Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338699

RESUMO

The photoperiod is a major environmental factor in flowering control. Water spinach flowering under the inductive short-day condition decreases the yield of vegetative tissues and the eating quality. To obtain an insight into the molecular mechanism of the photoperiod-dependent regulation of the flowering time in water spinach, we performed transcriptome sequencing on water spinach under long- and short-day conditions with eight time points. Our results indicated that there were 6615 circadian-rhythm-related genes under the long-day condition and 8691 under the short-day condition. The three key circadian-rhythm genes, IaCCA1, IaLHY, and IaTOC1, still maintained single copies and similar IaCCA1, IaLHY, and IaTOC1 feedback expression patterns, indicating the conservation of reverse feedback. In the photoperiod pathway, highly conserved GI genes were amplified into two copies (IaGI1 and IaGI2) in water spinach. The significant difference in the expression of the two genes indicates functional diversity. Although the photoperiod core gene FT was duplicated to three copies in water spinach, only IaFT1 was highly expressed and strongly responsive to the photoperiod and circadian rhythms, and the almost complete inhibition of IaFT1 in water spinach may be the reason why water spinach does not bloom, no matter how long it lasts under the long-day condition. Differing from other species (I. nil, I. triloba, I. trifida) of the Ipomoea genus that have three CO members, water spinach lacks one of them, and the other two CO genes (IaCO1 and IaCO2) encode only one CCT domain. In addition, through weighted correlation network analysis (WGCNA), some transcription factors closely related to the photoperiod pathway were obtained. This work provides valuable data for further in-depth analyses of the molecular regulation of the flowering time in water spinach and the Ipomoea genus.


Assuntos
Ipomoea , Fotoperíodo , Transcriptoma , Ipomoea/genética , Flores/genética , Flores/metabolismo , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
BMC Plant Biol ; 23(1): 209, 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37085761

RESUMO

BACKGROUND: Genes with valine glutamine (VQ) motifs play an essential role in plant growth, development, and resistance to biotic and abiotic stresses. However, little information on the VQ genes in sweetpotato and other Ipomoea species is available. RESULTS: This study identified 55, 58, 50 and 47 VQ genes from sweetpotato (I. batatas), I.triflida, I. triloba and I. nil, respectively. The phylogenetic analysis revealed that the VQ genes formed eight clades (I-VII), and the members in the same group exhibited similar exon-intron structure and conserved motifs distribution. The distribution of the VQ genes among the chromosomes of Ipomoea species was disproportional, with no VQ genes mapped on a few of each species' chromosomes. Duplication analysis suggested that segmental duplication significantly contributes to their expansion in sweetpotato, I.trifida, and I.triloba, while the segmental and tandem duplication contributions were comparable in I.nil. Cis-regulatory elements involved in stress responses, such as W-box, TGACG-motif, CGTCA-motif, ABRE, ARE, MBS, TCA-elements, LTR, and WUN-motif, were detected in the promoter regions of the VQ genes. A total of 30 orthologous groups were detected by syntenic analysis of the VQ genes. Based on the analysis of RNA-seq datasets, it was found that the VQ genes are expressed distinctly among different tissues and hormone or stress treatments. A total of 40 sweetpotato differentially expressed genes (DEGs) refer to biotic (sweetpotato stem nematodes and Ceratocystis fimbriata pathogen infection) or abiotic (cold, salt and drought) stress treatments were detected. Moreover, IbVQ8, IbVQ25 and IbVQ44 responded to the five stress treatments and were selected for quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis, and the results were consistent with the transcriptome analysis. CONCLUSIONS: Our study may provide new insights into the evolution of VQ genes in the four Ipomoea genomes and contribute to the future molecular breeding of sweetpotatoes.


Assuntos
Ipomoea batatas , Ipomoea , Ipomoea/genética , Glutamina/genética , Valina/genética , Filogenia , Genoma , Ipomoea batatas/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética
3.
New Phytol ; 238(3): 1263-1277, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36721257

RESUMO

The adaptation of weeds to herbicide is both a significant problem in agriculture and a model of rapid adaptation. However, significant gaps remain in our knowledge of resistance controlled by many loci and the evolutionary factors that influence the maintenance of resistance. Here, using herbicide-resistant populations of the common morning glory (Ipomoea purpurea), we perform a multilevel analysis of the genome and transcriptome to uncover putative loci involved in nontarget-site herbicide resistance (NTSR) and to examine evolutionary forces underlying the maintenance of resistance in natural populations. We found loci involved in herbicide detoxification and stress sensing to be under selection and confirmed that detoxification is responsible for glyphosate (RoundUp) resistance using a functional assay. We identified interchromosomal linkage disequilibrium (ILD) among loci under selection reflecting either historical processes or additive effects leading to the resistance phenotype. We further identified potential fitness cost loci that were strongly linked to resistance alleles, indicating the role of genetic hitchhiking in maintaining the cost. Overall, our work suggests that NTSR glyphosate resistance in I. purpurea is conferred by multiple genes which are potentially maintained through generations via ILD, and that the fitness cost associated with resistance in this species is likely a by-product of genetic hitchhiking.


Assuntos
Herbicidas , Ipomoea , Resistência a Herbicidas/genética , Desequilíbrio de Ligação/genética , Evolução Biológica , Herbicidas/farmacologia , Ipomoea/genética
4.
New Phytol ; 238(4): 1351-1361, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36727281

RESUMO

Heritable fungal endosymbiosis is underinvestigated in plant biology and documented in only three plant families (Convolvulaceae, Fabaceae, and Poaceae). An estimated 40% of morning glory species in the tribe Ipomoeeae (Convolvulaceae) have associations with one of two distinct heritable, endosymbiotic fungi (Periglandula and Chaetothyriales) that produce the bioactive metabolites ergot alkaloids, indole diterpene alkaloids, and swainsonine, which have been of interest for their toxic effects on animals and potential medical applications. Here, we report the occurrence of ergot alkaloids, indole diterpene alkaloids, and swainsonine in the Convolvulaceae; and the fungi that produce them based on synthesis of previous studies and new indole diterpene alkaloid data from 27 additional species in a phylogenetic, geographic, and life-history context. We find that individual morning glory species host no more than one metabolite-producing fungal endosymbiont (with one possible exception), possibly due to costs to the host and overlapping functions of the alkaloids. The symbiotic morning glory lineages occur in distinct phylogenetic clades, and host species have significantly larger seed size than nonsymbiotic species. The distinct and widely distributed endosymbiotic relationships in the morning glory family and their alkaloids provide an accessible study system for understanding heritable plant-fungal symbiosis evolution and their potential functions for host plants.


Assuntos
Alcaloides , Convolvulaceae , Alcaloides de Claviceps , Ipomoea , Animais , Convolvulaceae/metabolismo , Convolvulaceae/microbiologia , Swainsonina/metabolismo , Filogenia , Ipomoea/genética , Ipomoea/metabolismo , Ipomoea/microbiologia , Alcaloides de Claviceps/metabolismo , Alcaloides/metabolismo , Alcaloides Diterpenos
5.
PLoS Genet ; 16(2): e1008593, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32012153

RESUMO

The repeated evolution of herbicide resistance has been cited as an example of genetic parallelism, wherein separate species or genetic lineages utilize the same genetic solution in response to selection. However, most studies that investigate the genetic basis of herbicide resistance examine the potential for changes in the protein targeted by the herbicide rather than considering genome-wide changes. We used a population genomics screen and targeted exome re-sequencing to uncover the potential genetic basis of glyphosate resistance in the common morning glory, Ipomoea purpurea, and to determine if genetic parallelism underlies the repeated evolution of resistance across replicate resistant populations. We found no evidence for changes in 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), glyphosate's target protein, that were associated with resistance, and instead identified five genomic regions that showed evidence of selection. Within these regions, genes involved in herbicide detoxification-cytochrome P450s, ABC transporters, and glycosyltransferases-are enriched and exhibit signs of selective sweeps. One region under selection shows parallel changes across all assayed resistant populations whereas other regions exhibit signs of divergence. Thus, while it appears that the physiological mechanism of resistance in this species is likely the same among resistant populations, we find patterns of both similar and divergent selection across separate resistant populations at particular loci.


Assuntos
Genoma de Planta/genética , Glicina/análogos & derivados , Herbicidas/farmacologia , Ipomoea/genética , Plantas Daninhas/genética , 3-Fosfoshikimato 1-Carboxiviniltransferase/antagonistas & inibidores , 3-Fosfoshikimato 1-Carboxiviniltransferase/genética , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Evolução Molecular , Exoma/genética , Glicina/farmacologia , Resistência a Herbicidas/genética , Ipomoea/efeitos dos fármacos , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/genética , Plantas Daninhas/efeitos dos fármacos , Sementes/efeitos dos fármacos , Sementes/genética , Seleção Genética , Análise de Sequência de DNA , Glifosato
6.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835500

RESUMO

Phytochrome-interacting factors (PIFs) are essential for plant growth, development, and defense responses. However, research on the PIFs in sweet potato has been insufficient to date. In this study, we identified PIF genes in the cultivated hexaploid sweet potato (Ipomoea batatas) and its two wild relatives, Ipomoea triloba, and Ipomoea trifida. Phylogenetic analysis revealed that IbPIFs could be divided into four groups, showing the closest relationship with tomato and potato. Subsequently, the PIFs protein properties, chromosome location, gene structure, and protein interaction network were systematically analyzed. RNA-Seq and qRT-PCR analyses showed that IbPIFs were mainly expressed in stem, as well as had different gene expression patterns in response to various stresses. Among them, the expression of IbPIF3.1 was strongly induced by salt, drought, H2O2, cold, heat, Fusarium oxysporum f. sp. batatas (Fob), and stem nematodes, indicating that IbPIF3.1 might play an important role in response to abiotic and biotic stresses in sweet potato. Further research revealed that overexpression of IbPIF3.1 significantly enhanced drought and Fusarium wilt tolerance in transgenic tobacco plants. This study provides new insights for understanding PIF-mediated stress responses and lays a foundation for future investigation of sweet potato PIFs.


Assuntos
Fusarium , Ipomoea batatas , Ipomoea , Fitocromo , Ipomoea batatas/metabolismo , Fusarium/metabolismo , Filogenia , Fitocromo/metabolismo , Secas , Peróxido de Hidrogênio/metabolismo , Ipomoea/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
7.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446107

RESUMO

ACTINs are structural proteins widely distributed in plants. They are the main components of microfilaments and participate in many crucial physiological activities, including the maintenance of cell shape and cytoplasmic streaming. Meanwhile, ACTIN, as a housekeeping gene, is widely used in qRT-PCR analyses of plants. However, ACTIN family genes have not been explored in the sweet potato. In this study, we identified 30, 39, and 44 ACTINs in the cultivated hexaploid sweet potato (Ipomoea batatas, 2n = 6x = 90) and its two diploid relatives, Ipomoea trifida (2n = 2x = 30) and Ipomoea triloba (2n = 2x = 30), respectively, via analysis of their genome structure and by phylogenetic characterization. These ACTINs were divided into six subgroups according to their phylogenetic relationships with Arabidopsis thaliana. The physiological properties of the protein, chromosome localization, phylogenetic relationship, gene structure, promoter cis-elements, protein interaction networks, and expression patterns of these 113 ACTINs were systematically investigated. The results suggested that homologous ACTINs are differentiated in the sweet potato and its two diploid relatives, and play various vital roles in plant growth, tuberous root development, hormone crosstalk, and abiotic stress responses. Some stable ACTINs that could be used as internal reference genes were found in the sweet potato and its two diploid relatives, e.g., IbACTIN18, -20, and -16.2; ItfACTIN2.2, -16, and -10; ItbACTIN18 and -19.1. This work provides a comprehensive comparison and furthers our understanding of the ACTIN genes in the sweet potato and its two diploid relatives, thereby supplying a theoretical foundation for their functional study and further facilitating the molecular breeding of sweet potatoes.


Assuntos
Ipomoea batatas , Ipomoea , Ipomoea batatas/metabolismo , Actinas/genética , Actinas/metabolismo , Filogenia , Diploide , Ipomoea/genética , Regulação da Expressão Gênica de Plantas
8.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982726

RESUMO

The basic helix-loop-helix (bHLH) proteins compose one of the largest transcription factor (TF) families in plants, which play a vital role in regulating plant biological processes including growth and development, stress response, and secondary metabolite biosynthesis. Ipomoea aquatica is one of the most important nutrient-rich vegetables. Compared to the common green-stemmed I. aquatica, purple-stemmed I. aquatica has extremely high contents of anthocyanins. However, the information on bHLH genes in I. aquatica and their role in regulating anthocyanin accumulation is still unclear. In this study, we confirmed a total of 157 bHLH genes in the I. aquatica genome, which were classified into 23 subgroups according to their phylogenetic relationship with the bHLH of Arabidopsis thaliana (AtbHLH). Of these, 129 IabHLH genes were unevenly distributed across 15 chromosomes, while 28 IabHLH genes were spread on the scaffolds. Subcellular localization prediction revealed that most IabHLH proteins were localized in the nucleus, while some were in the chloroplast, extracellular space, and endomembrane system. Sequence analysis revealed conserved motif distribution and similar patterns of gene structure within IabHLH genes of the same subfamily. Analysis of gene duplication events indicated that DSD and WGD played a vital role in the IabHLH gene family expansion. Transcriptome analysis showed that the expression levels of 13 IabHLH genes were significantly different between the two varieties. Of these, the IabHLH027 had the highest expression fold change, and its expression level was dramatically higher in purple-stemmed I. aquatica than that in green-stemmed I. aquatica. All upregulated DEGs in purple-stemmed I. aquatica exhibited the same expression trends in both qRT-PCR and RNA-seq. Three downregulated genes including IabHLH142, IabHLH057, and IabHLH043 determined by RNA-seq had opposite expression trends of those detected by qRT-PCR. Analysis of the cis-acting elements in the promoter region of 13 differentially expressed genes indicated that light-responsive elements were the most, followed by phytohormone-responsive elements and stress-responsive elements, while plant growth and development-responsive elements were the least. Taken together, this work provides valuable clues for further exploring IabHLH function and facilitating the breeding of anthocyanin-rich functional varieties of I. aquatica.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Ipomoea , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Antocianinas/genética , Ipomoea/genética , Filogenia , Melhoramento Vegetal , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Int J Mol Sci ; 24(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38068872

RESUMO

Malate dehydrogenase (MDH; EC 1.1.1.37) plays a vital role in plant growth and development as well as abiotic stress responses, and it is widely present in plants. However, the MDH family genes have not been explored in sweet potato. In this study, nine, ten, and ten MDH genes in sweet potato (Ipomoea batatas) and its two diploid wild relatives, Ipomoea trifida and Ipomoea triloba, respectively, were identified. These MDH genes were unevenly distributed on seven different chromosomes among the three species. The gene duplications and nucleotide substitution analysis (Ka/Ks) revealed that the MDH genes went through segmental duplications during their evolution under purifying selection. A phylogenetic and conserved structure divided these MDH genes into five subgroups. An expression analysis indicated that the MDH genes were omni-presently expressed in distinct tissues and responded to various abiotic stresses. A transcription factor prediction analysis proved that Dof, MADS-box, and MYB were the main transcription factors of sweet potato MDH genes. These findings provide molecular features of the MDH family in sweet potato and its two diploid wild relatives, which further supports functional characterizations.


Assuntos
Ipomoea batatas , Ipomoea , Ipomoea batatas/metabolismo , Filogenia , Diploide , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Ipomoea/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas
10.
New Phytol ; 233(3): 1505-1519, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34783034

RESUMO

Although the evolution of the selfing syndrome often involves reductions in floral size, pollen and nectar, few studies of selfing syndrome divergence have examined nectar. We investigate whether nectar traits have evolved independently of other floral size traits in the selfing syndrome, whether nectar traits diverged due to drift or selection, and the extent to which quantitative trait locus (QTL) analyses predict genetic correlations. We use F5 recombinant inbred lines (RILs) generated from a cross between Ipomoea cordatotriloba and Ipomoea lacunosa. We calculate genetic correlations to identify evolutionary modules, test whether trait divergence was due to selection, identify QTLs and perform correlation analyses to evaluate how well QTL properties reflect genetic correlations. Nectar and floral size traits form separate evolutionary modules. Selection has acted to reduce nectar traits in the selfing I. lacunosa. Genetic correlations predicted from QTL properties are consistent with observed genetic correlations. Changes in floral traits associated with the selfing syndrome reflect independent evolution of at least two evolutionary modules: nectar and floral size traits. We also demonstrate directional selection on nectar traits, which is likely to be independent of selection on floral size traits. Our study also supports the expected mechanistic link between QTL properties and genetic correlations.


Assuntos
Convolvulaceae , Ipomoea , Evolução Biológica , Flores/genética , Ipomoea/genética , Néctar de Plantas , Polinização
11.
New Phytol ; 234(4): 1185-1194, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35064679

RESUMO

The origin of sweetpotato, a hexaploid species, is poorly understood, partly because the identity of its tetraploid progenitor remains unknown. In this study, we identify, describe and characterize a new species of Ipomoea that is sweetpotato's closest tetraploid relative known to date and probably a direct descendant of its tetraploid progenitor. We integrate morphological, phylogenetic, and genomic analyses of herbarium and germplasm accessions of the hexaploid sweetpotato, its closest known diploid relative Ipomoea trifida, and various tetraploid plants closely related to them from across the American continent. We identify wild autotetraploid plants from Ecuador that are morphologically distinct from Ipomoea batatas and I. trifida, but monophyletic and sister to I. batatas in phylogenetic analysis of nuclear data. We describe this new species as Ipomoea aequatoriensis T. Wells & P. Muñoz sp. nov., distinguish it from hybrid tetraploid material collected in Mexico; and show that it likely played a direct role in the origin of sweetpotato's hexaploid genome. This discovery transforms our understanding of sweetpotato's origin.


Assuntos
Ipomoea batatas , Ipomoea , Genoma de Planta , Ipomoea/genética , Ipomoea batatas/genética , Filogenia , Tetraploidia
12.
Genome ; 65(6): 331-339, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35254885

RESUMO

Cultivated sweetpotato [Ipomoea batatas (L.) Lam.] from the family Convolvulaceae is a hexaploid species with 2n = 6x = 90 and has been controversial regarding its nature as an autopolyploid arising within a species or an allopolyploid forming between species. Here, we developed oligonucleotide-based painting probes for two chromosomes of I. nil, a model diploid Ipomoea species. Using these probes, we revealed the pairing behavior of homoeologous chromosomes in I. batatas and its two possible polyploid ancestral species, tetraploid I. tabascana (2n = 4x = 60) and hexaploid I. trifida (2n = 6x = 90). Chromosome painting analysis revealed a high percentage of quadrivalent formation in zygotene-pachytene cells of I. tabascana, which supported that I. tabascana was an autotetraploid likely derived by doubling of structurally similar and homologous genomes rather than a hybrid between I. batatas and I. trifida (2x). A high frequency of hexavalent/bivalent and tetravalent pairing was observed in I. trifida (6x) and I. batatas. However, the percentage of hexavalent pairing in I. trifida (6x) was far higher than that in I. batatas. Thus, the present results tend to support that I. trifida (6x) is an autohexaploid, while I. batatas is more likely to be a segmental allohexaploid.


Assuntos
Ipomoea batatas , Ipomoea , Coloração Cromossômica , Genômica , Ipomoea/genética , Ipomoea batatas/genética , Poliploidia
13.
Plant Cell Rep ; 41(11): 2159-2171, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35943560

RESUMO

KEY MESSAGE: A novel interspecific somatic hybrid combining drought tolerance and high quality of sweet potato and Ipomoea triloba L. was obtained and its genetic and epigenetic variations were studied. Somatic hybridization can be used to overcome the cross-incompatibility between sweet potato (Ipomoea batatas (L.) Lam.) and its wild relatives and transfer useful and desirable genes from wild relatives to cultivated plants. However, most of the interspecific somatic hybrids obtained to date cannot produce storage roots and do not exhibit agronomic characters. In the present study, a novel interspecific somatic hybrid, named XT1, was obtained through protoplast fusion between sweet potato cv. Xushu 18 and its wild relative I. triloba. This somatic hybrid produced storage roots and exhibited significantly higher drought tolerance and quality compared with its cultivated parent Xushu 18. Transcriptome and real-time quantitative PCR (qRT-PCR) analyses revealed that the well-known drought stress-responsive genes in XT1 and I. triloba were significantly up-regulated under drought stress. The genomic structural reconstructions between the two genomes of the fusion parents in XT1 were confirmed using genomic in situ hybridization (GISH) and specific nuclear and cytoplasmic DNA markers. The DNA methylation variations were characterized by methylation-sensitive amplified polymorphism (MSAP). This study not only reveals the significance of somatic hybridization in the genetic improvement of sweet potato but also provides valuable materials and knowledge for further investigating the mechanism of storage root formation in sweet potato.


Assuntos
Ipomoea batatas , Ipomoea , Ipomoea batatas/genética , Ipomoea/genética , Secas , Transcriptoma
14.
An Acad Bras Cienc ; 94(3): e20210672, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36228301

RESUMO

The anthocyanins are pigments responsible for a wide range of colours in plants, from blue, red and purple, play essential biological roles as well as their genes are evolutionarily conserved. Purple sweet potatoes have anthocyanins as the predominant colour, even though they are present in orange roots masked by carotenoids. Several studies have focused on molecular aspects of anthocyanin genes, mainly in wild Ipomoea species, although the structure and segregation analysis of those genes in sweet potato hexaploid species are still unknown. Based on an "exon-primed intron-crossing" (EPIC) approach, fourteen pairs of primers were designed, on five structural anthocyanin genes as candidates. The strategy exploits the Intron Length Polymorphism (ILP) from Candidate Genes (CG), resulting in 93% of successful markers giving scorable and reproducible alleles. The results allowed to define partial structure and sequence of the introns and exons from the selected CG, and to determine patterns of sequence variation. The evaluation of marker dosage and allelic segregations in an Ipomoea batatas (L.) Lam mapping population identified several alleles for linkage analysis. The study validated the utility of ILP-CG markers for genetic diversity and conservation applicability and a successful amplification gradient across wild Ipomoea species validated their transferability.


Assuntos
Ipomoea batatas , Ipomoea , Antocianinas/genética , Carotenoides , Mapeamento Cromossômico , Variação Genética/genética , Genômica , Ipomoea/genética , Ipomoea batatas/química , Ipomoea batatas/genética
15.
Pestic Biochem Physiol ; 184: 105111, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35715050

RESUMO

Ipomea purpurea (L.) Roth. reduces dry land crop yield and quality in Northeast China, especially in Liaoning Province. Frequent use of thifensulfuron-methyl in recent years has resulted in herbicide resistance in I. purpurea. We evaluated resistance levels of I. purpurea to thifensulfuron-methyl, an acetolactate synthase (ALS) inhibitor, in Liaoning Province and further investigated the resistance mechanisms. The results showed that 15 populations of I. purpurea have evolved up to 5.81-34.44-fold resistance to thifensulfuron-methyl, compared to the susceptible population (S), among which LN3 was the most resistant. DNA sequencing of the ALS gene in susceptible and resistant populations did not reveal any target site mutations that could be associated with resistance to thifensulfuron-methyl in I. purpurea. Additionally, no significant difference was detected between the in vitro ALS activity of LN3 and S. The GR50 of LN3 decreased sharply by 47% when malathion (a P450 inhibitor) was applied with thifensulfuron-methyl. Absorption of thifensulfuron-methyl by LN3 was equal to that of S; however, LN3 metabolized the herbicide significantly faster. This was repressed after the inhibition of P450s activity. Collectively, our results confirmed that I. purpurea in Liaoning Province has developed resistance to thifensulfuron-methyl and implied that the resistance was conferred by the increase in detoxification mediated by P450s. Furthermore, LN3 was sensitive to fluroxypyr, which can be used as an alternative to control I. purpurea.


Assuntos
Acetolactato Sintase , Herbicidas , Ipomoea , Acetolactato Sintase/metabolismo , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Ipomoea/genética , Ipomoea/metabolismo , Proteínas de Plantas/genética , Compostos de Sulfonilureia , Tiofenos
16.
Int J Mol Sci ; 23(6)2022 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35328509

RESUMO

Calcium-dependent protein kinase (CDPKs) is one of the calcium-sensing proteins in plants. They are likely to play important roles in growth and development and abiotic stress responses. However, these functions have not been explored in sweet potato. In this study, we identified 39 CDPKs in cultivated hexaploid sweet potato (Ipomoea batatas, 2n = 6x = 90), 35 CDPKs in diploid relative Ipomoea trifida (2n = 2x = 30), and 35 CDPKs in Ipomoea triloba (2n = 2x = 30) via genome structure analysis and phylogenetic characterization, respectively. The protein physiological property, chromosome localization, phylogenetic relationship, gene structure, promoter cis-acting regulatory elements, and protein interaction network were systematically investigated to explore the possible roles of homologous CDPKs in the growth and development and abiotic stress responses of sweet potato. The expression profiles of the identified CDPKs in different tissues and treatments revealed tissue specificity and various expression patterns in sweet potato and its two diploid relatives, supporting the difference in the evolutionary trajectories of hexaploid sweet potato. These results are a critical first step in understanding the functions of sweet potato CDPK genes and provide more candidate genes for improving yield and abiotic stress tolerance in cultivated sweet potato.


Assuntos
Ipomoea batatas , Ipomoea , Diploide , Regulação da Expressão Gênica de Plantas , Crescimento e Desenvolvimento , Ipomoea/genética , Ipomoea batatas/genética , Filogenia , Estresse Fisiológico/genética
17.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555491

RESUMO

Sugar Will Eventually be Exported Transporter (SWEET) proteins are key transporters in sugar transportation. They are involved in the regulation of plant growth and development, hormone crosstalk, and biotic and abiotic stress responses. However, SWEET family genes have not been explored in the sweet potato. In this study, we identified 27, 27, and 25 SWEETs in cultivated hexaploid sweet potato (Ipomoea batatas, 2n = 6x = 90) and its two diploid relatives, Ipomoea trifida (2n = 2x = 30) and Ipomoea triloba (2n = 2x = 30), respectively. These SWEETs were divided into four subgroups according to their phylogenetic relationships with Arabidopsis. The protein physiological properties, chromosome localization, phylogenetic relationships, gene structures, promoter cis-elements, protein interaction networks, and expression patterns of these 79 SWEETs were systematically investigated. The results suggested that homologous SWEETs are differentiated in sweet potato and its two diploid relatives and play various vital roles in plant growth, tuberous root development, carotenoid accumulation, hormone crosstalk, and abiotic stress response. This work provides a comprehensive comparison and furthers our understanding of the SWEET genes in the sweet potato and its two diploid relatives, thereby supplying a theoretical foundation for their functional study and further facilitating the molecular breeding of sweet potato.


Assuntos
Ipomoea batatas , Ipomoea , Ipomoea batatas/metabolismo , Filogenia , Diploide , Ipomoea/genética , Genoma de Planta , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36232853

RESUMO

Stress-associated protein (SAP) genes-encoding A20/AN1 zinc-finger domain-containing proteins-play pivotal roles in regulating stress responses, growth, and development in plants. They are considered suitable candidates to improve abiotic stress tolerance in plants. However, the SAP gene family in sweetpotato (Ipomoea batatas) and its relatives is yet to be investigated. In this study, 20 SAPs in sweetpotato, and 23 and 26 SAPs in its wild diploid relatives Ipomoea triloba and Ipomoea trifida were identified. The chromosome locations, gene structures, protein physiological properties, conserved domains, and phylogenetic relationships of these SAPs were analyzed systematically. Binding motif analysis of IbSAPs indicated that hormone and stress responsive cis-acting elements were distributed in their promoters. RT-qPCR or RNA-seq data revealed that the expression patterns of IbSAP, ItbSAP, and ItfSAP genes varied in different organs and responded to salinity, drought, or ABA (abscisic acid) treatments differently. Moreover, we found that IbSAP16 driven by the 35 S promoter conferred salinity tolerance in transgenic Arabidopsis. These results provided a genome-wide characterization of SAP genes in sweetpotato and its two relatives and suggested that IbSAP16 is involved in salinity stress responses. Our research laid the groundwork for studying SAP-mediated stress response mechanisms in sweetpotato.


Assuntos
Arabidopsis , Ipomoea batatas , Ipomoea , Ácido Abscísico/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico/metabolismo , Hormônios/metabolismo , Ipomoea/genética , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Tolerância ao Sal/genética , Estresse Fisiológico/genética , Zinco/metabolismo , Dedos de Zinco/genética
19.
BMC Genomics ; 22(1): 262, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33849443

RESUMO

BACKGROUND: Sweetpotato (Ipomoea batatas [L.] Lam.) is an important food crop. However, the genetic information of the nuclear genome of this species is difficult to determine accurately because of its large genome and complex genetic background. This drawback has limited studies on the origin, evolution, genetic diversity and other relevant studies on sweetpotato. RESULTS: The chloroplast genomes of 107 sweetpotato cultivars were sequenced, assembled and annotated. The resulting chloroplast genomes were comparatively analysed with the published chloroplast genomes of wild species of sweetpotato. High similarity and certain specificity were found among the chloroplast genomes of Ipomoea spp. Phylogenetic analysis could clearly distinguish wild species from cultivars. Ipomoea trifida and Ipomoea tabascana showed the closest relationship with the cultivars, and different haplotypes of ycf1 could be used to distinguish the cultivars from their wild relatives. The genetic structure was analyzed using variations in the chloroplast genome. Compared with traditional nuclear markers, the chloroplast markers designed based on the InDels on the chloroplast genome showed significant advantages. CONCLUSIONS: Comparative analysis of chloroplast genomes of 107 cultivars and several wild species of sweetpotato was performed to help analyze the evolution, genetic structure and the development of chloroplast DNA markers of sweetpotato.


Assuntos
Genoma de Cloroplastos , Ipomoea batatas , Ipomoea , Genoma de Planta , Ipomoea/genética , Ipomoea batatas/genética , Filogenia
20.
Brief Bioinform ; 20(3): 866-876, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29112696

RESUMO

Long reads obtained from third-generation sequencing platforms can help overcome the long-standing challenge of the de novo assembly of sequences for the genomic analysis of non-model eukaryotic organisms. Numerous long-read-aided de novo assemblies have been published recently, which exhibited superior quality of the assembled genomes in comparison with those achieved using earlier second-generation sequencing technologies. Evaluating assemblies is important in guiding the appropriate choice for specific research needs. In this study, we evaluated 10 long-read assemblers using a variety of metrics on Pacific Biosciences (PacBio) data sets from different taxonomic categories with considerable differences in genome size. The results allowed us to narrow down the list to a few assemblers that can be effectively applied to eukaryotic assembly projects. Moreover, we highlight how best to use limited genomic resources for effectively evaluating the genome assemblies of non-model organisms.


Assuntos
Genoma , Análise de Sequência de DNA/métodos , Animais , Caenorhabditis elegans/genética , Escherichia coli/genética , Ipomoea/genética , Plasmodium falciparum/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa