Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 351
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 19(2): 223-230, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35132243

RESUMO

Isotope tracing has helped to determine the metabolic activities of organs. Methods to probe metabolic heterogeneity within organs are less developed. We couple stable-isotope-labeled nutrient infusion to matrix-assisted laser desorption ionization imaging mass spectrometry (iso-imaging) to quantitate metabolic activity in mammalian tissues in a spatially resolved manner. In the kidney, we visualize gluconeogenic flux and glycolytic flux in the cortex and medulla, respectively. Tricarboxylic acid cycle substrate usage differs across kidney regions; glutamine and citrate are used preferentially in the cortex and fatty acids are used in the medulla. In the brain, we observe spatial gradations in carbon inputs to the tricarboxylic acid cycle and glutamate under a ketogenic diet. In a carbohydrate-rich diet, glucose predominates throughout but in a ketogenic diet, 3-hydroxybutyrate contributes most strongly in the hippocampus and least in the midbrain. Brain nitrogen sources also vary spatially; branched-chain amino acids contribute most in the midbrain, whereas ammonia contributes in the thalamus. Thus, iso-imaging can reveal the spatial organization of metabolic activity.


Assuntos
Encéfalo/metabolismo , Isótopos de Carbono/farmacocinética , Rim/metabolismo , Isótopos de Nitrogênio/farmacocinética , Animais , Dieta , Enzimas , Gluconeogênese , Ácido Glutâmico/biossíntese , Glicólise , Masculino , Camundongos Endogâmicos C57BL , Imagem Molecular , Análise de Célula Única , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Ácidos Tricarboxílicos/metabolismo , Fluxo de Trabalho
2.
Magn Reson Med ; 92(4): 1698-1713, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38775035

RESUMO

PURPOSE: Metabolite-specific balanced SSFP (MS-bSSFP) sequences are increasingly used in hyperpolarized [1-13C]Pyruvate (HP 13C) MRI studies as they improve SNR by refocusing the magnetization each TR. Currently, pharmacokinetic models used to fit conversion rate constants, kPL and kPB, and rate constant maps do not account for differences in the signal evolution of MS-bSSFP acquisitions. METHODS: In this work, a flexible MS-bSSFP model was built that can be used to fit conversion rate constants for these experiments. The model was validated in vivo using paired animal (healthy rat kidneys n = 8, transgenic adenocarcinoma of the mouse prostate n = 3) and human renal cell carcinoma (n = 3) datasets. Gradient echo (GRE) acquisitions were used with a previous GRE model to compare to the results of the proposed GRE-bSSFP model. RESULTS: Within simulations, the proposed GRE-bSSFP model fits the simulated data well, whereas a GRE model shows bias because of model mismatch. For the in vivo datasets, the estimated conversion rate constants using the proposed GRE-bSSFP model are consistent with a previous GRE model. Jointly fitting the lactate T2 with kPL resulted in less precise kPL estimates. CONCLUSION: The proposed GRE-bSSFP model provides a method to estimate conversion rate constants, kPL and kPB, for MS-bSSFP HP 13C experiments. This model may also be modified and used for other applications, for example, estimating rate constants with other hyperpolarized reagents or multi-echo bSSFP.


Assuntos
Isótopos de Carbono , Imageamento por Ressonância Magnética , Ácido Pirúvico , Animais , Ácido Pirúvico/farmacocinética , Ácido Pirúvico/metabolismo , Ratos , Imageamento por Ressonância Magnética/métodos , Camundongos , Isótopos de Carbono/farmacocinética , Humanos , Masculino , Rim/diagnóstico por imagem , Rim/metabolismo , Simulação por Computador , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Razão Sinal-Ruído , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/metabolismo , Camundongos Transgênicos
3.
J Sep Sci ; 44(14): 2693-2704, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33939878

RESUMO

Oleoylethanolamide is an endogenous molecule with neuroprotective effects. It has been reported that exogenous oleoylethanolamide can be administered therapeutically, but the confounding presence of the endogenous molecule has led to conflicting reports regarding the mechanisms of the effects and highlights a need for an adequate methodology to differentiate them. We have developed a liquid chromatography-tandem mass spectrometry method to study oleoylethanolamide in rat plasma and brain using a 13 C-labeled isotope, 13 C-oleoylethanolamide. 13 C-oleoylethanolamide was extracted using a liquid-liquid extraction employing acetonitrile and tert-butyl methyl ether (1:4). Analysis was performed using a gradient with a total run time of 12 min. 13 C-oleoylethanolamide, d4 -oleoylethanolamide (internal standard), and 12 C-oleoylethanolamide (endogenous background) eluted simultaneously at 1.64 min. The method was validated for specificity, sensitivity, accuracy, and precision and found to be capable of quantification within acceptable limits of ±15% over the calibration range of 0.39-25 ng/mL for the plasma and 1.17-75 ng/g for the brain. It was then applied to quantify 13 C-oleoylethanolamide over 90 min after intravenous administration of a solution (1 mg/kg) in rats. Results suggest that 13 C-oleoylethanolamide does not reach therapeutic concentrations in the brain, despite a relatively prolonged plasma circulation, suggesting that rapid degradation in the brain remains an obstacle to its clinical application to neurological disease.


Assuntos
Encéfalo/metabolismo , Cromatografia Líquida/métodos , Etanolamina , Ácidos Oleicos , Plasma/metabolismo , Animais , Isótopos de Carbono/farmacocinética , Cromatografia Líquida de Alta Pressão/métodos , Etanolamina/análise , Etanolamina/farmacocinética , Extração Líquido-Líquido/métodos , Ácidos Oleicos/análise , Ácidos Oleicos/farmacocinética , Ratos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
4.
BMC Med Imaging ; 20(1): 15, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32041550

RESUMO

BACKGROUND: The Logan graphical analysis (LGA) algorithm is widely used to quantify receptor density for parametric imaging in positron emission tomography (PET). Estimating receptor density, in terms of the non-displaceable binding potential (BPND), from the LGA using the ordinary least-squares (OLS) method has been found to be negatively biased owing to noise in PET data. This is because OLS does not consider errors in the X-variable (predictor variable). Existing bias reduction methods can either only reduce the bias slightly or reduce the bias accompanied by increased variation in the estimates. In this study, we addressed the bias reduction problem by applying a different regression method. METHODS: We employed least-squares cubic (LSC) linear regression, which accounts for errors in both variables as well as the correlation of these errors. Noise-free PET data were simulated, for 11C-carfentanil kinetics, with known BPND values. Statistical noise was added to these data and the BPNDs were re-estimated from the noisy data by three methods, conventional LGA, multilinear reference tissue model 2 (MRTM2), and LSC-based LGA; the results were compared. The three methods were also compared in terms of beta amyloid (A ß) quantification of 11C-Pittsburgh compound B brain PET data for two patients with Alzheimer's disease and differing A ß depositions. RESULTS: Amongst the three methods, for both synthetic and actual data, LSC was the least biased, followed by MRTM2, and then the conventional LGA, which was the most biased. Variations in the LSC estimates were smaller than those in the MRTM2 estimates. LSC also required a shorter computational time than MRTM2. CONCLUSIONS: The results suggest that LSC provides a better trade-off between the bias and variability than the other two methods. In particular, LSC performed better than MRTM2 in all aspects; bias, variability, and computational time. This makes LSC a promising method for BPND parametric imaging in PET studies.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides/química , Isótopos de Carbono/farmacocinética , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Algoritmos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Viés , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Isótopos de Carbono/química , Fentanila/análogos & derivados , Fentanila/química , Humanos , Análise dos Mínimos Quadrados , Tomografia por Emissão de Pósitrons , Razão Sinal-Ruído
5.
Proc Natl Acad Sci U S A ; 114(33): E6982-E6991, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28760957

RESUMO

Proinflammatory mononuclear phagocytes (MPs) play a crucial role in the progression of multiple sclerosis (MS) and other neurodegenerative diseases. Despite advances in neuroimaging, there are currently limited available methods enabling noninvasive detection of MPs in vivo. Interestingly, upon activation and subsequent differentiation toward a proinflammatory phenotype MPs undergo metabolic reprogramming that results in increased glycolysis and production of lactate. Hyperpolarized (HP) 13C magnetic resonance spectroscopic imaging (MRSI) is a clinically translatable imaging method that allows noninvasive monitoring of metabolic pathways in real time. This method has proven highly useful to monitor the Warburg effect in cancer, through MR detection of increased HP [1-13C]pyruvate-to-lactate conversion. However, to date, this method has never been applied to the study of neuroinflammation. Here, we questioned the potential of 13C MRSI of HP [1-13C]pyruvate to monitor the presence of neuroinflammatory lesions in vivo in the cuprizone mouse model of MS. First, we demonstrated that 13C MRSI could detect a significant increase in HP [1-13C]pyruvate-to-lactate conversion, which was associated with a high density of proinflammatory MPs. We further demonstrated that the increase in HP [1-13C]lactate was likely mediated by pyruvate dehydrogenase kinase 1 up-regulation in activated MPs, resulting in regional pyruvate dehydrogenase inhibition. Altogether, our results demonstrate a potential for 13C MRSI of HP [1-13C]pyruvate as a neuroimaging method for assessment of inflammatory lesions. This approach could prove useful not only in MS but also in other neurological diseases presenting inflammatory components.


Assuntos
Isótopos de Carbono , Ácido Láctico , Imageamento por Ressonância Magnética , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/metabolismo , Animais , Isótopos de Carbono/farmacocinética , Isótopos de Carbono/farmacologia , Cuprizona/efeitos adversos , Cuprizona/farmacologia , Modelos Animais de Doenças , Feminino , Ácido Láctico/farmacocinética , Ácido Láctico/farmacologia , Camundongos , Camundongos Transgênicos , Esclerose Múltipla/induzido quimicamente , Esclerose Múltipla/genética
6.
Am J Physiol Endocrinol Metab ; 317(2): E194-E199, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31013145

RESUMO

Positron emission tomography (PET) radiopharmaceuticals can noninvasively measure free fatty acid (FFA) uptake into adipose tissue. We studied 29 volunteers to test whether abdominal and femoral subcutaneous adipose tissue FFA uptake measured using [1-11C]palmitate PET agrees with FFA storage rates measured using an intravenous bolus of [1-14C]palmitate and adipose biopsies. The dynamic left ventricular cavity PET images combined with blood sample radioactivity corrected for the 11CO2 content were used to create the blood time activity curve (TAC), and the constant (Ki) was determined using Patlak analysis of the TACs generated for regions of interest in abdominal subcutaneous fat. These data were used to calculate palmitate uptake rates in abdominal subcutaneous adipose tissue (µmol·kg-1·min-1). Immediately after the dynamic imaging, a static image of the thigh was taken to measure the standardized uptake value (SUV) in thigh adipose tissue, which was scaled to each participant's abdominal adipose tissue SUV to calculate thigh adipose palmitate uptake rates. Abdominal adipose palmitate uptake using PET [1-11C]palmitate was correlated with, but significantly (P < 0.001) greater than, FFA storage measured using [1-14C]palmitate and adipose biopsy. Thigh adipose palmitate measured using PET calculation was positively correlated (R2 = 0.44, P < 0.0001) with and not different from the biopsy approach. The relative differences between PET measured abdominal subcutaneous adipose tissue palmitate uptake and biopsy-measured palmitate storage were positively correlated (P = 0.03) with abdominal subcutaneous fat. We conclude that abdominal adipose tissue FFA uptake measured using PET does not equate to adipose FFA storage measured using biopsy techniques.


Assuntos
Tecido Adiposo/patologia , Ácidos Graxos não Esterificados/farmacocinética , Tomografia por Emissão de Pósitrons , Gordura Subcutânea/diagnóstico por imagem , Gordura Subcutânea/metabolismo , Tecido Adiposo/diagnóstico por imagem , Adiposidade/fisiologia , Adulto , Biópsia , Distribuição da Gordura Corporal/métodos , Índice de Massa Corporal , Isótopos de Carbono/análise , Isótopos de Carbono/farmacocinética , Radioisótopos de Carbono/análise , Radioisótopos de Carbono/farmacocinética , Feminino , Humanos , Peso Corporal Ideal/fisiologia , Lipólise/fisiologia , Masculino , Obesidade/metabolismo , Obesidade/patologia , Sobrepeso/metabolismo , Sobrepeso/patologia , Ácido Palmítico/química , Ácido Palmítico/farmacocinética , Tomografia por Emissão de Pósitrons/métodos
7.
Mol Pain ; 15: 1744806918822185, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30799686

RESUMO

Cancers in the bone produce a number of severe symptoms including pain that compromises patient functional status, quality of life, and survival. The source of this pain is multifaceted and includes factors secreted from tumor cells. Malignant cells release the neurotransmitter and cell-signaling molecule glutamate via the oxidative stress-related cystine/glutamate antiporter, system xC-, which reciprocally imports cystine for synthesis of glutathione and the cystine/cysteine redox cycle. Pharmacological inhibition of system xC- has shown success in reducing and delaying the onset of cancer pain-related behavior in mouse models. This investigation describes the development of a stable siRNA-induced knockdown of the functional trans-membrane system xC- subunit xCT ( SLC7A11) in the human breast cancer cell line MDA-MB-231. Clones were verified for xCT knockdown at the transcript, protein, and functional levels. RNAseq was performed on a representative clone to comprehensively examine the transcriptional cellular signature in response to xCT knockdown, identifying multiple differentially regulated factors relevant to cancer pain including nerve growth factor, interleukin-1, and colony-stimulating factor-1. Mice were inoculated intrafemorally and recordings of pain-related behaviors including weight bearing, mechanical withdrawal, and limb use were performed. Animals implanted with xCT knockdown cancer cells displayed a delay until the onset of nociceptive behaviors relative to control cells. These results add to the body of evidence suggesting that a reduction in glutamate release from cancers in bone by inhibition of the system xC- transporter may decrease the severe and intractable pain associated with bone metastases.


Assuntos
Sistema y+ de Transporte de Aminoácidos/metabolismo , Neoplasias da Mama/complicações , Dor do Câncer/etiologia , Dor do Câncer/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Sistema y+ de Transporte de Aminoácidos/genética , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Isótopos de Carbono/farmacocinética , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Linhagem Celular Tumoral , Cistina/farmacocinética , Modelos Animais de Doenças , Feminino , Ácido Glutâmico/metabolismo , Glutationa/metabolismo , Humanos , Interleucina-1/metabolismo , Fator Estimulador de Colônias de Macrófagos/genética , Fator Estimulador de Colônias de Macrófagos/metabolismo , Camundongos Endogâmicos BALB C , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
8.
Biol Reprod ; 100(5): 1261-1274, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715249

RESUMO

Spermatozoa from three feline species-the domestic cat (Felis catus), the cheetah (Acinonyx jubatus), and the clouded leopard (Neofelis nebulosa)-were analyzed using metabolomic profiling and 13C-based fluxomics to address questions raised regarding their energy metabolism. Metabolic profiles and utilization of 13C-labeled energy substrates were detected and quantified using gas chromatography-mass spectrometry (GC-MS). Spermatozoa were collected by electroejaculation and incubated in media supplemented with 1.0 mM [U13C]-glucose, [U13C]-fructose, or [U13C]-pyruvate. Evaluation of intracellular metabolites following GC-MS analysis revealed the uptake and utilization of labeled glucose and fructose in sperm, as indicated by the presence of heavy ions in glycolytic products lactate and pyruvate. Despite evidence of substrate utilization, neither glucose nor fructose had an effect on the sperm motility index of ejaculated spermatozoa from any of the three felid species, and limited entry of pyruvate derived from these hexose substrates into mitochondria and the tricarboxylic acid cycle was detected. However, pathway utilization was species-specific for the limited number of individuals (four to seven males per species) assessed in these studies. An inhibitor of fatty acid beta-oxidation (FAO), etomoxir, altered metabolic profiles of all three felid species but decreased motility only in the cheetah. While fluxomic analysis provided direct evidence that glucose and fructose undergo catabolic metabolism, other endogenous substrates such as endogenous lipids may provide energy to fuel motility.


Assuntos
Isótopos de Carbono/farmacocinética , Metabolismo Energético , Felidae/metabolismo , Metabolômica/métodos , Espermatozoides/metabolismo , Acinonyx/metabolismo , Animais , Animais Domésticos , Isótopos de Carbono/análise , Gatos/metabolismo , Ciclo do Ácido Cítrico/fisiologia , Felidae/classificação , Glicólise/fisiologia , Ácido Láctico/metabolismo , Masculino , Ácido Pirúvico/metabolismo , Análise do Sêmen/métodos , Análise do Sêmen/veterinária
9.
Glia ; 66(11): 2353-2365, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30394585

RESUMO

When activated, microglial cells have the potential not only to secrete typical proinflammatory mediators but also to release the neurotransmitter glutamate in amounts that may promote excitotoxicity. Here, we wished to determine the potential of the Parkinson's disease (PD) protein α-Synuclein (αS) to stimulate glutamate release using cultures of purified microglial cells. We established that glutamate release was robustly increased when microglial cultures were treated with fibrillary aggregates of αS but not with the native monomeric protein. Promotion of microglial glutamate release by αS aggregates (αSa) required concomitant engagement of TLR2 and P2X7 receptors. Downstream to cell surface receptors, the release process was mediated by activation of a signaling cascade sequentially involving phosphoinositide 3-kinase (PI3K) and NADPH oxidase, a superoxide-producing enzyme. Inhibition of the Xc- antiporter, a plasma membrane exchange system that imports extracellular l-cystine and exports intracellular glutamate, prevented the release of glutamate induced by αSa, indicating that system Xc- was the final effector element in the release process downstream to NADPH oxidase activation. Of interest, the stimulation of glutamate release by αSa was abrogated by dopamine through an antioxidant effect requiring D1 dopamine receptor activation and PI3K inhibition. Altogether, present data suggest that the activation of microglial cells by αSa may possibly result in a toxic build-up of extracellular glutamate contributing to excitotoxic stress in PD. The deficit in dopamine that characterizes this disorder may further aggravate this process in a vicious circle mechanism.


Assuntos
Dopamina/farmacologia , Ácido Glutâmico/metabolismo , Microglia/efeitos dos fármacos , Agregados Proteicos/efeitos dos fármacos , alfa-Sinucleína/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Animais Recém-Nascidos , Anticorpos Monoclonais/farmacologia , Isótopos de Carbono/farmacocinética , Células Cultivadas , Cistina/farmacocinética , Humanos , Lipopeptídeos/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/ultraestrutura , Inibidores da Agregação Plaquetária/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 2 Toll-Like/imunologia , alfa-Sinucleína/farmacologia
10.
J Neurochem ; 146(6): 722-734, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29964293

RESUMO

Depression is one of the most debilitating neuropsychiatric disorders. Most of the current antidepressants have long remission time and low recovery rate. This study explores the impact of ketamine on neuronal and astroglial metabolic activity in prefrontal cortex in a social defeat (SD) model of depression. C57BL/6 mice were subjected to a social defeat paradigm for 5 min a day for 10 consecutive days. Ketamine (10 mg/kg, intraperitoneal) was administered to mice for two consecutive days following the last defeat stress. Mice were infused with [1,6-13 C2 ]glucose or [2-13 C]acetate to assess neuronal and astroglial metabolic activity, respectively, together with proton-observed carbon-edited nuclear magnetic resonance spectroscopy in prefrontal cortex tissue extract. The 13 C labeling of amino acids from glucose and acetate was decreased in SD mice. Ketamine treatment in SD mice restored sucrose preference, social interaction and immobility time to control values. Acute subanesthetic ketamine restored the 13 C labeling of brain amino acids from glucose as well as acetate in SD mice to the respective control values, suggesting that rates of neuronal and astroglial tricarboxylic acid (TCA) cycle and neurotransmitter cycling were re-established to normal levels. The finding of improved energy metabolism in SD mice suggests that fast anti-depressant action of ketamine is linked with improved neurotransmitter cycling.


Assuntos
Analgésicos/uso terapêutico , Astrócitos/metabolismo , Transtorno Depressivo , Ketamina/uso terapêutico , Neurônios/metabolismo , Estresse Psicológico/complicações , Acetatos/farmacocinética , Animais , Astrócitos/efeitos dos fármacos , Isótopos de Carbono/farmacocinética , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/etiologia , Transtorno Depressivo/patologia , Transtorno Depressivo/psicologia , Modelos Animais de Doenças , Preferências Alimentares/efeitos dos fármacos , Glucose/farmacocinética , Hierarquia Social , Relações Interpessoais , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Sacarose/administração & dosagem , Edulcorantes/administração & dosagem , Natação/psicologia
11.
Magn Reson Med ; 79(6): 3239-3248, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29090487

RESUMO

PURPOSE: To explore the effects of noise and error on kinetic analyses of tumor metabolism using hyperpolarized [1-13 C] pyruvate. METHODS: Numerical simulations were performed to systematically investigate the effects of noise, the number of unknowns, and error in kinetic parameter estimates on kinetic analysis of the apparent rate of chemical conversion from hyperpolarized pyruvate to lactate (kPL ). A pharmacokinetic model with two physical and two chemical pools of hyperpolarized spins was used to generate and analyze the synthetic data. RESULTS: The reproducibility of kPL estimates worsened quickly when peak signal-to-noise ratio for hyperpolarized pyruvate was below approximately 20. The accuracy of kPL estimates was most sensitive to errors in high excitation angles, the vascular blood volume fraction (vb ), and the rate of pyruvate extravasation (kve ), and was least sensitive to errors in the T1 of pyruvate. When vb and/or kve were fit as additional unknowns, the accuracy of kPL estimates suffered, and when the vascular input function of pyruvate was also fit, the reproducibility of kPL estimates worsened. CONCLUSIONS: The accuracy and precision of kPL estimates improve substantially for peak signal-to-noise ratio above approximately 20. Accurate estimates of perfusion parameters (combinations of vb , kve , and the pyruvate vascular input function) and transmit calibration at high excitation angles have the greatest effect on the accuracy of kinetic analyses. Magn Reson Med 79:3239-3248, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Isótopos de Carbono/farmacocinética , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias , Ácido Pirúvico , Simulação por Computador , Humanos , Cinética , Modelos Biológicos , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Ácido Pirúvico/análise , Ácido Pirúvico/farmacocinética
12.
Liver Int ; 38(6): 1117-1127, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29345050

RESUMO

BACKGROUND & AIMS: Despite a number of studies addressing the pathophysiology of hepatic IRI, a gold standard test for early diagnosis and evaluation of IRI remains elusive. This study investigated the metabolic alterations in a rat model of hepatic IRI using the in vivo hyperpolarized ¹³C MRS and metabolic imaging. METHODS: Hyperpolarized 13 C MRS with IVIM-DWI was performed on the liver of 7 sham-operated control rats and 7 rats before and after hepatic IRI. RESULTS: The hepatic IRI-induced rats showed significantly higher ratios of [1-13 C] alanine/pyruvate, [1-13 C] alanine/tC, [1-13 C] lactate/pyruvate and [1-13 C] lactate/tC compared with both sham-operated controls and rats before IRI, whereas [1-13 C] pyruvate/tC ratio was decreased in IRI-induced rats. In IVIM-DWI study, apparent diffusion coefficient (ADC), f and D values in rats after hepatic IRI were significantly lower than those of rats before IRI and sham-operated controls. The levels of [1-13 C] alanine and [1-13 C] lactate were negatively correlated with ADC, f and D values, whereas the level of [1-13 C] pyruvate was positively correlated with these values. CONCLUSIONS: The levels of [1-13 C] alanine, [1-13 C] lactate and [1-13 C] pyruvate in conjunction with IVIM-DWI will be helpful to evaluate the hepatic IRI as well as these findings can be useful in understanding the biochemical mechanism associated with hepatic damage.


Assuntos
Imagem de Difusão por Ressonância Magnética , Hepatopatias/diagnóstico por imagem , Hepatopatias/metabolismo , Traumatismo por Reperfusão/diagnóstico por imagem , Traumatismo por Reperfusão/metabolismo , Animais , Peso Corporal , Isótopos de Carbono/farmacocinética , Modelos Animais de Doenças , Ácido Láctico/farmacocinética , Fígado/patologia , Masculino , Ratos , Ratos Sprague-Dawley
13.
Xenobiotica ; 48(6): 584-591, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28665228

RESUMO

1. Omarigliptin (MARIZEV®) is a once-weekly DPP-4 inhibitor approved in Japan for the treatment of type 2 diabetes. The objective of this study was to investigate the absorption, metabolism and excretion of omarigliptin in humans. 2. Six healthy subjects received a single oral dose of 25 mg (2.1 µCi) [14 C]omarigliptin. Blood, plasma, urine and fecal samples were collected at various intervals for up to 20 days post-dose. Radioactivity levels in excreta and plasma/blood samples were determined by accelerator mass spectrometry (AMS). 3. [14 C]Omarigliptin was rapidly absorbed, with peak plasma concentrations observed at 0.5-2 h post-dose. The majority of the radioactivity was recovered in urine (∼74.4% of the dose), with less recovered in feces (∼3.4%), suggesting the compound was well absorbed. 4. Omarigliptin was the major component in urine (∼89% of the urinary radioactivity), indicating renal excretion of the unchanged drug as the primary clearance mechanism. Omarigliptin accounted for almost all the circulating radioactivity in plasma, with no major metabolites detected. 5. The predominantly renal elimination pathway, combined with the fact that omarigliptin is not a substrate of key drug transporters, suggest omarigliptin is unlikely to be subject to pharmacokinetic drug-drug interactions with other commonly prescribed agents.


Assuntos
Isótopos de Carbono , Inibidores da Dipeptidil Peptidase IV , Compostos Heterocíclicos com 2 Anéis , Piranos , Administração Oral , Adulto , Isótopos de Carbono/administração & dosagem , Isótopos de Carbono/farmacocinética , Inibidores da Dipeptidil Peptidase IV/administração & dosagem , Inibidores da Dipeptidil Peptidase IV/farmacocinética , Compostos Heterocíclicos com 2 Anéis/administração & dosagem , Compostos Heterocíclicos com 2 Anéis/farmacocinética , Humanos , Masculino , Piranos/administração & dosagem , Piranos/farmacocinética
14.
J Biol Chem ; 291(36): 19031-41, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27432878

RESUMO

Drugs and other interventions for high impact hepatic diseases often target biochemical pathways such as gluconeogenesis, lipogenesis, or the metabolic response to oxidative stress. However, traditional liver function tests do not provide quantitative data about these pathways. In this study, we developed a simple method to evaluate these processes by NMR analysis of plasma metabolites. Healthy subjects ingested [U-(13)C3]glycerol, and blood was drawn at multiple times. Each subject completed three visits under differing nutritional states. High resolution (13)C NMR spectra of plasma triacylglycerols and glucose provided new insights into a number of hepatic processes including fatty acid esterification, the pentose phosphate pathway, and gluconeogenesis through the tricarboxylic acid cycle. Fasting stimulated pentose phosphate pathway activity and metabolism of [U-(13)C3]glycerol in the tricarboxylic acid cycle prior to gluconeogenesis or glyceroneogenesis. Fatty acid esterification was transient in the fasted state but continuous under fed conditions. We conclude that a simple NMR analysis of blood metabolites provides an important biomarker of pentose phosphate pathway activity, triacylglycerol synthesis, and flux through anaplerotic pathways in mitochondria of human liver.


Assuntos
Ciclo do Ácido Cítrico/efeitos dos fármacos , Ácidos Graxos/sangue , Glicerol/administração & dosagem , Fígado/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Via de Pentose Fosfato/efeitos dos fármacos , Administração Oral , Adulto , Biomarcadores/sangue , Isótopos de Carbono/administração & dosagem , Isótopos de Carbono/farmacocinética , Esterificação/efeitos dos fármacos , Esterificação/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
15.
Glia ; 65(3): 474-488, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28032919

RESUMO

A key enzyme in brain glutamate homeostasis is glutamate dehydrogenase (GDH) which links carbohydrate and amino acid metabolism mediating glutamate degradation to CO2 and expanding tricarboxylic acid (TCA) cycle capacity with intermediates, i.e. anaplerosis. Humans express two GDH isoforms, GDH1 and 2, whereas most other mammals express only GDH1. hGDH1 is widely expressed in human brain while hGDH2 is confined to astrocytes. The two isoforms display different enzymatic properties and the nature of these supports that hGDH2 expression in astrocytes potentially increases glutamate oxidation and supports the TCA cycle during energy-demanding processes such as high intensity glutamatergic signaling. However, little is known about how expression of hGDH2 affects the handling of glutamate and TCA cycle metabolism in astrocytes. Therefore, we cultured astrocytes from cerebral cortical tissue of hGDH2-expressing transgenic mice. We measured glutamate uptake and metabolism using [3 H]glutamate, while the effect on metabolic pathways of glutamate and glucose was evaluated by use of 13 C and 14 C substrates and analysis by mass spectrometry and determination of radioactively labeled metabolites including CO2 , respectively. We conclude that hGDH2 expression increases capacity for uptake and oxidative metabolism of glutamate, particularly during increased workload and aglycemia. Additionally, hGDH2 expression increased utilization of branched-chain amino acids (BCAA) during aglycemia and caused a general decrease in oxidative glucose metabolism. We speculate, that expression of hGDH2 allows astrocytes to spare glucose and utilize BCAAs during substrate shortages. These findings support the proposed role of hGDH2 in astrocytes as an important fail-safe during situations of intense glutamatergic activity. GLIA 2017;65:474-488.


Assuntos
Astrócitos/metabolismo , Ciclo do Ácido Cítrico/fisiologia , Regulação Enzimológica da Expressão Gênica , Glucose/deficiência , Glutamato Desidrogenase/metabolismo , Ácido Glutâmico/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Dióxido de Carbono/farmacocinética , Isótopos de Carbono/farmacocinética , Células Cultivadas , Córtex Cerebral/citologia , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ciclo do Ácido Cítrico/genética , Relação Dose-Resposta a Droga , Proteína Glial Fibrilar Ácida/metabolismo , Glutamato Desidrogenase/genética , Ácido Glutâmico/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Desidrogenase do Álcool de Açúcar/metabolismo , Trítio/farmacocinética
16.
Magn Reson Med ; 77(4): 1650-1655, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27172094

RESUMO

PURPOSE: In the current study, we investigated hyperpolarized urea as a possible imaging biomarker of the renal function by means of the intrarenal osmolality gradient. METHODS: Hyperpolarized three-dimensional balanced steady state 13 C MRI experiments alongside kidney function parameters and quantitative polymerase chain reaction measurements was performed on two groups of rats, a streptozotocin type 1 diabetic group and a healthy control group. RESULTS: A significant decline in intrarenal steepness of the urea gradient was found after 4 weeks of untreated insulinopenic diabetes in agreement with an increased urea transport transcription. CONCLUSION: MRI and hyperpolarized [13 C,15 N]urea can monitor the changes in the corticomedullary urea concentration gradients in diabetic and healthy control rats. Magn Reson Med 77:1650-1655, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Nefropatias Diabéticas/metabolismo , Rim/metabolismo , Isótopos de Nitrogênio/farmacocinética , Ureia/metabolismo , Animais , Transporte Biológico Ativo , Biomarcadores/metabolismo , Isótopos de Carbono/farmacocinética , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/patologia , Feminino , Ratos , Ratos Wistar , Distribuição Tecidual
17.
Magn Reson Med ; 78(3): 1121-1130, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27714832

RESUMO

PURPOSE: To optimize the production of hyperpolarized 13 C-bicarbonate from the decarboxylation of hyperpolarized [1-13 C]pyruvate and use it to image pH in the lungs and heart of rats with acute lung injury. METHODS: Two forms of catalysis are compared calorimetrically to maximize the rate of decarboxylation and rapidly produce hyperpolarized bicarbonate from pyruvate while minimizing signal loss. Rats are injured using an acute lung injury model combining ventilator-induced lung injury and acid aspiration. Carbon images are obtained from both healthy (n = 4) and injured (n = 4) rats using a slice-selective chemical shift imaging sequence with low flip angle. pH is calculated from the relative HCO3- and CO2 signals using the Henderson-Hasselbalch equation. RESULTS: It is demonstrated that base catalysis is more effective than metal-ion catalysis for this decarboxylation reaction. Bicarbonate polarizations up to 17.2% are achieved using the base-catalyzed reaction. A mean pH difference between lung and heart of 0.14 pH units is measured in the acute lung injury model. A significant pH difference between injured and uninjured lungs is also observed. CONCLUSION: It is demonstrated that hyperpolarized 13 C-bicarbonate can be efficiently produced from the base-catalyzed decarboxylation of pyruvate. This method is used to obtain the first regional pH image of the lungs and heart of an animal. Magn Reson Med 78:1121-1130, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Isótopos de Carbono/química , Processamento de Imagem Assistida por Computador/métodos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Lesão Pulmonar Aguda/diagnóstico por imagem , Animais , Bicarbonatos/administração & dosagem , Bicarbonatos/química , Bicarbonatos/farmacocinética , Isótopos de Carbono/administração & dosagem , Isótopos de Carbono/farmacocinética , Coração/diagnóstico por imagem , Concentração de Íons de Hidrogênio , Imagens de Fantasmas , Ratos , Ratos Sprague-Dawley
18.
Magn Reson Med ; 77(6): 2356-2363, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27298073

RESUMO

PURPOSE: Hyperpolarized 13 C MRI is a powerful tool for studying metabolism, but can lack tissue specificity. Gadoxetate is a gadolinium-based MRI contrast agent that is selectively taken into hepatocytes. The goal of this project was to investigate whether gadoxetate can be used to selectively suppress the hyperpolarized signal arising from hepatocytes, which could in future studies be applied to generate specificity for signal from abnormal cell types. METHODS: Baseline gadoxetate uptake kinetics were measured using T1 -weighted contrast enhanced imaging. Relaxivity of gadoxetate was measured for [1-13 C]pyruvate, [1-13 C]lactate, and [1-13 C]alanine. Four healthy rats were imaged with hyperpolarized [1-13 C]pyruvate using a three-dimensional (3D) MRSI sequence prior to and 15 min following administration of gadoxetate. The lactate:pyruvate ratio and alanine:pyruvate ratios were measured in liver and kidney. RESULTS: Overall, the hyperpolarized signal decreased approximately 60% as a result of pre-injection of gadoxetate. In liver, the lactate:pyruvate and alanine:pyruvate ratios decreased 42% and 78%, respectively (P < 0.05) following gadoxetate administration. In kidneys, these ratios did not change significantly. Relaxivity of gadoxetate for [1-13 C]alanine was 12.6 times higher than relaxivity of gadoxetate for [1-13 C]pyruvate, explaining the greater selective relaxation effect on alanine. CONCLUSIONS: The liver-specific gadolinium contrast-agent gadoxetate can selectively suppress normal hepatocyte contributions to hyperpolarized 13 C MRI signals. Magn Reson Med 77:2356-2363, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Isótopos de Carbono/farmacocinética , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Gadolínio DTPA/farmacocinética , Hepatócitos/metabolismo , Imageamento por Ressonância Magnética/métodos , Imagem Molecular/métodos , Animais , Isótopos de Carbono/administração & dosagem , Combinação de Medicamentos , Gadolínio DTPA/administração & dosagem , Hepatócitos/citologia , Fígado/diagnóstico por imagem , Fígado/metabolismo , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Metab Eng ; 39: 9-18, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27840237

RESUMO

Glucose and xylose are the two most abundant sugars derived from the breakdown of lignocellulosic biomass. While aerobic glucose metabolism is relatively well understood in E. coli, until now there have been only a handful of studies focused on anaerobic glucose metabolism and no 13C-flux studies on xylose metabolism. In the absence of experimentally validated flux maps, constraint-based approaches such as MOMA and RELATCH cannot be used to guide new metabolic engineering designs. In this work, we have addressed this critical gap in current understanding by performing comprehensive characterizations of glucose and xylose metabolism under aerobic and anaerobic conditions, using recent state-of-the-art techniques in 13C metabolic flux analysis (13C-MFA). Specifically, we quantified precise metabolic fluxes for each condition by performing parallel labeling experiments and analyzing the data through integrated 13C-MFA using the optimal tracers [1,2-13C]glucose, [1,6-13C]glucose, [1,2-13C]xylose and [5-13C]xylose. We also quantified changes in biomass composition and confirmed turnover of macromolecules by applying [U-13C]glucose and [U-13C]xylose tracers. We demonstrated that under anaerobic growth conditions there is significant turnover of lipids and that a significant portion of CO2 originates from biomass turnover. Using knockout strains, we also demonstrated that ß-oxidation is critical for anaerobic growth on xylose. Quantitative analysis of co-factor balances (NADH/FADH2, NADPH, and ATP) for different growth conditions provided new insights regarding the interplay of energy and redox metabolism and the impact on E. coli cell physiology.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Escherichia coli/metabolismo , Glucose/metabolismo , Metabolismo dos Lipídeos/fisiologia , Análise do Fluxo Metabólico/métodos , Oxigênio/metabolismo , Xilose/metabolismo , Aerobiose/fisiologia , Anaerobiose/fisiologia , Isótopos de Carbono/farmacocinética , Proteínas de Escherichia coli/metabolismo , Redes e Vias Metabólicas/fisiologia , Modelos Biológicos
20.
Biotechnol Bioeng ; 114(11): 2668-2684, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28695999

RESUMO

13 C Metabolic Fluxes Analysis (13 C MFA) remains to be the most powerful approach to determine intracellular metabolic reaction rates. Decisions on strain engineering and experimentation heavily rely upon the certainty with which these fluxes are estimated. For uncertainty quantification, the vast majority of 13 C MFA studies relies on confidence intervals from the paradigm of Frequentist statistics. However, it is well known that the confidence intervals for a given experimental outcome are not uniquely defined. As a result, confidence intervals produced by different methods can be different, but nevertheless equally valid. This is of high relevance to 13 C MFA, since practitioners regularly use three different approximate approaches for calculating confidence intervals. By means of a computational study with a realistic model of the central carbon metabolism of E. coli, we provide strong evidence that confidence intervals used in the field depend strongly on the technique with which they were calculated and, thus, their use leads to misinterpretation of the flux uncertainty. In order to provide a better alternative to confidence intervals in 13 C MFA, we demonstrate that credible intervals from the paradigm of Bayesian statistics give more reliable flux uncertainty quantifications which can be readily computed with high accuracy using Markov chain Monte Carlo. In addition, the widely applied chi-square test, as a means of testing whether the model reproduces the data, is examined closer.


Assuntos
Carbono/metabolismo , Escherichia coli/metabolismo , Análise do Fluxo Metabólico/métodos , Redes e Vias Metabólicas/fisiologia , Modelos Biológicos , Modelos Estatísticos , Teorema de Bayes , Isótopos de Carbono/farmacocinética , Simulação por Computador , Proteínas de Escherichia coli/metabolismo , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa