RESUMO
Ecdysteroids represent a large class of polyhydroxylated steroids which, due to their anabolic properties, are marketed as dietary supplements. Some ecdysteroids also act as important hormones in arthropods, where they regulate molting, development, and reproduction and many of these insects are miniature organisms that contain submicroliter levels of circulating biofluids. Analysis of ecdysteroids is further complicated by their very low abundance, large fluctuations during development, and difficult access to a pooled sample, which is important for quantitative measurements. In this work, we propose a new method that overcomes the described difficulties and allows validated quantification of four ecdysteroids in minimal amounts of biological material. After methanolic extraction, detectability of the ecdysteroids is increased 16- to 20-fold by conversion to their 14,15-anhydrooximes. These are further purified by pipette tip solid-phase extraction on a three-layer sorbent and subjected to HPLC-MS/MS analysis. Full validation was achieved using hemolymph from larvae of the firebug Pyrrhocoris apterus as a blank matrix and by the determination of ecdysteroids in a single Drosophila larva. The lower limit of quantifications for the four target ecdysteroids (20-hydroxyecdysone, ecdysone, makisterone A, and 2-deoxyecdysone) were 0.01; 0.1; 0.05; and 0.025 pg·ml-1 (20; 200; 100; 50 fmol ml-1), respectively, with very good accuracy, precision (expressed as relative standard deviation <15%) and recoveries (96%-119.9%). The application potential of the new method was demonstrated by quantification of ecdysteroids in various biological materials including human serum.
Assuntos
Ecdisteroides , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida de Alta Pressão/métodos , Ecdisteroides/análise , Ecdisteroides/sangue , Ecdisteroides/química , Espectrometria de Massas em Tandem/métodos , Larva , Hemolinfa/química , Hemolinfa/metabolismo , Espectrometria de Massa com Cromatografia LíquidaRESUMO
Insect performance is linked to environmental temperature, and surviving through winter represents a key challenge for temperate, alpine and polar species. To overwinter, insects have adapted a range of strategies to become truly cold hardy. However, although the mechanisms underlying the ability to avoid or tolerate freezing have been well studied, little attention has been given to the challenge of maintaining ion homeostasis at frigid temperatures in these species, despite this limiting cold tolerance for insects susceptible to mild chilling. Here, we investigated how prolonged exposure to temperatures just above the supercooling point affects ion balance in freeze-avoidant mountain pine beetle (Dendroctonus ponderosae) larvae in autumn, mid-winter and spring, and related it to organismal recovery times and survival. Hemolymph ion balance was gradually disrupted during the first day of exposure, characterized by hyperkalemia and hyponatremia, after which a plateau was reached and maintained for the rest of the 7-day experiment. The degree of ionoregulatory collapse correlated strongly with recovery times, which followed a similar asymptotical progression. Mortality increased slightly during extensive cold exposures, where hemolymph K+ concentration was highest, and a sigmoidal relationship was found between survival and hyperkalemia. Thus, the cold tolerance of the freeze-avoiding larvae of D. ponderosae appears limited by the ability to prevent ionoregulatory collapse in a manner similar to that of chill-susceptible insects, albeit at much lower temperatures. Based on these results, we propose that a prerequisite for the evolution of insect freeze avoidance may be a convergent or ancestral ability to maintain ion homeostasis during extreme cold stress.
Assuntos
Temperatura Baixa , Besouros , Congelamento , Hemolinfa , Larva , Animais , Hemolinfa/química , Besouros/fisiologia , Larva/fisiologia , Larva/crescimento & desenvolvimento , Aclimatação , Estações do Ano , Potássio/metabolismoRESUMO
Ex vivo physiological experiments using small insect models such as Drosophila larvae have become increasingly useful to address fundamental biological questions. To perform such experiments, various artificial saline solutions have been developed, but their osmolality varies significantly from one to the next. Such a variation of osmolality stems, in part, from the difficulty of determining the true value of haemolymph osmolality in Drosophila larvae. Thus, there is a pressing need to refine protocols for collecting and measuring the osmolality of the larval haemolymph. Two major obstacles are thought to impede the accurate analysis of haemolymph collected from small insects: melanin formation and gut-derived contamination. Here, we greatly refined existing haemolymph collection methods, evaluated the purity of the collected haemolymph under melanin-free conditions, and concluded that the true value of haemolymph osmolality is close to 306.0â mOsmâ kg-1 in Drosophila larvae.
Assuntos
Hemolinfa , Larva , Animais , Hemolinfa/química , Hemolinfa/metabolismo , Concentração Osmolar , Larva/crescimento & desenvolvimento , Larva/química , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Melaninas/metabolismo , Melaninas/análiseRESUMO
The ability of parasitic wasps to manipulate a host's metabolism is under active investigation. Components of venom play a major role in this process. In the present work, we studied the effect of the venom of the ectoparasitic wasp Habrobracon hebetor on the metabolism of the greater wax moth host (Galleria mellonella). We identified and quantified 45 metabolites in the lymph (cell-free hemolymph) of wax moth larvae on the second day after H. hebetor venom injection, using NMR spectroscopy and liquid chromatography coupled with mass spectrometry. These metabolites included 22 amino acids, nine products of lipid metabolism (sugars, amines and alcohols) and four metabolic intermediates related to nitrogenous bases, nucleotides and nucleosides. An analysis of the larvae metabolome suggested that the venom causes suppression of the tricarboxylic acid cycle, an increase in the number of free amino acids in the lymph, an increase in the concentration of trehalose in the lymph simultaneously with a decrease in the amount of glucose, and destructive processes in the fat body tissue. Thus, this parasitoid venom not only immobilizes the prey but also modulates its metabolism, thereby providing optimal conditions for the development of larvae.
Assuntos
Hemolinfa , Larva , Mariposas , Venenos de Vespas , Vespas , Animais , Vespas/fisiologia , Venenos de Vespas/metabolismo , Venenos de Vespas/química , Mariposas/parasitologia , Mariposas/crescimento & desenvolvimento , Mariposas/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , Hemolinfa/metabolismo , Hemolinfa/química , Metaboloma/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Interações Hospedeiro-Parasita/efeitos dos fármacosRESUMO
Host plant consumption and pathogen infection commonly influence insect traits related to development and immunity, which are ultimately reflected in the behavior and physiology of the insect. Herein, we explored changes in the metabolome of a generalist insect herbivore, Vanessa cardui (Lepidoptera: Nymphalidae), in response to both dietary variation and pathogen infection in order to gain insight into tritrophic interactions for insect metabolism and immunity. Caterpillars were reared on two different host plants, Plantago lanceolata (Plantaginaceae) and Taraxacum officinale (Asteraceae) and subjected to a viral infection by Junonia coenia densovirus (JcDV), along with assays to determine the insect immune response and development. Richness and diversity of plant and caterpillar metabolites were evaluated using a liquid chromatography-mass spectrometry approach and showed that viral infection induced changes to the chemical content of V. cardui hemolymph and frass dependent upon host plant consumption. Overall, the immune response as measured by phenoloxidase (PO) enzymatic activity was higher in individuals feeding on P. lanceolata compared with those feeding on T. officinale. Additionally, infection with JcDV caused suppression of PO activity, which was not host plant dependent. We conclude that viral infection combined with host plant consumption creates a unique chemical environment, particularly within the insect hemolymph. Whether and how these metabolites contribute to defense against viral infection is an open question in chemical ecology.
Assuntos
Herbivoria , Metaboloma , Taraxacum , Animais , Taraxacum/química , Taraxacum/metabolismo , Larva/virologia , Larva/fisiologia , Plantago/química , Plantago/fisiologia , Hemolinfa/metabolismo , Hemolinfa/química , Monofenol Mono-Oxigenase/metabolismo , Borboletas/fisiologia , Borboletas/virologia , Borboletas/imunologiaRESUMO
Research on the use of entomopathogenic nematodes (EPNs) as a potential tool for the biological control of invertebrates has been growing in recent years, including studies involving snails with One Health importance. In this study, the effect of exposure time (24 or 48 h) of Heterorhabditis bacteriophora HP88 on the activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), as well as the concentration of total proteins, uric acid, and urea in the hemolymph of Biomphalaria glabrata, were investigated. The concentrations of these metabolic markers were measured weekly until the end of the third week after exposure. Along with a significant reduction in total protein levels, a significant increase (p < 0.01) in uric acid and urea contents in the hemolymph of B. glabrata exposed to H. bacteriophora was observed. The accumulation of urea in these mollusks could lead to deleterious effects due to its high toxicity, inducing significant cell damage. Variations in transaminase activities were also observed, with snails exposed to EPNs showing significantly higher values (p < 0.01) than individuals in the control group, both for ALT and AST. These results indicate that experimental exposure to infective juveniles of H. bacteriophora causes significant alterations in the metabolic pattern of B. glabrata, compromising the maintenance of its homeostasis. Finally, exposure for 48 h caused more damage to the planorbid in question compared to snails exposed for 24 h, suggesting that the exposure time may influence the intensity of the host's response.
Assuntos
Alanina Transaminase , Aspartato Aminotransferases , Biomphalaria , Hemolinfa , Controle Biológico de Vetores , Rhabditoidea , Ureia , Ácido Úrico , Animais , Biomphalaria/parasitologia , Hemolinfa/química , Hemolinfa/parasitologia , Hemolinfa/metabolismo , Alanina Transaminase/metabolismo , Aspartato Aminotransferases/metabolismo , Ácido Úrico/metabolismo , Ureia/metabolismo , Rhabditoidea/fisiologia , Proteínas/metabolismo , Rabditídios/fisiologiaRESUMO
The issue of microplastics (MPs) has emerged as a significant concern globally, with discussions surrounding the potential environmental impact of these tiny plastic particles becoming increasingly prevalent. This study aimed to identify the concentration and characteristics of MPs in hemolymph and organs (gills and hepatopancreas) of green mussels (Perna viridis) that are frequently consumed by people in Pangkajene Kepulauan, South Sulawesi Province, Indonesia. Green mussels were collected from two different sampling sites for comparison. Screening was carried out on dispensed hemolymph and dissected organs to identify the characteristics of MPs. Surface seawater sampling was added as information on MP's characteristics from the mussel habitat. Visual observation of MP's characteristics using a stereomicroscope in laminar flow is to prevent contamination. The identification of MP's polymer type is using FTIR-ATR. The results showed that hemolymph, hepatopancreas, gills, and surface water were concentrated with MPs. Small (2-3.9 cm) green mussels accumulated more MPs than medium (4-5.9 cm) and large (> 6 cm). MPs characteristics of fiber shape, transparent color, and size 0.1-0.5 mm were dominant in all samples. A total of seven polymers of MPs were identified with polyethylene and polystyrene types most frequently found from all samples. Based on this study, green mussels are good for biomonitoring of MPs.
Assuntos
Monitoramento Ambiental , Brânquias , Hemolinfa , Hepatopâncreas , Microplásticos , Perna (Organismo) , Poluentes Químicos da Água , Animais , Hemolinfa/química , Poluentes Químicos da Água/análise , Microplásticos/análise , Indonésia , Monitoramento Ambiental/métodosRESUMO
When studying honey bee nutrition, it is important to pay attention not only to the quantity but also to the quality of pollen for floral visitors. The recommended way to determine the value of pollen is to determine both the protein concentration and the amino acid composition in the insect's hemolymph. In addition, the composition of pollen also includes lipids, sterols and biogenic elements such as carbon, nitrogen, etc. Very high protein concentration is observed in aloe pollen, averaging 51%. Plants with a high protein content, at the level of 27% in Europe, are rapeseed and phacelia. In turn, a plant that is poor in protein (at the level of 11%) is buckwheat. The aforementioned plants are sown over very large areas. Vast acreages in Central and Eastern Europe are occupied by pollen- and nectar-providing invasive plants, such as goldenrod. Therefore, bees are forced to use one food source-a mono diet-which results in their malnutrition. In the absence of natural pollen, beekeepers use other foods for bees; including soy protein, powdered milk, egg yolks, fish meal, etc. However, the colony is the strongest when bees are fed with pollen, as opposed to artificial protein diets. More research is needed on the relationship between bee pollen composition and nutrition, as measured by protein concentration and amino acid composition in apian hemolymph, colony strength, honey yield and good overwintering.
Assuntos
Aminoácidos , Pólen , Abelhas/fisiologia , Pólen/química , Animais , Aminoácidos/análise , Hemolinfa/metabolismo , Hemolinfa/químicaRESUMO
This study aims to evaluate the effects of paprika extract on the survival rate, growth performance and stimulation of the innate immune system of Litopenaeus vannamei. In this experiment, 240 healthy shrimp (3.22 ± 0.12 g) were randomly divided into four groups. The shrimp were fed diets with different concentrations of paprika oil extracts (0%, 0.5%, 1% and 2%) for 8 weeks. The results showed that growth performance, urea, uric acid, creatinine, cholesterol levels, aspartate aminotransferase and alkaline phosphatase activities were not significantly affected by adding paprika extract to the shrimp diet (p > 0.05). Diets containing 1% and 0.5% paprika extract showed the highest levels of total protein and triglyceride, respectively (p < 0.05). There was a significant decrease in haemolymph glucose concentration in shrimp-fed diets containing 1% and 2% paprika extract (p < 0.05). Moreover, a diet containing 0.5% paprika extract resulted in the highest levels of total heamocyte count, hyaline cells and large-granular cells in shrimp (p < 0.05). Higher catalase and superoxide dismutase activities were also exhibited in the paprika groups (p < 0.05). Vibrio sp. bacteria were not significantly reduced by paprika extract in the intestines of L. vannamei (p > 0.05). A significant decrease in heterotrophic bacteria was observed with increasing extract concentrations (p < 0.05). The shrimp culture industry can utilize paprika extract as a cost-effective, efficient and environmentally friendly immune stimulant at a concentration of 0.5%.
Assuntos
Ração Animal , Antioxidantes , Dieta , Microbioma Gastrointestinal , Hemolinfa , Penaeidae , Animais , Ração Animal/análise , Antioxidantes/farmacologia , Dieta/veterinária , Microbioma Gastrointestinal/efeitos dos fármacos , Hemolinfa/efeitos dos fármacos , Hemolinfa/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/administração & dosagemRESUMO
Lectins are non-immune glycoproteins or proteins having a unique capacity to interact with carbohydrate ligands found on the surface of their host cells. In the present investigation, the lectin was purified from the hemolymph of freshwater crab, Oziotelphusa naga and its antimicrobial, anti-inflammatory and anti-arthritic activity was analysed. The preliminary characterization of the hemagglutinin was carried out to identify the erythrocyte and sugar specificity, optimum pH and temperature and cation dependency. The agglutinin was found to be highly specific to rabbit erythrocyte and inhibited by fetuin and α-lactose. Maximum hemagglutination activity was noted at pH 7.5-8 and temperature 20-40 °C. An O-acetyl sialic acid specific 75 kDa hemolymph lectin, designated as NagLec was isolated from the freshwater crab, Oziotelphusa naga by affinity chromatography on fetuin coupled Sepharose 4 B, with a purification fold of 185. The bacteria Staphylococcus aureus, Proteus mirabilis and fungus Candida albicans had the greatest zone of inhibition when treated with NagLec. The results of the Minimum inhibitory concentration (MIC) and Minimum bactericidal concentration (MBC) assays showed that the purified lectin inhibited the growth of Staphylococcus aureus at 0.031 and 0.065 µg/ml, which proved the bactericidal property of NagLec. NagLec generated alterations on the bacterial cells and led to protein leakage, which was dosage (24 and 48 µg/ml) and time dependent (10-40 min). COX and LOX enzyme was inhibited to 49.43% and 61.81% with 100 µg/ml concentration of NagLec respectively, demonstrating NagLec's ability to reduce inflammation. Furthermore, NagLec (500 µg) suppressed protein denaturation up to 77.12% whereas diclofenac sodium (a standard drug) was inhibited by 89.36%. The results indicate that NagLec, a sialic acid specific lectin isolated from the freshwater crab O. naga could be formulated as a nano drug in future owing to its antimicrobial, anti-inflammatory and anti-arthritic potential that could be targeted to specific pathogenic microbes and treat arthritis.
Assuntos
Anti-Infecciosos , Braquiúros , Animais , Coelhos , Lectinas/química , Braquiúros/metabolismo , Hemolinfa/química , Carboidratos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/análise , Anti-Inflamatórios/farmacologia , Fetuínas/análiseRESUMO
Nutritional status affects cognitive function in many types of organisms. In the pond snail Lymnaea stagnalis, 1 day of food deprivation enhances taste aversion learning ability by decreasing the serotonin (5-hydroxytryptamin; 5-HT) content in the central nervous system (CNS). On the other hand, after 5 days of food deprivation, learning ability and the CNS 5-HT concentration return to basal levels. How food deprivation leads to alterations of 5-HT levels in the CNS, however, is unknown. Here, we measured the concentration of the 5-HT precursor tryptophan in the hemolymph and CNS, and demonstrated that the CNS tryptophan concentration was higher in 5-day food-deprived snails than in non-food-deprived or 1-day food-deprived snails, whereas the hemolymph tryptophan concentration was not affected by the duration of food deprivation. This finding suggests the existence of a mediator of the CNS tryptophan concentration independent of food deprivation. To identify the mediator, we investigated autophagic flux in the CNS under different food deprivation conditions. We found that autophagic flux was significantly upregulated by inhibition of the tropomyosin receptor kinase (Trk)-Akt-mechanistic target of rapamycin complex 1 (MTORC1) pathway in the CNS of 5-day food-deprived snails. Moreover, when autophagy was inhibited, the CNS 5-HT content was significantly downregulated in 5-day food-deprived snails. Our results suggest that the hemolymph tryptophan concentration and autophagic flux in the CNS cooperatively regulate learning ability affected by different durations of food deprivation. This mechanism may underlie the selection of behaviors appropriate for animal survival depending on the degree of nutrition.
Assuntos
Privação de Alimentos , Serotonina , Animais , Privação de Alimentos/fisiologia , Serotonina/metabolismo , Triptofano , Hemolinfa/química , Paladar/fisiologia , Aprendizagem da Esquiva/fisiologia , Sistema Nervoso Central/metabolismo , Lymnaea/fisiologiaRESUMO
The crustacean stomatogastric ganglion (STG) is a valuable model for understanding circuit dynamics in neuroscience as it contains a small number of neurons, all easily distinguishable and most of which contribute to two complementary feeding-related neural circuits. These circuits are modulated by numerous neuropeptides, with many gaining access to the STG as hemolymph-transported hormones. Previous work characterized neuropeptides in the hemolymph of the crab Cancer borealis but was limited by low peptide abundance in the presence of a complex biological matrix and the propensity for rapid peptide degradation. To improve their detection, a data-independent acquisition (DIA) mass spectrometry (MS) method was implemented. This approach improved the number of neuropeptides detected by approximately twofold and showed greater reproducibility between experimental and biological replicates. This method was then used to profile neuropeptides at different stages of the feeding process, including hemolymph from crabs that were unfed, or 0 min, 15 min, 1 h, and 2 h post-feeding. The results show differences both in the presence and relative abundance of neuropeptides at the various time points. Additionally, 96 putative neuropeptide sequences were identified with de novo sequencing, indicating there may be more key modulators within this system than is currently known. These results suggest that a distinct cohort of neuropeptides provides modulation to the STG at different times in the feeding process, providing groundwork for targeted follow-up electrophysiological studies to better understand the functional role of circulating hormones in the neural basis of feeding behavior.
Assuntos
Braquiúros , Neoplasias , Animais , Comportamento Alimentar , Hemolinfa/química , Hormônios/análise , Humanos , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodosRESUMO
BACKGROUND: The New Zealand Green-lipped mussel industry is well-established providing vastly to aquaculture exports. To assess mussel health and reproduction status, visual examination of organs and/or collection of haemolymph is commonly applied. Anesthetics, such as magnesium chloride (MgCl2) can be utilized to prevent muscle contraction and keep shells open during sampling. The specific effects of muscle relaxing agents on baseline metabolism in invertebrates is unknown, but it is evident that molecular, cellular and physiological parameters are altered with these chemical applications. To this end, metabolomics approaches can help elucidate the effects of relaxing agents for better assessment of their use as a research tool. METHODS: Adult Green-lipped mussels were anaesthetized for 3 h in a MgCl2 bath, whereafter haemolymph samples were collected and analyzed via gas chromatography-mass spectrometry applying methyl chloroformate alkylation derivatization. RESULTS: Anesthetized mussels were characterized as non-responsive to manual manipulation, with open valves, and limited siphoning function. Metabolite profiling revealed significant increases in the abundances of most metabolites with an array of metabolic activities affected, resulting in an energy imbalance driven by anaerobic metabolism with altered amino acids acting as neurotransmitters and osmolytes. CONCLUSION: This research is the first to use a metabolomics approach to identify the metabolic consequences of this commonly used bivalve relaxing technique. Ultimately the use of MgCl2 anesthetization as a sampling strategy should be carefully evaluated and managed when performing metabolomics-related research.
Assuntos
Bloqueadores dos Canais de Cálcio , Hemolinfa , Cloreto de Magnésio , Metaboloma , Perna (Organismo) , Anestesia/métodos , Anestesia/veterinária , Anestésicos/farmacologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Cromatografia Gasosa-Espectrometria de Massas/veterinária , Hemolinfa/química , Hemolinfa/metabolismo , Cloreto de Magnésio/farmacologia , Metaboloma/efeitos dos fármacos , Fármacos Neuromusculares/farmacologia , Perna (Organismo)/efeitos dos fármacos , Perna (Organismo)/metabolismoRESUMO
Mygalin, a diacylspermidine that is naturally found in the hemolymph of the spider Acanthoscurria gomesiana, is of interest for development as a potential analgesic. Previous studies have shown that acylpolyamines modulate glutamatergic receptors with the potential to alter pain pathways. This study aimed to evaluate the effects of mygalin on acute and chronic pain in rodents. For evaluation of acute pain, Wistar rats were subjected to tail-flick and hot-plate nociceptive tests. For the evaluation of chronic neuropathic pain, a partial ligation of the sciatic nerve was performed and, 21 days later, animals were examined in hot-plate, tail-flick, acetone, and von Frey tests. Either Mygalin or vehicle was microinjected in the dorsal raphe nucleus (DRN) before the tests. Another group was pretreated with selective antagonists of glutamate receptors (LY 235959, MK-801, CNQX, and NBQX). Mygalin decreases nociceptive thresholds on both acute and chronic neuropathic pain models in all the tests performed. The lowest dose of mygalin yielded the most effective nociception, showing an increase of 63% of the nociceptive threshold of animals with neuropathic chronic pain. In conclusion, mygalin microinjection in the DRN results in antinociceptive effect in models of neuropathic pain, suggesting that acylpolyamines and their derivatives, such as this diacylspermidine, could be pursued for the treatment of neuropathic pain and development of selective analgesics.
Assuntos
Dor Aguda/tratamento farmacológico , Analgésicos/administração & dosagem , Dor Crônica/tratamento farmacológico , Núcleo Dorsal da Rafe/efeitos dos fármacos , Neuralgia/tratamento farmacológico , Espermidina/análogos & derivados , Aranhas/metabolismo , Medicamentos Sintéticos/administração & dosagem , Animais , Modelos Animais de Doenças , Hemolinfa/química , Masculino , Microinjeções/métodos , Ratos , Ratos Wistar , Espermidina/administração & dosagem , Resultado do TratamentoRESUMO
Animals survive nutrient deficiency by controlling their physiology, such as sugar metabolism and energy-consuming developmental events. Although research on the insect neural mechanisms of the starvation-induced modulation has progressed, the mechanisms have not been fully understood due to their complexity. Myoinhibitory peptides are known to be neuropeptides involved in various physiological activities, development, and behavior. Here, we analyzed the responsiveness of Plautia stali myoinhibitory peptides (Plast-MIPs) to starvation and their physiological role in the brown-winged green bug, P. stali. First, we performed immunohistochemical analyses to investigate the response of Plast-MIP neurons in the cephalic ganglion to fasting under long day conditions. Fasting significantly enhanced the immunoreactivity to Plast-MIPs in the pars intercerebralis (PI), which is known to be a brain region related to various endocrine regulations. Next, to analyze the physiological role of Plast-MIPs, we performed RNA interference-mediated knockdown of Plast-Mip and injection of synthetic Plast-MIP in normally fed and fasted females. The knockdown of Plast-Mip did not have significant effects on the body weight or proportions of ovarian development in each feeding condition. On the other hand, the knockdown of Plast-Mip increased the gonadosomatic index of normally fed females whereas it did not have a significant effect on food intake. Notably, the knockdown of Plast-Mip diminished the fasting-induced reduction of hemolymph reducing sugar levels. Additionally, injection of synthetic Plast-MIP acutely decreased the hemolymph reducing sugar level. Our results suggested responsiveness of Plast-MIPs in the PI to fasting and their functional role in reduction of the hemolymph reducing sugar level.
Assuntos
Carboidratos/química , Hemolinfa/química , Heterópteros/fisiologia , Proteínas de Insetos/metabolismo , Animais , Metabolismo dos Carboidratos , Feminino , Hemolinfa/metabolismo , Proteínas de Insetos/genética , Interferência de RNARESUMO
This study assesses the extraction of eleven pharmaceuticals, five pesticides, five perfluoroalkyl substances, and two illicit drugs in hemolymph from (Mytilus Galloprovincialis). Four extraction procedures using Phree™ Phospholipid Removal cartridges were tested using different volumes of methanol (400 and 600 µL) and acetonitrile (300 and 450 µL). The pollutants were determined by high-performance liquid chromatography-tandem mass spectrometry. The use of methanol gave several problems during the extraction procedure, such as longer times and sample loss. Three methods (acetonitrile 300 and 450 µL; and methanol 600 µL) were validated. Recoveries at three concentration levels (5, 50, and 100 ng/mL) ranged 35.1-129.0 and 29.3-133.0% for acetonitrile 300 and 450 µL, respectively, while recoveries for methanol 600 µL ranged 52.2-166.0%. Limits of detection were < 10 ng/mL for most analytes using any of the methods. Methanol 600 µL was the only method capable to extract the illicit drug 4-methoxyphencyclidine and provided a better peak shape and higher signal-noise ratio. When applied to non-spiked samples from local markets salicylic acid and diclofenac were detected at 33.50-97.79 and 28.30-30.31 ng/mL respectively. To our knowledge, there are no methods to determine organic contaminants in hemolymph and this is the first application of Phree™ cartridges for mussel hemolymph extraction.
Assuntos
Poluentes Ambientais/análise , Fluorocarbonos/análise , Hemolinfa/química , Drogas Ilícitas/análise , Praguicidas/análise , AnimaisRESUMO
Instead of the red blood of vertebrates, most molluscs have blue hemolymph containing hemocyanin, a type-3 copper-containing protein. The hemoglobin of vertebrate blood is replaced in most molluscs with hemocyanin, which plays the role of an oxygen transporter. Oxygen-binding in hemocyanin changes its hue from colorless deoxygenated hemocyanin into blue oxygenated hemocyanin. Molecules of molluscan hemocyanin are huge, cylindrical multimeric proteins-one of the largest protein molecules in the natural world. Their huge molecular weight (from 3.3 MDa to more than 10 MDa) are the defining characteristic of molluscan hemocyanin, a property that has complicated structural analysis of the molecules for a long time. Recently, the structural analysis of a cephalopod (squid) hemocyanin has succeeded using a hybrid method employing both X-ray crystallography and cryo-EM. In a biochemical breakthrough for molluscan hemocyanin, the first quaternary structure with atomic resolution is on the verge of solving the mystery of molluscan hemocyanin. Here we describe the latest information about the molecular structure, classification and evolution of the molecule, and the physiology of molluscan hemocyanin.
Assuntos
Hemocianinas/química , Hemocianinas/metabolismo , Animais , Cristalografia por Raios X , Hemolinfa/química , Modelos Moleculares , Estrutura Molecular , Moluscos/químicaRESUMO
Lipoproteins mediate the transport of apolar lipids in the hydrophilic environment of physiological fluids such as the vertebrate blood and the arthropod hemolymph. In this overview, we will focus on the hemolymph lipoproteins in Crustacea that have received most attention during the last years: the high density lipoprotein/ß-glucan binding proteins (HDL-BGBPs), the vitellogenins (VGs), the clotting proteins (CPs) and the more recently discovered large discoidal lipoproteins (dLPs). VGs are female specific lipoproteins which supply both proteins and lipids as storage material for the oocyte for later use by the developing embryo. Unusual within the invertebrates, the crustacean yolk proteins-formerly designated VGs-are more related to the ApoB type lipoproteins of vertebrates and are now termed apolipocrustaceins. The CPs on the other hand, which are present in both sexes, are related to the (sex specific) VGs of insects and vertebrates. CPs serve in hemostasis and wound closure but also as storage proteins in the oocyte. The HDL-BGBPs are the main lipid transporters, but are also involved in immune defense. Most crustacean lipoproteins belong to the family of the large lipid transfer proteins (LLTPs) such as the intracellular microsomal triglyceride transfer protein, the VGs, CPs and the dLPs. In contrast, the HDL-BGBPs do not belong to the LLTPs and their relationship with other lipoproteins is unknown. However, they originate from a common precursor with the dLPs, whose functions are as yet unknown. The majority of lipoprotein studies have focused on decapod crustaceans, especially shrimps, due to their economic importance. However, we will present evidence that the HDL-BGBPs are restricted to the decapod crustaceans which raises the question as to the main lipid transporting proteins of the other crustacean groups. The diversity of crustaceans lipoproteins thus appears to be more complex than reflected by the present state of knowledge.
Assuntos
Crustáceos , Hemolinfa , Lipoproteínas , Animais , Crustáceos/química , Crustáceos/imunologia , Crustáceos/metabolismo , Hemolinfa/química , Hemolinfa/imunologia , Hemolinfa/metabolismo , Lipoproteínas/biossíntese , Lipoproteínas/química , Lipoproteínas/imunologia , Lipoproteínas/metabolismoRESUMO
Lectin from the bivalve Glycymeris yessoensis (GYL) was purified by affinity chromatography on porcine stomach mucin-Sepharose. GYL is a dimeric protein with a molecular mass of 36 kDa, as established by SDS-PAGE and MALDI-TOF analysis, consisting of 18 kDa subunits linked by a disulfide bridge. According to circular dichroism data, GYL is a ß/α-protein with the predominance of ß-structure. GYL preferentially agglutinates enzyme-treated rabbit erythrocytes and recognizes glycoproteins containing O-glycosidically linked glycans, such as porcine stomach mucin (PSM), fetuin, thyroglobulin, and ovalbumin. The amino acid sequences of five segments of GYL were acquired via mass spectrometry. The sequences have no homology with other known lectins. GYL is Ca2+-dependent and stable over a range above a pH of 8 and temperatures up to 20 °C for 30 min. GYL is a pattern recognition receptor, as it binds common pathogen-associated molecular patterns, such as peptidoglycan, LPS, ß-1,3-glucan and mannan. GYL possesses a broad microbial-binding spectrum, including Gram-positive (Bacillus subtilis, Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli, Vibrio proteolyticus), but not the fungus Candida albicans. Expression levels of GYL in the hemolymph were significantly upregulated after bacterial challenge by V. proteolyticus plus environmental stress (diesel fuel). Results indicate that GYL is probably a new member of the C-type lectin family, and may be involved in the immune response of G. yessoensis to bacterial attack.
Assuntos
Lectinas/química , Lectinas/farmacologia , Animais , Bactérias , Bivalves , Meio Ambiente , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Hemaglutininas/metabolismo , Hemolinfa/química , Estresse FisiológicoRESUMO
Beetle hyperactive antifreeze protein (AFP) has a unique ability to maintain a supercooling state of its body fluids, however, less is known about its origination. Here, we found that a popular stag beetle Dorcus hopei binodulosus (Dhb) synthesizes at least 6 isoforms of hyperactive AFP (DhbAFP). Cold-acclimated Dhb larvae tolerated -5 °C chilled storage for 24 h and fully recovered after warming, suggesting that DhbAFP facilitates overwintering of this beetle. A DhbAFP isoform (~10 kDa) appeared to consist of 6-8 tandem repeats of a 12-residue consensus sequence (TCTxSxNCxxAx), which exhibited 3 °C of high freezing point depression and the ability of binding to an entire surface of a single ice crystal. Significantly, these properties as well as DNA sequences including the untranslated region, signal peptide region, and an AFP-encoding region of Dhb are highly similar to those identified for a known hyperactive AFP (TmAFP) from the beetle Tenebrio molitor (Tm). Progenitor of Dhb and Tm was branched off approximately 300 million years ago, so no known evolution mechanism hardly explains the retainment of the DNA sequence for such a lo-ng divergence period. Existence of unrevealed gene transfer mechanism will be hypothesized between these two phylogenetically distant beetles to acquire this type of hyperactive AFP.