Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.579
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 156(6): 1179-1192, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24630721

RESUMO

The hexosamine biosynthetic pathway (HBP) generates uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) for glycan synthesis and O-linked GlcNAc (O-GlcNAc) protein modifications. Despite the established role of the HBP in metabolism and multiple diseases, regulation of the HBP remains largely undefined. Here, we show that spliced X-box binding protein 1 (Xbp1s), the most conserved signal transducer of the unfolded protein response (UPR), is a direct transcriptional activator of the HBP. We demonstrate that the UPR triggers HBP activation via Xbp1s-dependent transcription of genes coding for key, rate-limiting enzymes. We further establish that this previously unrecognized UPR-HBP axis is triggered in a variety of stress conditions. Finally, we demonstrate a physiologic role for the UPR-HBP axis by showing that acute stimulation of Xbp1s in heart by ischemia/reperfusion confers robust cardioprotection in part through induction of the HBP. Collectively, these studies reveal that Xbp1s couples the UPR to the HBP to protect cells under stress.


Assuntos
Vias Biossintéticas , Proteínas de Ligação a DNA/metabolismo , Hexosaminas/metabolismo , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas , Animais , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante) , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Isquemia Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Transferases de Grupos Nitrogenados/genética , Fatores de Transcrição de Fator Regulador X , Proteína 1 de Ligação a X-Box
2.
Circulation ; 150(8): 622-641, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38660786

RESUMO

BACKGROUND: Dysregulated metabolism of bioactive sphingolipids, including ceramides and sphingosine-1-phosphate, has been implicated in cardiovascular disease, although the specific species, disease contexts, and cellular roles are not completely understood. Sphingolipids are produced by the serine palmitoyltransferase enzyme, canonically composed of 2 subunits, SPTLC1 (serine palmitoyltransferase long chain base subunit 1) and SPTLC2 (serine palmitoyltransferase long chain base subunit 2). Noncanonical sphingolipids are produced by a more recently described subunit, SPTLC3 (serine palmitoyltransferase long chain base subunit 3). METHODS: The noncanonical (d16) and canonical (d18) sphingolipidome profiles in cardiac tissues of patients with end-stage ischemic cardiomyopathy and in mice with ischemic cardiomyopathy were analyzed by targeted lipidomics. Regulation of SPTLC3 by HIF1α under ischemic conditions was determined with chromatin immunoprecipitation. Transcriptomics, lipidomics, metabolomics, echocardiography, mitochondrial electron transport chain, mitochondrial membrane fluidity, and mitochondrial membrane potential were assessed in the cSPTLC3KO transgenic mice we generated. Furthermore, morphological and functional studies were performed on cSPTLC3KO mice subjected to permanent nonreperfused myocardial infarction. RESULTS: Herein, we report that SPTLC3 is induced in both human and mouse models of ischemic cardiomyopathy and leads to production of atypical sphingolipids bearing 16-carbon sphingoid bases, resulting in broad changes in cell sphingolipid composition. This induction is in part attributable to transcriptional regulation by HIF1α under ischemic conditions. Furthermore, cardiomyocyte-specific depletion of SPTLC3 in mice attenuates oxidative stress, fibrosis, and hypertrophy in chronic ischemia, and mice demonstrate improved cardiac function and increased survival along with increased ketone and glucose substrate metabolism utilization. Depletion of SPTLC3 mechanistically alters the membrane environment and subunit composition of mitochondrial complex I of the electron transport chain, decreasing its activity. CONCLUSIONS: Our findings suggest a novel essential role for SPTLC3 in electron transport chain function and a contribution to ischemic injury by regulating complex I activity.


Assuntos
Cardiomiopatias , Complexo I de Transporte de Elétrons , Serina C-Palmitoiltransferase , Animais , Humanos , Masculino , Camundongos , Cardiomiopatias/metabolismo , Cardiomiopatias/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos Knockout , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/genética , Isquemia Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Serina C-Palmitoiltransferase/metabolismo , Serina C-Palmitoiltransferase/genética , Esfingolipídeos/metabolismo
3.
Circulation ; 150(10): 770-786, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38881449

RESUMO

BACKGROUND: HIF (hypoxia inducible factor) regulates many aspects of cardiac function. We and others previously showed that chronic HIF activation in the heart in mouse models phenocopies multiple features of ischemic cardiomyopathy in humans, including mitochondrial loss, lipid accumulation, and systolic cardiac dysfunction. In some settings, HIF also causes the loss of peroxisomes. How, mechanistically, HIF promotes cardiac dysfunction is an open question. METHODS: We used mice lacking cardiac pVHL (von Hippel-Lindau protein) to investigate how chronic HIF activation causes multiple features of ischemic cardiomyopathy, such as autophagy induction and lipid accumulation. We performed immunoblot assays, RNA sequencing, mitochondrial and peroxisomal autophagy flux measurements, and live cell imaging on isolated cardiomyocytes. We used CRISPR-Cas9 gene editing in mice to validate a novel mediator of cardiac dysfunction in the setting of chronic HIF activation. RESULTS: We identify a previously unknown pathway by which cardiac HIF activation promotes the loss of mitochondria and peroxisomes. We found that DEPP1 (decidual protein induced by progesterone 1) is induced under hypoxia in a HIF-dependent manner and localizes inside mitochondria. DEPP1 is both necessary and sufficient for hypoxia-induced autophagy and triglyceride accumulation in cardiomyocytes ex vivo. DEPP1 loss increases cardiomyocyte survival in the setting of chronic HIF activation ex vivo, and whole-body Depp1 loss decreases cardiac dysfunction in hearts with chronic HIF activation caused by VHL loss in vivo. CONCLUSIONS: Our findings identify DEPP1 as a key component in the cardiac remodeling that occurs with chronic ischemia.


Assuntos
Autofagia , Cardiomiopatias , Animais , Camundongos , Cardiomiopatias/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/patologia , Cardiomiopatias/etiologia , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/genética , Isquemia Miocárdica/patologia , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos Knockout , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Peroxissomos/metabolismo , Modelos Animais de Doenças , Masculino
4.
FASEB J ; 38(14): e23818, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38989572

RESUMO

The association between cardiac fibrosis and galectin-3 was evaluated in patients with acute myocardial infarction (MI). The role of galectin-3 and its association with endoplasmic reticulum (ER) stress activation in the progression of cardiovascular fibrosis was also evaluated in obese-infarcted rats. The inhibitor of galectin-3 activity, modified citrus pectin (MCP; 100 mg/kg/day), and the inhibitor of the ER stress activation, 4-phenylbutyric acid (4-PBA; 500 mg/kg/day), were administered for 4 weeks after MI in obese rats. Overweight-obese patients who suffered a first MI showed higher circulating galectin-3 levels, higher extracellular volume, and LV infarcted size, as well as lower E/e'ratio and LVEF compared with normal-weight patients. A correlation was observed between galectin-3 levels and extracellular volume. Obese-infarcted animals presented cardiac hypertrophy and reduction in LVEF, and E/A ratio as compared with control animals. They also showed an increase in galectin-3 gene expression, as well as cardiac fibrosis and reduced autophagic flux. These alterations were associated with ER stress activation characterized by enhanced cardiac levels of binding immunoglobulin protein, which were correlated with those of galectin-3. Both MCP and 4-PBA not only reduced cardiac fibrosis, oxidative stress, galectin-3 levels, and ER stress activation, but also prevented cardiac functional alterations and ameliorated autophagic flux. These results show the relevant role of galectin-3 in the development of diffuse fibrosis associated with MI in the context of obesity in both the animal model and patients. Galectin-3 in tandem with ER stress activation could modulate different downstream mechanisms, including inflammation, oxidative stress, and autophagy.


Assuntos
Estresse do Retículo Endoplasmático , Galectina 3 , Obesidade , Animais , Galectina 3/metabolismo , Obesidade/metabolismo , Obesidade/complicações , Masculino , Ratos , Humanos , Pectinas/farmacologia , Pessoa de Meia-Idade , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/complicações , Feminino , Fibrose , Ratos Wistar , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Fenilbutiratos/farmacologia , Autofagia , Miocárdio/metabolismo , Miocárdio/patologia , Galectinas/metabolismo , Idoso , Proteínas Sanguíneas/metabolismo
5.
Circ Res ; 132(7): e96-e113, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36891903

RESUMO

BACKGROUND: Platelets can infiltrate ischemic myocardium and are increasingly recognized as critical regulators of inflammatory processes during myocardial ischemia and reperfusion (I/R). Platelets contain a broad repertoire of microRNAs (miRNAs), which, under certain conditions such as myocardial ischemia, may be transferred to surrounding cells or released into the microenvironment. Recent studies could demonstrate that platelets contribute substantially to the circulating miRNA pool holding the potential for so far undiscovered regulatory functions. The present study aimed to determine the role of platelet-derived miRNAs in myocardial injury and repair following myocardial I/R. METHODS: In vivo model of myocardial I/R, multimodal in vivo and ex vivo imaging approaches (light-sheet fluorescence microscopy, positron emission tomography and magnetic resonance imaging, speckle-tracking echocardiography) of myocardial inflammation and remodeling, and next-generation deep sequencing analysis of platelet miRNA expression. RESULTS: In mice with a megakaryocyte/platelet-specific knockout of pre-miRNA processing ribonuclease Dicer, the present study discloses a key role of platelet-derived miRNAs in the tightly regulated cellular processes orchestrating left ventricular remodeling after myocardial I/R following transient left coronary artery ligation. Disruption of the miRNA processing machinery in platelets by deletion of Dicer resulted in increased myocardial inflammation, impaired angiogenesis, and accelerated development of cardiac fibrosis, culminating in an increased infarct size by d7 that persisted through d28 of myocardial I/R. Worsened cardiac remodeling after myocardial infarction in mice with a platelet-specific Dicer deletion resulted in an increased fibrotic scar formation and distinguishably increased perfusion defect of the apical and anterolateral wall at day 28 post-myocardial infarction. Altogether, these observations culminated in an impaired left ventricular function and hampered long-term cardiac recovery after experimental myocardial infarction and reperfusion therapy. Treatment with the P2Y12 (P2Y purinoceptor 12) antagonist ticagrelor completely reversed increased myocardial damage and adverse cardiac remodeling observed in DicerPf4∆/Pf4∆ mice. CONCLUSIONS: The present study discloses a critical role of platelet-derived miRNA in myocardial inflammation and structural remodeling processes following myocardial I/R.


Assuntos
Doença da Artéria Coronariana , MicroRNAs , Infarto do Miocárdio , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Camundongos , Animais , Plaquetas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Remodelação Ventricular , Traumatismo por Reperfusão Miocárdica/metabolismo , Isquemia Miocárdica/metabolismo , Infarto do Miocárdio/patologia , Doença da Artéria Coronariana/metabolismo , Inflamação/metabolismo , Modelos Animais de Doenças
6.
Circ Res ; 132(7): 867-881, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36884028

RESUMO

BACKGROUND: Loss of brain-derived neurotrophic factor (BDNF)/TrkB (tropomyosin kinase receptor B) signaling accounts for brain and cardiac disorders. In neurons, ß-adrenergic receptor stimulation enhances local BDNF expression. It is unclear if this occurs in a pathophysiological relevant manner in the heart, especially in the ß-adrenergic receptor-desensitized postischemic myocardium. Nor is it fully understood whether and how TrkB agonists counter chronic postischemic left ventricle (LV) decompensation, a significant unmet clinical milestone. METHODS: We conducted in vitro studies using neonatal rat and adult murine cardiomyocytes, SH-SY5Y neuronal cells, and umbilical vein endothelial cells. We assessed myocardial ischemia (MI) impact in wild type, ß3AR knockout, or myocyte-selective BDNF knockout (myoBDNF KO) mice in vivo (via coronary ligation [MI]) or in isolated hearts with global ischemia-reperfusion (I/R). RESULTS: In wild type hearts, BDNF levels rose early after MI (<24 hours), plummeting at 4 weeks when LV dysfunction, adrenergic denervation, and impaired angiogenesis ensued. The TrkB agonist, LM22A-4, countered all these adverse effects. Compared with wild type, isolated myoBDNF KO hearts displayed worse infarct size/LV dysfunction after I/R injury and modest benefits from LM22A-4. In vitro, LM22A-4 promoted neurite outgrowth and neovascularization, boosting myocyte function, effects reproduced by 7,8-dihydroxyflavone, a chemically unrelated TrkB agonist. Superfusing myocytes with the ß3AR-agonist, BRL-37344, increased myocyte BDNF content, while ß3AR signaling underscored BDNF generation/protection in post-MI hearts. Accordingly, the ß1AR blocker, metoprolol, via upregulated ß3ARs, improved chronic post-MI LV dysfunction, enriching the myocardium with BDNF. Last, BRL-37344-imparted benefits were nearly abolished in isolated I/R injured myoBDNF KO hearts. CONCLUSIONS: BDNF loss underscores chronic postischemic heart failure. TrkB agonists can improve ischemic LV dysfunction via replenished myocardial BDNF content. Direct cardiac ß3AR stimulation, or ß-blockers (via upregulated ß3AR), is another BDNF-based means to fend off chronic postischemic heart failure.


Assuntos
Insuficiência Cardíaca , Isquemia Miocárdica , Neuroblastoma , Disfunção Ventricular Esquerda , Ratos , Camundongos , Humanos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Endoteliais/metabolismo , Neuroblastoma/metabolismo , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Isquemia Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Receptores Adrenérgicos beta/metabolismo
7.
Arterioscler Thromb Vasc Biol ; 44(4): 826-842, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38328937

RESUMO

BACKGROUND: Coronary microvascular dysfunction (CMD) has been shown to contribute to cardiac hypertrophy and heart failure (HF) with preserved ejection fraction. At this point, there are no proven treatments for CMD. METHODS: We have shown that histone acetylation may play a critical role in the regulation of CMD. By using a mouse model that replaces lysine with arginine at residues K98, K117, K161, and K162R of p53 (p534KR), preventing acetylation at these sites, we test the hypothesis that acetylation-deficient p534KR could improve CMD and prevent the progression of hypertensive cardiac hypertrophy and HF. Wild-type and p534KR mice were subjected to pressure overload by transverse aortic constriction to induce cardiac hypertrophy and HF. RESULTS: Echocardiography measurements revealed improved cardiac function together with a reduction of apoptosis and fibrosis in p534KR mice. Importantly, myocardial capillary density and coronary flow reserve were significantly improved in p534KR mice. Moreover, p534KR upregulated the expression of cardiac glycolytic enzymes and Gluts (glucose transporters), as well as the level of fructose-2,6-biphosphate; increased PFK-1 (phosphofructokinase 1) activity; and attenuated cardiac hypertrophy. These changes were accompanied by increased expression of HIF-1α (hypoxia-inducible factor-1α) and proangiogenic growth factors. Additionally, the levels of SERCA-2 were significantly upregulated in sham p534KR mice, as well as in p534KR mice after transverse aortic constriction. In vitro, p534KR significantly improved endothelial cell glycolytic function and mitochondrial respiration and enhanced endothelial cell proliferation and angiogenesis. Similarly, acetylation-deficient p534KR significantly improved coronary flow reserve and rescued cardiac dysfunction in SIRT3 (sirtuin 3) knockout mice. CONCLUSIONS: Our data reveal the importance of p53 acetylation in coronary microvascular function, cardiac function, and remodeling and may provide a promising approach to improve hypertension-induced CMD and to prevent the transition of cardiac hypertrophy to HF.


Assuntos
Insuficiência Cardíaca , Hipertensão , Isquemia Miocárdica , Animais , Camundongos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Cardiomegalia/metabolismo , Miocárdio/metabolismo , Isquemia Miocárdica/metabolismo , Camundongos Knockout , Hipertensão/metabolismo
8.
J Mol Cell Cardiol ; 189: 1-11, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387309

RESUMO

Persistent immune activation contributes significantly to left ventricular (LV) dysfunction and adverse remodeling in heart failure (HF). In contrast to their well-known essential role in acute myocardial infarction (MI) as first responders that clear dead cells and facilitate subsequent reparative macrophage polarization, the role of neutrophils in the pathobiology of chronic ischemic HF is poorly defined. To determine the importance of neutrophils in the progression of ischemic cardiomyopathy, we measured their production, levels, and activation in a mouse model of chronic HF 8 weeks after permanent coronary artery ligation and large MI. In HF mice, neutrophils were more abundant both locally in failing myocardium (more in the border zone) and systemically in the blood, spleen, and bone marrow, together with increased BM granulopoiesis. There were heightened stimuli for neutrophil recruitment and trafficking in HF, with increased myocardial expression of the neutrophil chemoattract chemokines CXCL1 and CXCL5, and increased neutrophil chemotactic factors in the circulation. HF neutrophil NETotic activity was increased in vitro with coordinate increases in circulating neutrophil extracellular traps (NETs) in vivo. Neutrophil depletion with either antibody-based or genetic approaches abrogated the progression of LV remodeling and fibrosis at both intermediate and late stages of HF. Moreover, analogous to murine HF, the plasma milieu in human acute decompensated HF strongly promoted neutrophil trafficking. Collectively, these results support a key tissue-injurious role for neutrophils and their associated cytotoxic products in ischemic cardiomyopathy and suggest that neutrophils are potential targets for therapeutic immunomodulation in this disease.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Isquemia Miocárdica , Humanos , Animais , Camundongos , Neutrófilos/metabolismo , Remodelação Ventricular , Miocárdio/metabolismo , Isquemia Miocárdica/metabolismo , Cardiomiopatias/metabolismo , Camundongos Endogâmicos C57BL
9.
Basic Res Cardiol ; 119(4): 699-715, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38963562

RESUMO

Understanding the mechanisms underlying vascular regeneration in the heart is crucial for developing novel therapeutic strategies for myocardial ischemia. This study investigates the contribution of bone marrow-derived cells to endothelial cell populations in the heart, and their role in cardiac function and coronary circulation following repetitive ischemia (RI). Chimeric rats were created by transplanting BM cells from GFP female rats into irradiated male recipients. After engraftment chimeras were subjected to RI for 17 days. Vascular growth was assessed from recovery of cardiac function and increases in myocardial blood flow during LAD occlusion. After sorting GFP+ BM cells from heart and bone of Control and RI rats, single-cell RNA sequencing was implemented to determine the fate of BM cells. Our in vivo RI model demonstrated an improvement in cardiac function and myocardial blood flow after 17 days of RI with increased capillary density in the rats subjected to RI compared to Controls. Single-cell RNA sequencing of bone marrow cells isolated from rats' hearts identified distinct endothelial cell (EC) subpopulations. These ECs exhibited heterogeneous gene expression profiles and were enriched for markers of capillary, artery, lymphatic, venous, and immune ECs. Furthermore, BM-derived ECs in the RI group showed an angiogenic profile, characterized by upregulated genes associated with blood vessel development and angiogenesis. This study elucidates the heterogeneity of bone marrow-derived endothelial cells in the heart and their response to repetitive ischemia, laying the groundwork for targeting specific subpopulations for therapeutic angiogenesis in myocardial ischemia.


Assuntos
Transplante de Medula Óssea , Modelos Animais de Doenças , Células Endoteliais , Ratos Transgênicos , Animais , Masculino , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Neovascularização Fisiológica , Isquemia Miocárdica/patologia , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/fisiopatologia , Células da Medula Óssea/metabolismo , Circulação Coronária , Miocárdio/patologia , Miocárdio/metabolismo , Ratos , Ratos Sprague-Dawley , Transcriptoma
10.
Basic Res Cardiol ; 119(4): 509-544, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38878210

RESUMO

Despite recent progress, ischemic heart disease poses a persistent global challenge, driving significant morbidity and mortality. The pursuit of therapeutic solutions has led to the emergence of strategies such as ischemic preconditioning, postconditioning, and remote conditioning to shield the heart from myocardial ischemia/reperfusion injury (MIRI). These ischemic conditioning approaches, applied before, after, or at a distance from the affected organ, inspire future therapeutic strategies, including pharmacological conditioning. Gasotransmitters, comprising nitric oxide, hydrogen sulfide, sulfur dioxide, and carbon monoxide, play pivotal roles in physiological and pathological processes, exhibiting shared features such as smooth muscle relaxation, antiapoptotic effects, and anti-inflammatory properties. Despite potential risks at high concentrations, physiological levels of gasotransmitters induce vasorelaxation and promote cardioprotective effects. Noble gases, notably argon, helium, and xenon, exhibit organ-protective properties by reducing cell death, minimizing infarct size, and enhancing functional recovery in post-ischemic organs. The protective role of noble gases appears to hinge on their modulation of molecular pathways governing cell survival, leading to both pro- and antiapoptotic effects. Among noble gases, helium and xenon emerge as particularly promising in the field of cardioprotection. This overview synthesizes our current understanding of the roles played by gasotransmitters and noble gases in the context of MIRI and cardioprotection. In addition, we underscore potential future developments involving the utilization of noble gases and gasotransmitter donor molecules in advancing cardioprotective strategies.


Assuntos
Gasotransmissores , Traumatismo por Reperfusão Miocárdica , Gases Nobres , Humanos , Gasotransmissores/metabolismo , Gasotransmissores/uso terapêutico , Animais , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Gases Nobres/metabolismo , Precondicionamento Isquêmico Miocárdico , Transdução de Sinais , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/fisiopatologia
11.
J Transl Med ; 22(1): 168, 2024 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368334

RESUMO

BACKGROUND: MicroRNA (miRNA)-based therapies have shown great potential in myocardial repair following myocardial infarction (MI). MicroRNA-302 (miR302) has been reported to exert a protective effect on MI. However, miRNAs are easily degraded and ineffective in penetrating cells, which limit their clinical applications. Exosomes, which are small bioactive molecules, have been considered as an ideal vehicle for miRNAs delivery due to their cell penetration, low immunogenicity and excellent stability potential. Herein, we explored cardiomyocyte-targeting exosomes as vehicles for delivery of miR302 into cardiomyocyte to potentially treat MI. METHODS: To generate an efficient exosomal delivery system that can target cardiomyocytes, we engineered exosomes with cardiomyocyte specific peptide (CMP, WLSEAGPVVTVRALRGTGSW). Afterwards, the engineered exosomes were characterized and identified using transmission electron microscope (TEM) and Nanoparticle Tracking Analysis (NTA). Later on, the miR302 mimics were loaded into the engineered exosomes via electroporation technique. Subsequently, the effect of the engineered exosomes on myocardial ischemia and reperfusion (I/R) injury was evaluated in vitro and in vivo, including MTT, ELISA, real-time quantitative polymerase chain reaction (PCR), western blot, TUNNEL staining, echocardiogram and hematoxylin and eosin (HE) staining. RESULTS: Results of in vitro experimentation showed that DSPE-PEG-CMP-EXO could be more efficiently internalized by H9C2 cells than unmodified exosomes (blank-exosomes). Importantly, compared with the DSPE-PEG-CMP-EXO group, DSPE-PEG-CMP-miR302-EXO significantly upregulated the expression of miR302, while exosomes loaded with miR302 could enhance proliferation of H9C2 cells. Western blot results showed that the DSPE-PEG-CMP-miR302-EXO significantly increased the protein level of Ki67 and Yap, which suggests that DSPE-PEG-CMP-miR302-EXO enhanced the activity of Yap, the principal downstream effector of Hippo pathway. In vivo, DSPE-PEG-CMP-miR302-EXO improved cardiac function, attenuated myocardial apoptosis and inflammatory response, as well as reduced infarct size significantly. CONCLUSION: In conclusion, our findings suggest that CMP-engineered exosomes loaded with miR302 was internalized by H9C2 cells, an in vitro model for cardiomyocytes coupled with potential enhancement of the therapeutic effects on myocardial I/R injury.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Infarto do Miocárdio , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Humanos , Miócitos Cardíacos/metabolismo , Exossomos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/terapia , Infarto do Miocárdio/genética , Isquemia Miocárdica/terapia , Isquemia Miocárdica/metabolismo , Células-Tronco Mesenquimais/metabolismo , Apoptose , Reperfusão
12.
Cardiovasc Diabetol ; 23(1): 261, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026280

RESUMO

Mitochondria play a central role in cellular energy metabolism, and their dysfunction is increasingly recognized as a critical factor in the pathogenesis of diabetes-related cardiac pathophysiology, including vulnerability to ischemic events that culminate in myocardial infarction on the one hand and ventricular arrhythmias on the other. In diabetes, hyperglycemia and altered metabolic substrates lead to excessive production of reactive oxygen species (ROS) by mitochondria, initiating a cascade of oxidative stress that damages mitochondrial DNA, proteins, and lipids. This mitochondrial injury compromises the efficiency of oxidative phosphorylation, leading to impaired ATP production. The resulting energy deficit and oxidative damage contribute to functional abnormalities in cardiac cells, placing the heart at an increased risk of electromechanical dysfunction and irreversible cell death in response to ischemic insults. While cardiac mitochondria are often considered to be relatively autonomous entities in their capacity to produce energy and ROS, their highly dynamic nature within an elaborate network of closely-coupled organelles that occupies 30-40% of the cardiomyocyte volume is fundamental to their ability to exert intricate regulation over global cardiac function. In this article, we review evidence linking the dynamic properties of the mitochondrial network to overall cardiac function and its response to injury. We then highlight select studies linking mitochondrial ultrastructural alterations driven by changes in mitochondrial fission, fusion and mitophagy in promoting cardiac ischemic injury to the diabetic heart.


Assuntos
Cardiomiopatias Diabéticas , Metabolismo Energético , Mitocôndrias Cardíacas , Isquemia Miocárdica , Estresse Oxidativo , Humanos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Animais , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/fisiopatologia , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/etiologia , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/fisiopatologia , Isquemia Miocárdica/patologia , Dinâmica Mitocondrial , Mitofagia , Espécies Reativas de Oxigênio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Transdução de Sinais
13.
Cardiovasc Diabetol ; 23(1): 365, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39420368

RESUMO

More than 10% of adults in the United States have type 2 diabetes mellitus (DM) with a 2-4 times higher prevalence of ischemic heart disease than the non-diabetics. Despite extensive research approaches to limit this life-threatening condition have proven unsuccessful, highlighting the need for understanding underlying molecular mechanisms. Long noncoding RNAs (lncRNAs), which regulate gene expression by acting as signals, decoys, guides, or scaffolds have been implicated in diverse cardiovascular conditions. However, their role in ischemic heart disease in DM remains poorly understood. We provide new insights into the lncRNA expression profile after ischemic heart disease in DM mice. We performed unbiased RNA sequencing of well-characterized type 2 DM model db/db mice or its control db/+ subjected to sham or MI surgery. Computational analysis of the RNA sequencing of these LV tissues identified several differentially expressed lncRNAs between (db/db sham vs. db/db MI) including Gm19522 and Gm8075. lncRNA Gm-19522 may regulate DNA replication via DNA protein kinases, while lncRNA Gm-8075 is associated with cancer gene dysregulation and PI3K/Akt pathways. Thus, the downregulation of lncRNAs Gm19522 and Gm8075 post-MI may serve as potential biomarkers or novel therapeutic targets to improve cardiac repair/recovery in diabetic ischemic heart disease.


Assuntos
Diabetes Mellitus Tipo 2 , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Isquemia Miocárdica , RNA Longo não Codificante , Transcriptoma , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/diagnóstico , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Masculino , Transdução de Sinais , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miocárdio/patologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Camundongos , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/etiologia
14.
Cardiovasc Diabetol ; 23(1): 218, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38915092

RESUMO

In a translational study involving animal models and human subjects, Lv et al. demonstrate that arachidonic acid (AA) exhibits cardioprotective effects in diabetic myocardial ischemia, suggesting a departure from its known role in promoting ferroptosis-a form of cell death characterized by iron-dependent lipid peroxidation. However, the study does not address how underlying diabetic conditions might influence the metabolic pathways of AA, which are critical for fully understanding its impact on heart disease. Diabetes can significantly alter lipid metabolism, which in turn might affect the enzymatic processes involved in AA's metabolism, leading to different outcomes in the disease process. Further examination of the role of diabetes in modulating AA's effects could enhance the understanding of its protective mechanism in ischemic conditions. This could also lead to more targeted and effective therapeutic strategies for managing myocardial ischemia in diabetic patients, such as optimizing AA levels to prevent heart damage while avoiding exacerbating factors like ferroptosis.


Assuntos
Ácido Araquidônico , Ferroptose , Isquemia Miocárdica , Humanos , Ácido Araquidônico/metabolismo , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/epidemiologia , Isquemia Miocárdica/prevenção & controle , Isquemia Miocárdica/tratamento farmacológico , Animais , Ferroptose/efeitos dos fármacos , Medição de Risco , Comorbidade , Fatores de Risco , Miocárdio/metabolismo , Miocárdio/patologia , Transdução de Sinais , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/prevenção & controle , Cardiomiopatias Diabéticas/epidemiologia , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/metabolismo , Diabetes Mellitus/tratamento farmacológico , Peroxidação de Lipídeos/efeitos dos fármacos
15.
Arch Biochem Biophys ; 753: 109885, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38232798

RESUMO

Carbon nanomaterials possess antioxidant properties that can be applied in biomedicine and clinics for the development of new highly effective treatments against oxidative stress-induced diseases like ischemic heart disease. We previously reported the usage of graphene oxide (GrO) as a precursor for the elaboration of such prototypes. The promising findings led to the development of two new modifications of GrO: nitrogen-doped (N-GrO) and l-cysteine functionalized (S-GrO) derivatives as possible antioxidant agents in ischemia-reperfusion (I/R) conditions. In this study, the cardioprotective and antioxidant potential of modified GrO as a pre-treatment in rats was evaluated for the first time. In Langendorff isolated rat heart I/R model, the left ventricle developed pressure (LVDP), the end-diastolic pressure (EDP), the maximal (dP/dtmax) and minimal (dP/dtmin) value of the first derivative of LVDP, and heart rate (HR) were measured. The oxidative-nitrosative markers, in particular, the rate of O2*- and H2O2 generation, the content of malonic dialdehyde, diene conjugates, and leukotriene as well as cNOS and iNOS activity were estimated. Obtained results show a significant restoration of cadiodynamic parameters at the reperfusion period. Simultaneously, all samples significantly reduced the rate of reactive oxygen species (ROS) and lipid peroxidation markers in cardiac homogenates and preserved cNOS activity at the preischemic level. This evidence makes GrO derivatives promising candidates for the correction of reperfusion disorders affecting myocardial function.


Assuntos
Grafite , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Peróxido de Hidrogênio/metabolismo , Coração , Miocárdio/metabolismo , Isquemia Miocárdica/metabolismo , Estresse Oxidativo
16.
Arch Biochem Biophys ; 758: 110059, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38936683

RESUMO

BACKGROUND: It has been previously demonstrated that the maintenance of ischemic acidic pH or the delay of intracellular pH recovery at the onset of reperfusion decreases ischemic-induced cardiomyocyte death. OBJECTIVE: To examine the role played by nitric oxide synthase (NOS)/NO-dependent pathways in the effects of acidic reperfusion in a regional ischemia model. METHODS: Isolated rat hearts perfused by Langendorff technique were submitted to 40 min of left coronary artery occlusion followed by 60 min of reperfusion (IC). A group of hearts received an acid solution (pH = 6.4) during the first 2 min of reperfusion (AR) in absence or in presence of l-NAME (NOS inhibitor). Infarct size (IS) and myocardial function were determined. In cardiac homogenates, the expression of P-Akt, P-endothelial and inducible isoforms of NOS (P-eNOS and iNOS) and the level of 3-nitrotyrosine were measured. In isolated cardiomyocytes, the intracellular NO production was assessed by confocal microscopy, under control and acidic conditions. Mitochondrial swelling after Ca2+ addition and mitochondrial membrane potential (Δψ) were also determined under control and acidosis. RESULTS: AR decreased IS, improved postischemic myocardial function recovery, increased P-Akt and P-eNOS, and decreased iNOS and 3-nitrotyrosine. NO production increased while mitochondrial swelling and Δψ decreased in acidic conditions. l-NAME prevented the beneficial effects of AR. CONCLUSIONS: Our data strongly supports that a brief acidic reperfusion protects the myocardium against the ischemia-reperfusion injury through eNOS/NO-dependent pathways.


Assuntos
Óxido Nítrico , Animais , Concentração de Íons de Hidrogênio , Óxido Nítrico/metabolismo , Masculino , Ratos , Ratos Wistar , Óxido Nítrico Sintase Tipo III/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , NG-Nitroarginina Metil Éster/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Óxido Nítrico Sintase/metabolismo
17.
Circ Res ; 131(5): 456-472, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35920168

RESUMO

BACKGROUND: Ischemic heart disease is a major global public health challenge, and its functional outcomes remain poor. Lysine crotonylation (Kcr) was recently identified as a post-translational histone modification that robustly indicates active promoters. However, the role of Kcr in myocardial injury is unknown. In this study, we aimed to clarify the pathophysiological significance of Kcr in cardiac injury and explore the underlying mechanism. METHODS: We investigated the dynamic change of both the Kcr sites and protein level in left ventricular tissues at 2 time points following sham or cardiac ischemia-reperfusion injury, followed by liquid chromatography-coupled tandem mass tag mass spectrometry. After validation of the enriched protein Kcr by immunoprecipitation and Western blot, the function and mechanism of specific Kcr sites were further investigated in vitro and in vivo by gain- or loss-of-function mutations targeting Kcr sites of selected proteins. RESULTS: We found that cardiac ischemia-reperfusion injury triggers preferential Kcr of proteins required for cardiomyocyte contractility, including mitochondrial and cytoskeleton proteins, which occurs largely independently of protein-level changes in the same proteins. Those exhibiting Kcr changes were associated not only with disruption of cardiomyocyte mitochondrial, sarcomere architecture, and gap junction but also with cardiomyocyte autophagy and apoptosis. Modulating site-specific Kcr of selected mitochondrial protein IDH3a (isocitrate dehydrogenase 3 [NAD+] alpha) at K199 and cytoskeletal protein TPM1 (tropomyosin alpha-1 chain) at K28/29 or enhancing general Kcr via sodium crotonate provision not only protects cardiomyocyte from apoptosis by inhibiting BNIP3 (Bcl-2 adenovirus E18 19-kDa-interacting protein 3)-mediated mitophagy or cytoskeleton structure rearrangement but also preserves postinjury myocardial function by inhibiting fibrosis and apoptosis. CONCLUSIONS: Our results indicate that Kcr modulation is a key response of cardiomyocytes to ischemia-reperfusion injury and may represent a novel therapeutic target in the context of ischemic heart disease.


Assuntos
Isquemia Miocárdica , Traumatismo por Reperfusão , Humanos , Lisina/metabolismo , Isquemia Miocárdica/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo
18.
Circ Res ; 130(5): e3-e17, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35105170

RESUMO

BACKGROUND: Ku70 participates in several pathological processes through mediating repair of DNA double-strand breaks. Our previous study has identified a highly conserved long noncoding RNA cardiac ischemia reperfusion associated Ku70 interacting lncRNA (CIRKIL) that was upregulated in myocardial infarction. The study aims to investigate whether CIRKIL regulates myocardial ischemia/reperfusion (I/R) through binding to Ku70. METHODS: CIRKIL transgenic and knockout mice were subjected to 45-minute ischemia and 24-hour reperfusion to establish myocardial I/R model. RNA pull-down and RNA immunoprecipitation assay were used to detect the interaction between CIRKIL and Ku70. RESULTS: The expression of CIRKIL was increased in I/R myocardium and H2O2-treated cardiomyocytes. Overexpression of CIRKIL increased the expression of γH2A.X, a specific marker of DNA double-strand breaks and aggravated cardiomyocyte apoptosis, whereas knockdown of CIRKIL produced the opposite changes. Transgenic overexpression of CIRKIL aggravated cardiac dysfunction, enlarged infarct area, and worsened cardiomyocyte damage in I/R mice. Knockout of CIRKIL alleviated myocardial I/R injury. Mechanistically, CIRKIL directly bound to Ku70 to subsequently decrease nuclear translocation of Ku70 and impair DNA double-strand breaks repair. Concurrent overexpression of Ku70 mitigated CIRKIL overexpression-induced myocardial I/R injury. Furthermore, knockdown of human CIRKIL significantly suppressed cell damage induced by H2O2 in adult human ventricular cardiomyocytes and human induced pluripotent stem cell-derived cardiomyocytes. CONCLUSIONS: CIRKIL is a detrimental factor in I/R injury acting via regulating nuclear translocation of Ku70 and DNA double-strand breaks repair. Thus, CIRKIL might be considered as a novel molecular target for the treatment of cardiac conditions associated with I/R injury.


Assuntos
Doença da Artéria Coronariana , Células-Tronco Pluripotentes Induzidas , Infarto do Miocárdio , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , RNA Longo não Codificante , Animais , Apoptose , Doença da Artéria Coronariana/metabolismo , DNA/metabolismo , Humanos , Peróxido de Hidrogênio/toxicidade , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Knockout , Infarto do Miocárdio/metabolismo , Isquemia Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Reperfusão
19.
Pharmacol Res ; 199: 106957, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37820856

RESUMO

SIRT1 is a highly conserved nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase. It is involved in the regulation of various pathophysiological processes, including cell proliferation, survival, differentiation, autophagy, and oxidative stress. Therapeutic activation of SIRT1 protects the heart and cardiomyocytes from pathology-related stress, particularly myocardial ischemia/reperfusion (I/R). Autophagy is an important metabolic pathway for cell survival during energy or nutrient deficiency, hypoxia, or oxidative stress. Autophagy is a double-edged sword in myocardial I/R injury. The activation of autophagy during the ischemic phase removes excess metabolic waste and helps ensure cardiomyocyte survival, whereas excessive autophagy during reperfusion depletes the cellular components and leads to autophagic cell death. Increasing research on I/R injury has indicated that SIRT1 is involved in the process of autophagy and regulates myocardial I/R. SIRT1 regulates autophagy through various pathways, such as the deacetylation of FOXOs, ATGs, and LC3. Recent studies have confirmed that SIRT1-mediated autophagy plays different roles at different stages of myocardial I/R injury. By targeting the mechanism of SIRT1-mediated autophagy at different stages of I/R injury, new small-molecule drugs, miRNA activators, or blockers can be developed. For example, resveratrol, sevoflurane, quercetin, and melatonin in the ischemic stage, coptisine, curcumin, berberine, and some miRNAs during reperfusion, were involved in regulating the SIRT1-autophagy axis, exerting a cardioprotective effect. Here, we summarize the possible mechanisms of autophagy regulation by SIRT1 in myocardial I/R injury and the related molecular drug applications to identify strategies for treating myocardial I/R injury.


Assuntos
Doença da Artéria Coronariana , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Humanos , Traumatismo por Reperfusão Miocárdica/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Isquemia Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Doença da Artéria Coronariana/metabolismo , Reperfusão , Autofagia , Apoptose
20.
Mol Biol Rep ; 51(1): 261, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302805

RESUMO

BACKGROUND: The cardioprotective properties of mesenchymal stem cells and the therapeutic potential of curcumin (CUR) have been explored. Combining these approaches may enhance stem cell effectiveness and expedite healing. This study aimed to investigate the synergistic effects of co-treating bone marrow mesenchymal stem cells (BMSCs) with curcumin on vascular endothelial growth factor (VEGF) levels, in a rat model of myocardial ischemia (MI). METHODS AND RESULTS: Sixty-five male rats were divided into four groups: G1 (healthy control), G2 (MI induced by isoproterenol hydrochloride), G3 (treated with BMSCs), and G4 (co-treated with curcumin and BMSCs). Blood and tissue samples were collected at specific time points (day 1, 7, 15 and 21) after MI induction. Serum levels of lactate dehydrogenase (LDH), creatine kinase (CK), cardiac troponin I (cTnI), aspartate aminotransferase (AST), CK-MB and VEGF were measured. VEGF mRNA and protein expression were evaluated using RT-qPCR and Western blot techniques. Histopathological assessments were performed using H&E staining and CD31 immunofluorescence staining. VEGF expression significantly increased on days 7 and 15 in the CUR-BMSCs group, peaking on day 7. Western blot analysis confirmed elevated VEGF protein expression on days 7 and 15 post-MI. ELISA results demonstrated increased serum VEGF levels on days 7 and 15, reaching the highest level on day 7 in CUR-BMSCs-treated animals. Treated groups showed lower levels of LDH, AST, CK, CK-MB and cTnI compared to the untreated MI group. H&E staining revealed improved myocardial structure, increased formation of new capillaries, in both treatment groups compared to the MI group. CONCLUSION: Combining curcumin with BMSCs promotes angiogenesis in the infarcted myocardium after 15 days of MI induction. These findings suggest the potential of this combined therapy approach for enhancing cardiac healing and recovery.


Assuntos
Doença da Artéria Coronariana , Curcumina , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Infarto do Miocárdio , Isquemia Miocárdica , Ratos , Masculino , Animais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Curcumina/farmacologia , Curcumina/metabolismo , Medula Óssea/metabolismo , Angiogênese , Isquemia Miocárdica/metabolismo , Miocárdio/metabolismo , Doença da Artéria Coronariana/metabolismo , Células-Tronco Mesenquimais/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células da Medula Óssea
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa