolerated in hepatitis C virus (HCV)-infected subjects. Here, we report the potent in vitro activity of AT-511, the free base of AT-527, against several coronaviruses, including SARS-CoV-2. In normal human airway epithelial cells, the concentration of AT-511 required to inhibit replication of SARS-CoV-2 by 90% (EC90) was 0.47 µM, very similar to its EC90 against human coronavirus (HCoV)-229E, HCoV-OC43, and SARS-CoV in Huh-7 cells. Little to no cytotoxicity was observed for AT-511 at concentrations up to 100 µM. Substantial levels of the active triphosphate metabolite AT-9010 were formed in normal human bronchial and nasal epithelial cells incubated with 10 µM AT-511 (698 ± 15 and 236 ± 14 µM, respectively), with a half-life of at least 38 h. Results from steady-state pharmacokinetic and tissue distribution studies of nonhuman primates administered oral doses of AT-527, as well as pharmacokinetic data from subjects given daily oral doses of AT-527, predict that twice daily oral doses of 550 mg AT-527 will produce AT-9010 trough concentrations in human lung that exceed the EC90 observed for the prodrug against SARS-CoV-2 replication. This suggests that AT-527 may be an effective treatment option for COVID-19.
Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Guanosina Monofosfato/análogos & derivados , Guanosina/farmacologia , Fosforamidas/farmacologia , Pró-Fármacos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Administração Oral , Animais , COVID-19/virologia , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Coronavirus Humano 229E/metabolismo , Coronavirus Humano OC43/metabolismo , Cricetinae , Células Epiteliais/virologia , Guanosina Monofosfato/farmacologia , Humanos , Pulmão/virologia , SARS-CoV-2/metabolismo , Células Vero , Replicação Viral/efeitos dos fármacosRESUMO
We determined the effects of complete fishmeal (FM) replacement by alternative protein (soy protein concentrate, SPC) with guanosine monophosphate (GMP) supplementation on growth, digestibility, immunity, blood chemistry profile, and stress resistance of juvenile red sea bream, Pagrus major. FM protein of a FM-based control diet (FM0) was replaced with 33.3 (FM33.3), 66.6 (FM66.7), and 100% (FM100) by SPC protein, and each replacement group was supplemented with 0.4% GMP to formulate four experimental diets. Each diet was randomly allocated to triplicate groups of fish (4.8 g) for 56 days. Results demonstrated that fish fed diet group FM33.3 had the significantly highest final weight, weight gain-specific growth rate, and feed intake. Meanwhile, in comparison to control, growth performance and feed utilization did not significantly differ with 66.7% FM replacement by SPC with GMP supplementation. Apparent digestibility coefficient of protein and lipid also followed a similar trend. All growth, feed utilization, and digestibility parameters were significantly lower in FM100 diet group. Blood urea nitrogen (BUN) and triglycerides (TG) increased (P < 0.05) with increasing FM replacement level by SPC. Interestingly, total cholesterol level reduces with the increasing level of FM replacement by SPC with GMP supplementation. Fish fed FM0 diet group showed the best condition of both oxidative and freshwater stress resistance. Meanwhile, FM33.3 and FM66.7 diet groups showed acceptable conditions. Innate immune responses enhanced with the increasing FM replacement level by SPC with GMP supplementation. In conclusion, FM could be replaced ≤66.7% by SPC with GMP supplementation in diets for red sea bream without any adverse effects on fish performances.
Assuntos
Ração Animal/análise , Proteínas Alimentares/administração & dosagem , Produtos Pesqueiros , Guanosina Monofosfato/administração & dosagem , Perciformes/fisiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Proteínas Alimentares/análise , Suplementos Nutricionais , Guanosina Monofosfato/farmacologia , Perciformes/imunologia , Salinidade , Estresse FisiológicoRESUMO
Ribonucleoside analog inhibitors (rNAI) target the hepatitis C virus (HCV) RNA-dependent RNA polymerase nonstructural protein 5B (NS5B) and cause RNA chain termination. Here, we expand our studies on ß-d-2'-C-methyl-2,6-diaminopurine-ribonucleotide (DAPN) phosphoramidate prodrug 1 (PD1) as a novel investigational inhibitor of HCV. DAPN-PD1 is metabolized intracellularly into two distinct bioactive nucleoside triphosphate (TP) analogs. The first metabolite, 2'-C-methyl-GTP, is a well-characterized inhibitor of NS5B polymerase, whereas the second metabolite, 2'-C-methyl-DAPN-TP, behaves as an adenosine base analog. In vitro assays suggest that both metabolites are inhibitors of NS5B-mediated RNA polymerization. Additional factors, such as rNAI-TP incorporation efficiencies, intracellular rNAI-TP levels, and competition with natural ribonucleotides, were examined in order to further characterize the potential role of each nucleotide metabolite in vivo Finally, we found that although both 2'-C-methyl-GTP and 2'-C-methyl-DAPN-TP were weak substrates for human mitochondrial RNA (mtRNA) polymerase (POLRMT) in vitro, DAPN-PD1 did not cause off-target inhibition of mtRNA transcription in Huh-7 cells. In contrast, administration of BMS-986094, which also generates 2'-C-methyl-GTP and previously has been associated with toxicity in humans, caused detectable inhibition of mtRNA transcription. Metabolism of BMS-986094 in Huh-7 cells leads to 87-fold higher levels of intracellular 2'-C-methyl-GTP than DAPN-PD1. Collectively, our data characterize DAPN-PD1 as a novel and potent antiviral agent that combines the delivery of two active metabolites.
Assuntos
Adenosina/análogos & derivados , Antivirais/farmacologia , Guanosina Monofosfato/análogos & derivados , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Pró-Fármacos/farmacologia , Sofosbuvir/farmacologia , Adenosina/farmacologia , Linhagem Celular , RNA Polimerases Dirigidas por DNA/metabolismo , Guanosina Monofosfato/farmacologia , Humanos , RNA/metabolismo , RNA Mitocondrial , RNA Viral/metabolismo , Ribonucleosídeos/metabolismo , Transcrição Gênica/efeitos dos fármacos , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacosRESUMO
Toxicity has emerged during the clinical development of many but not all nucleotide inhibitors (NI) of hepatitis C virus (HCV). To better understand the mechanism for adverse events, clinically relevant HCV NI were characterized in biochemical and cellular assays, including assays of decreased viability in multiple cell lines and primary cells, interaction with human DNA and RNA polymerases, and inhibition of mitochondrial protein synthesis and respiration. NI that were incorporated by the mitochondrial RNA polymerase (PolRMT) inhibited mitochondrial protein synthesis and showed a corresponding decrease in mitochondrial oxygen consumption in cells. The nucleoside released by the prodrug balapiravir (R1626), 4'-azido cytidine, was a highly selective inhibitor of mitochondrial RNA transcription. The nucleotide prodrug of 2'-C-methyl guanosine, BMS-986094, showed a primary effect on mitochondrial function at submicromolar concentrations, followed by general cytotoxicity. In contrast, NI containing multiple ribose modifications, including the active forms of mericitabine and sofosbuvir, were poor substrates for PolRMT and did not show mitochondrial toxicity in cells. In general, these studies identified the prostate cell line PC-3 as more than an order of magnitude more sensitive to mitochondrial toxicity than the commonly used HepG2 cells. In conclusion, analogous to the role of mitochondrial DNA polymerase gamma in toxicity caused by some 2'-deoxynucleotide analogs, there is an association between HCV NI that interact with PolRMT and the observation of adverse events. More broadly applied, the sensitive methods for detecting mitochondrial toxicity described here may help in the identification of mitochondrial toxicity prior to clinical testing.
Assuntos
Antivirais/farmacologia , RNA Polimerases Dirigidas por DNA/efeitos dos fármacos , Hepacivirus/efeitos dos fármacos , Hepatite C Crônica/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Linhagem Celular , DNA Polimerase gama , DNA Polimerase Dirigida por DNA/genética , RNA Polimerases Dirigidas por DNA/genética , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Guanosina Monofosfato/análogos & derivados , Guanosina Monofosfato/farmacologia , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Nucleosídeos/farmacologia , Consumo de Oxigênio/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , RNA/genética , RNA Mitocondrial , Sofosbuvir/farmacologia , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Replicação Viral/efeitos dos fármacosRESUMO
In the last few months, a new Zika virus (ZIKV) outbreak evolved in America. In accordance, World Health Organization (WHO) in February 2016 declared it as Public Health Emergency of International Concern (PHEIC). ZIKV infection was reported in more than 60 countries and the disease was spreading since 2007 but with little momentum. Many antiviral drugs are available in market or in laboratories under clinical trials, could affect ZIKV infection. In silico docking study were performed on the ZIKV polymerase to test some of Hepatitis C Virus (HCV) drugs (approved and in clinical trials). The results show potency of almost all of the studied compounds on ZIKV polymerase and hence inhibiting the propagation of the disease. In addition, the study suggested two nucleotide inhibitors (IDX-184 and MK0608) that may be tested as drugs against ZIKV infection. J. Med. Virol. 88:2044-2051, 2016. © 2016 Wiley Periodicals, Inc.
Assuntos
Antivirais/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Infecção por Zika virus/tratamento farmacológico , Zika virus/efeitos dos fármacos , Zika virus/enzimologia , Ensaios Clínicos como Assunto , Simulação por Computador , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Guanosina Monofosfato/análogos & derivados , Guanosina Monofosfato/farmacologia , Guanosina Monofosfato/uso terapêutico , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Hepatite C/virologia , Humanos , Simulação de Acoplamento Molecular , Tubercidina/análogos & derivados , Tubercidina/farmacologia , Tubercidina/uso terapêutico , Infecção por Zika virus/virologiaRESUMO
The protozoan parasite Leishmania amazonensis is the etiological agent of cutaneous leishmaniasis. During its life cycle, the flagellated metacyclic promastigote forms are transmitted to vertebrate hosts by sandfly bites, and they develop into amastigotes inside macrophages, where they multiply. L. amazonensis possesses a bifunctional enzyme, called 3'-nucleotidase/nuclease (3'NT/NU), which is able to hydrolyze extracellular 3'-monophosphorylated nucleosides and nucleic acids. 3'NT/NU plays an important role in the generation of extracellular adenosine and has been described as a key enzyme in the acquisition of purines by trypanosomatids. Furthermore, it has been observed that 3'NT/NU also plays a valuable role in the establishment of parasitic infection. In this context, this study aimed to investigate the modulation of the 3'-nucleotidase (3'NT) activity of L. amazonensis by several nucleotides. It was observed that 3'NT activity is inhibited by micromolar concentrations of guanosine and guanine nucleotides. The inhibition promoted by 5'-GMP on the 3'NT activity of L. amazonensis is reversible and uncompetitive because the addition of the inhibitor decreased the kinetic parameters Km and Vmax. Finally, we found that the addition of 5'-GMP is able to reverse the stimulation promoted by 3'-AMP in a macrophage-parasite interaction assay. The determination of compounds that can inhibit the 3'NT activity of Leishmania is very important because this enzyme does not occur in mammals, making it a potential therapeutic target.
Assuntos
Guanosina Difosfato/farmacologia , Guanosina Monofosfato/farmacologia , Guanosina Trifosfato/farmacologia , Leishmania mexicana/enzimologia , Nucleotidases/antagonistas & inibidores , Animais , Cinética , Leishmania mexicana/efeitos dos fármacos , Macrófagos/parasitologia , Camundongos , Nucleotidases/metabolismo , Células RAW 264.7RESUMO
Hydrogen sulfide (H2S) is synthesized in perivascular adipose tissue (PVAT) and induces vasorelaxation. We examined whether the sulfur-containing AMP and GMP analogs AMPS and GMPS can serve as the H2S donors in PVAT. H2S production by isolated rat periaortic adipose tissue (PAT) was measured with a polarographic sensor. In addition, phenylephrine-induced contractility of aortic rings with (+) or without (-) PAT was examined. Isolated PAT produced H2S from AMPS or GMPS in the presence of the P2X7 receptor agonist BzATP. Phenylephrine-induced contractility of PAT(+) rings was lower than of PAT(-) rings. AMPS or GMPS had no effect on the contractility of PAT(-) rings, but used together with BzATP reduced the contractility of PAT(+) rings when endogenous H2S production was inhibited with propargylglycine. A high-fat diet reduced endogenous H2S production by PAT. Interestingly, AMPS and GMPS were converted to H2S by PAT of obese rats, and reduced contractility of PAT(+) aortic rings isolated from these animals even in the absence of BzATP. We conclude that (i) AMPS and GMPS can be hydrolyzed to H2S by PAT when P2X7 receptors are activated, (ii) a high-fat diet impairs endogenous H2S production by PAT, (iii) AMPS and GMPS restore the anticontractile effects of PAT in obese animals without P2X7 stimulation.
Assuntos
Monofosfato de Adenosina/análogos & derivados , Tecido Adiposo/metabolismo , Aorta/efeitos dos fármacos , Guanosina Monofosfato/farmacologia , Sulfeto de Hidrogênio/metabolismo , Tionucleotídeos/farmacologia , Vasodilatação/efeitos dos fármacos , Monofosfato de Adenosina/farmacologia , Tecido Adiposo/efeitos dos fármacos , Animais , Aorta/metabolismo , Aorta Abdominal/efeitos dos fármacos , Aorta Abdominal/metabolismo , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Técnicas In Vitro , Masculino , Contração Muscular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Obesidade/metabolismo , Obesidade/fisiopatologia , Ratos WistarRESUMO
Resistance to the 2'-F-2'-C-methylguanosine monophosphate nucleotide hepatitis C virus (HCV) inhibitors PSI-352938 and PSI-353661 was associated with a combination of amino acid changes (changes of S to G at position 15 [S15G], C223H, and V321I) within the genotype 2a nonstructural protein 5B (NS5B), an RNA-dependent RNA polymerase. To understand the role of these residues in viral replication, we examined the effects of single and multiple point mutations on replication fitness and inhibition by a series of nucleotide analog inhibitors. An acidic residue at position 15 reduced replicon fitness, consistent with its proximity to the RNA template. A change of the residue at position 223 to an acidic or large residue reduced replicon fitness, consistent with its proposed proximity to the incoming nucleoside triphosphate (NTP). A change of the residue at position 321 to a charged residue was not tolerated, consistent with its position within a hydrophobic cavity. This triple resistance mutation was specific to both genotype 2a virus and 2'-F-2'-C-methylguanosine inhibitors. A crystal structure of the NS5B S15G/C223H/V321I mutant of the JFH-1 isolate exhibited rearrangement to a conformation potentially consistent with short primer-template RNA binding, which could suggest a mechanism of resistance accomplished through a change in the NS5B conformation, which was better tolerated by genotype 2a virus than by viruses of other genotypes.
Assuntos
Farmacorresistência Viral/genética , Hepacivirus/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/ultraestrutura , Replicação Viral/genética , Antivirais/farmacologia , Cristalografia por Raios X , Óxidos P-Cíclicos/farmacologia , Guanosina Monofosfato/análogos & derivados , Guanosina Monofosfato/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/crescimento & desenvolvimento , Humanos , Nucleosídeos/farmacologia , Estrutura Terciária de Proteína , RNA Viral/genética , Proteínas de Ligação a RNA/genéticaRESUMO
The hepatitis C virus (HCV) nonstructural 5A (NS5A) protein is a clinically validated target for drugs designed to treat chronic HCV infection. This study evaluated the in vitro activity, selectivity, and resistance profile of a novel anti-HCV compound, samatasvir (IDX719), alone and in combination with other antiviral agents. Samatasvir was effective and selective against infectious HCV and replicons, with 50% effective concentrations (EC50s) falling within a tight range of 2 to 24 pM in genotype 1 through 5 replicons and with a 10-fold EC50 shift in the presence of 40% human serum in the genotype 1b replicon. The EC90/EC50 ratio was low (2.6). A 50% cytotoxic concentration (CC50) of >100 µM provided a selectivity index of >5 × 10(7). Resistance selection experiments (with genotype 1a replicons) and testing against replicons bearing site-directed mutations (with genotype 1a and 1b replicons) identified NS5A amino acids 28, 30, 31, 32, and 93 as potential resistance loci, suggesting that samatasvir affects NS5A function. Samatasvir demonstrated an overall additive effect when combined with interferon alfa (IFN-α), ribavirin, representative HCV protease, and nonnucleoside polymerase inhibitors or the nucleotide prodrug IDX184. Samatasvir retained full activity in the presence of HIV and hepatitis B virus (HBV) antivirals and was not cross-resistant with HCV protease, nucleotide, and nonnucleoside polymerase inhibitor classes. Thus, samatasvir is a selective low-picomolar inhibitor of HCV replication in vitro and is a promising candidate for future combination therapies with other direct-acting antiviral drugs in HCV-infected patients.
Assuntos
Antivirais/farmacologia , Benzimidazóis/farmacologia , Carbamatos/farmacologia , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Hepacivirus/efeitos dos fármacos , Proteínas não Estruturais Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Sinergismo Farmacológico , Genótipo , Guanosina Monofosfato/análogos & derivados , Guanosina Monofosfato/farmacologia , Células Hep G2 , Hepacivirus/genética , Hepacivirus/crescimento & desenvolvimento , Humanos , Interferon-alfa/farmacologia , Mutação , Replicon , Ribavirina/farmacologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismoRESUMO
Hydrogen sulfide (H2S) is the gasotransmitter enzymatically synthesized in mammalian tissues from l-cysteine. H2S donors are considered as the potential drugs for the treatment of cardiovascular, neurological and inflammatory diseases. Recently, it has been demonstrated that synthetic nucleotide analogs, adenosine- and guanosine 5'-monophosphorothioates (AMPS and GMPS) can be converted to H2S and AMP or GMP, respectively, by purified histidine triad nucleotide-binding (Hint) proteins. We examined if AMPS and GMPS can be used as the H2S donors in intact biological systems. H2S production by isolated rat kidney glomeruli was measured by the specific polarographic sensor. H2S production was detected when glomeruli were incubated with AMPS or GMPS and ionotropic purinergic P2X7 receptor/channel agonist, BzATP. More H2S was generated from GMPS than from equimolar amount of AMPS. Nucleoside phosphorothioates together with BzATP relaxed angiotensin II-preconstricted glomeruli. In addition, infusion of AMPS or GMPS together with BzATP into the renal artery increased filtration fraction and glomerular filtration rate but had no effect on renal vascular resistance or renal blood flow. AMPS but not GMPS was converted to adenosine by isolated glomeruli, however, adenosine was not involved in AMPS-induced H2S synthesis because neither adenosine nor specific adenosine receptor agonists had any effect on H2S production. AMPS, but not GMPS, increased phosphorylation level of AMP-stimulated protein kinase (AMPK), but AMPK inhibitor, compound C, had no effect on AMPS-induced H2S production. In conclusion, nucleoside phosphorothioates are converted to H2S which relaxes isolated kidney glomeruli in vitro and increases glomerular filtration rate in vivo. AMPS and GMPS can be used as the H2S donors in experimental studies and possibly also as the H2S-releasing drugs.
Assuntos
Monofosfato de Adenosina/análogos & derivados , Guanosina Monofosfato/farmacologia , Sulfeto de Hidrogênio/metabolismo , Glomérulos Renais/efeitos dos fármacos , Tionucleotídeos/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Adenosina/metabolismo , Monofosfato de Adenosina/farmacologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Taxa de Filtração Glomerular/efeitos dos fármacos , Técnicas In Vitro , Glomérulos Renais/metabolismo , Glomérulos Renais/fisiologia , Masculino , Agonistas do Receptor Purinérgico P2X/farmacologia , Ratos WistarRESUMO
The development of cancer and fibrotic diseases has been shown to be highly dependent on disregulation of cap-dependent translation. Binding protein eIF4E to N(7)-methylated guanosine capped mRNA has been found to be the rate-limiting step governing translation initiation, and therefore represents an attractive target for drug discovery. Our group has found that 7-benzyl guanosine monophosphate (7Bn-GMP) is a potent antagonist of eIF4E cap binding (K(d) = 0.8 µM). Recent X-ray crystallographic studies have revealed that the cap-dependent pocket undergoes a unique structural change in order to accommodate the benzyl group. Unfortunately, 7Bn-GMP is not cell permeable. Recently, we have prepared a tryptamine phosphoramidate prodrug of 7Bn-GMP, 4Ei-1, and shown that it is a substrate for human histidine triad nucleotide binding protein (hHINT1) and inhibits eIF4E initiated epithelial-mesenchymal transition (EMT) by Zebra fish embryo cells. To assess the intracellular uptake of 4Ei-1 and conversion to 7Bn-GMP by cancer cells, we developed a sensitive assay using LC-ESI-MS/MS for the intracellular quantitation of 4Ei-1 and 7Bn-GMP. When incubated with the breast cancer cell line MDA-231 or lung cancer cell lines H460, H383 and H2009, 4Ei-1 was found to be rapidly internalized and converted to 7Bn-GMP. Since oncogenic mRNAs are predicted to have the highest eIF4E requirement for translation, we carried out chemosensitization studies with 4Ei-1. The prodrug was found to chemosensitize both breast and lung cancer cells to nontoxic levels of gemcitabine. Further mechanistic studies revealed that the expressed levels of eIF4E were substantially reduced in cells treated with 4Ei-1 in a dose-dependent manner. The levels of eI4E could be restored by treatment with the proteasome inhibitor MG-132. Taken together, our results demonstrate that 4Ei-1 is likely to inhibit translation initiation by eIF4E cap binding by both antagonizing eIF4E cap binding and initiating eIF4E proteasomal degradation.
Assuntos
Neoplasias da Mama/metabolismo , Desoxicitidina/análogos & derivados , Fator de Iniciação 4E em Eucariotos/metabolismo , Guanosina Monofosfato/análogos & derivados , Guanosina Monofosfato/farmacologia , Neoplasias Pulmonares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Cristalografia por Raios X , Desoxicitidina/farmacologia , Humanos , Modelos Químicos , Espectrometria de Massas por Ionização por Electrospray , GencitabinaRESUMO
BACKGROUND: The ratio of ucGMP (urinary cyclic guanosine monophosphate) to BNP (B-type natriuretic peptide) is thought to reflect the responsiveness of tissues to natriuretic peptides. METHODS: We examined the relationship between ucGMP/BNP ratio and clinical outcomes, the effect of sacubitril/valsartan, compared with enalapril, on the ucGMP/BNP ratio, and the efficacy of sacubitril/valsartan on clinical outcomes according to baseline ucGMP/BNP ratio in PARADIGM-HF trial (Prospective Comparison of ARNI With ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure). ucGMP/BNP ratio was available at baseline (N=2031), 1 month (N=1959), and 8 months after randomization (N=1746). The primary outcome was a composite of heart failure hospitalization or cardiovascular death. RESULTS: Compared with the lowest tertile of baseline ucGMP/BNP ratio, patients in the higher tertiles had a lower risk of the primary outcome (tertile 1, reference; tertile 2, hazard ratio 0.57 [95% CI, 0.45-0.71]; tertile 3, hazard ratio, 0.54 [0.43-0.67]). Compared with baseline, the ucGMP/BNP ratio at 1 month and 8 months after randomization was higher with sacubitril/valsartan than with enalapril: ratio of geometric mean ratios at 1 month, 1.38 (95% CI, 1.27-1.51) and 8 months, 1.32 (95% CI, 1.20-1.45), and this difference was consistent across tertiles of ucGMP/BNP ratio at baseline (Pinteraction=0.19 and 0.91, respectively). The effect of sacubitril/valsartan, compared with enalapril, was consistent across tertiles of ucGMP/BNP ratio at baseline for all outcomes (Pinteraction ≥0.31). CONCLUSIONS: In patients with heart failure and reduced ejection fraction, higher ucGMP/BNP ratio was associated with better outcomes. Sacubitril/valsartan increased the ucGMP/BNP ratio, compared with enalapril, and the effect of sacubitril/valsartan on clinical outcomes was not modified by baseline ucGMP/BNP ratio. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique Identifier: NCT01035255.
Assuntos
Insuficiência Cardíaca , Humanos , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/induzido quimicamente , Peptídeo Natriurético Encefálico , Guanosina Monofosfato/farmacologia , Inibidores da Enzima Conversora de Angiotensina/efeitos adversos , Tetrazóis/efeitos adversos , Resultado do Tratamento , Antagonistas de Receptores de Angiotensina/uso terapêutico , Antagonistas de Receptores de Angiotensina/farmacologia , Valsartana/uso terapêutico , Valsartana/farmacologia , Enalapril/uso terapêutico , Enalapril/farmacologia , Aminobutiratos/efeitos adversos , Compostos de Bifenilo/farmacologia , Combinação de Medicamentos , Volume SistólicoRESUMO
PSI-352938, a cyclic phosphate nucleotide, and PSI-353661, a phosphoramidate nucleotide, are prodrugs of ß-D-2'-deoxy-2'-α-fluoro-2'-ß-C-methylguanosine-5'-monophosphate. Both compounds are metabolized to the same active 5'-triphosphate, PSI-352666, which serves as an alternative substrate inhibitor of the NS5B RNA-dependent RNA polymerase during HCV replication. PSI-352938 and PSI-353661 retained full activity against replicons containing the S282T substitution, which confers resistance to certain 2'-substituted nucleoside/nucleotide analogs. PSI-352666 was also similarly active against both wild-type and S282T NS5B polymerases. In order to identify mutations that confer resistance to these compounds, in vitro selection studies were performed using HCV replicon cells. While no resistant genotype 1a or 1b replicons could be selected, cells containing genotype 2a JFH-1 replicons cultured in the presence of PSI-352938 or PSI-353661 developed resistance to both compounds. Sequencing of the NS5B region identified a number of amino acid changes, including S15G, R222Q, C223Y/H, L320I, and V321I. Phenotypic evaluation of these mutations indicated that single amino acid changes were not sufficient to significantly reduce the activity of PSI-352938 and PSI-353661. Instead, a combination of three amino acid changes, S15G/C223H/V321I, was required to confer a high level of resistance. No cross-resistance exists between the 2'-F-2'-C-methylguanosine prodrugs and other classes of HCV inhibitors, including 2'-modified nucleoside/-tide analogs such as PSI-6130, PSI-7977, INX-08189, and IDX-184. Finally, we determined that in genotype 1b replicons, the C223Y/H mutation failed to support replication, and although the A15G/C223H/V321I triple mutation did confer resistance to PSI-352938 and PSI-353661, this mutant replicated at only about 10% efficiency compared to the wild type.
Assuntos
Óxidos P-Cíclicos/farmacologia , Farmacorresistência Viral , Guanosina Monofosfato/análogos & derivados , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Mutação/genética , Nucleosídeos/farmacologia , RNA Viral/genética , Replicon/efeitos dos fármacos , Antivirais/farmacologia , Guanosina Monofosfato/farmacologia , Hepatite C/tratamento farmacológico , Hepatite C/genética , Hepatite C/virologia , Humanos , Fenótipo , Pró-Fármacos/farmacologia , Conformação Proteica , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/metabolismo , Replicon/genética , Replicação Viral/efeitos dos fármacos , Replicação Viral/genéticaRESUMO
Examination of the effects of mononucleotides on Sma nuc endonuclease originated from Gram negative bacterium Serratia marcescens displayed that any mononucleotide produced by Sma nuc during hydrolysis of DNA or RNA may regulate the enzyme activity affecting the RNase activity without pronounced influence on the activity towards DNA. The type of carbohydrate residue in mononucleotides does not affect the regulation. In contrast, the effects depend on the type of bases in nucleotides. AMP or dAMP was classified as a competitive inhibitor of partial type. GMP, UMP, and CMP were found to be uncompetitive inhibitors that suggest a specific site(s) for the nucleotide(s) binding in Sma nuc endonuclease.
Assuntos
Endonucleases/antagonistas & inibidores , Endonucleases/metabolismo , Nucleotídeos/farmacologia , Monofosfato de Adenosina/farmacologia , Monofosfato de Citidina/farmacologia , Nucleotídeos de Desoxiadenina/farmacologia , Guanosina Monofosfato/farmacologia , Serratia marcescens/enzimologia , Uridina Monofosfato/farmacologiaRESUMO
Osteoporosis is a public health problem resulting in higher susceptibility to bone fracture. Hirudin is known as a direct thrombin inhibitor, which is isolated from the salivary gland of the medicinal leech. The present study aimed to evaluate the effect of Hirudin on the proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (HBMSCs). In our study, the effect of Hirudin on the proliferation of HBMSCs was evaluated with the CCK-8 and MTT assays. The capacity of osteogenic differentiation and mineralization of HBMSCs was evaluated with ALP and alizarin red staining, respectively. cGMP content was determined by ELISA. Western blotting and qRT-PCR were used to investigate the effect of Hirudin on the expression of osteoblast-specific markers, including Runx2, osterix (OSX), osteocalcin (OCN), and collagen1 (Col1). In our study, Hirudin treatment promoted cell viability. Moreover, Hirudin treatment increased ALP activity of HBMSCs and red coloration of alizarin. Interestingly, cGMP inhibitor partly reversed the effect of Hirudin on the proliferation, differentiation and mineralization of HBMSCs. In conclusion, Hirudin promoted the proliferation, differentiation and mineralization of HBMSCs via activation of cGMP signaling pathway. Hence, Hirudin contributed to bone remodeling and might represent as an effective agent for the treatment of osteoporosis.
Assuntos
MicroRNAs , Osteoporose , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/farmacologia , Guanosina Monofosfato/farmacologia , Hirudinas/farmacologia , Humanos , MicroRNAs/metabolismo , Osteogênese , Transdução de SinaisRESUMO
BACKGROUND: ß3-AR (ß3-adrenergic receptor) stimulation improved systolic function in a sheep model of systolic heart failure (heart failure with reduced ejection fraction [HFrEF]). Exploratory findings in patients with New York Heart Association functional class II HFrEF treated with the ß3-AR-agonist mirabegron supported this observation. Here, we measured the hemodynamic response to mirabegron in patients with severe HFrEF. METHODS: In this randomized, double-blind, placebo-controlled trial we assigned patients with New York Heart Association functional class III-IV HFrEF, left ventricular ejection fraction <35% and increased NT-proBNP (N-terminal pro-B-type natriuretic peptide) levels to receive mirabegron (300 mg daily) or placebo orally for a week, as add on to recommended HF therapy. Invasive hemodynamic measurements during rest and submaximal exercise at baseline, 3 hours after first study dose and repeated after 1 week's treatment were obtained. Predefined parameters for analyses were changes in cardiac- and stroke volume index, pulmonary and systemic vascular resistance, heart rate, and blood pressure. RESULTS: We randomized 22 patients (age 66±11 years, 18 men, 16, New York Heart Association functional class III), left ventricular ejection fraction 20±7%, median NT-proBNP 1953 ng/L. No significant changes were seen after 3 hours, but after 1 week, there was a significantly larger increase in cardiac index in the mirabegron group compared with the placebo group (mean difference, 0.41 [CI, 0.07-0.75] L/min/BSA; P=0.039). Pulmonary vascular resistance decreased significantly more in the mirabegron group compared with the placebo group (-1.6 [CI, -0.4 to -2.8] Wood units; P=0.02). No significant differences were seen during exercise. There were no differences in changes in heart rate, systemic vascular resistance, blood pressure, or renal function between groups. Mirabegron was well-tolerated. CONCLUSIONS: Oral treatment with the ß3-AR-agonist mirabegron for 1 week increased cardiac index and decreased pulmonary vascular resistance in patients with moderate to severe HFrEF. Mirabegron may be useful in patients with worsening or terminal HF. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: 2016-002367-34.