Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.091
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 21, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166583

RESUMO

BACKGROUND: The order Lepidoptera has an abundance of species, including both agriculturally beneficial and detrimental insects. Molecular data has been used to investigate the phylogenetic relationships of major subdivisions in Lepidoptera, which has enhanced our understanding of the evolutionary relationships at the family and superfamily levels. However, the phylogenetic placement of many superfamilies and/or families in this order is still unknown. In this study, we determine the systematic status of the family Argyresthiidae within Lepidoptera and explore its phylogenetic affinities and implications for the evolution of the order. We describe the first mitochondrial (mt) genome from a member of Argyresthiidae, the apple fruit moth Argyresthia conjugella. The insect is an important pest on apples in Fennoscandia, as it switches hosts when the main host fails to produce crops. RESULTS: The mt genome of A. conjugella contains 16,044 bp and encodes all 37 genes commonly found in insect mt genomes, including 13 protein-coding genes (PCGs), two ribosomal RNAs, 22 transfer RNAs, and a large control region (1101 bp). The nucleotide composition was extremely AT-rich (82%). All detected PCGs (13) began with an ATN codon and terminated with a TAA stop codon, except the start codon in cox1 is ATT. All 22 tRNAs had cloverleaf secondary structures, except trnS1, where one of the dihydrouridine (DHU) arms is missing, reflecting potential differences in gene expression. When compared to the mt genomes of 507 other Lepidoptera representing 18 superfamilies and 42 families, phylogenomic analyses found that A. conjugella had the closest relationship with the Plutellidae family (Yponomeutoidea-super family). We also detected a sister relationship between Yponomeutoidea and the superfamily Tineidae. CONCLUSIONS: Our results underline the potential importance of mt genomes in comparative genomic analyses of Lepidoptera species and provide valuable evolutionary insight across the tree of Lepidoptera species.


Assuntos
Genoma Mitocondrial , Lepidópteros , Malus , Mariposas , Humanos , Animais , Mariposas/genética , Malus/genética , Filogenia , Frutas , Lepidópteros/genética , RNA de Transferência/genética , Códon de Terminação
2.
Mol Biol Evol ; 40(11)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37935057

RESUMO

Color vision in insects is determined by signaling cascades, central to which are opsin proteins, resulting in sensitivity to light at different wavelengths. In certain insect groups, lineage-specific evolution of opsin genes, in terms of copy number, shifts in expression patterns, and functional amino acid substitutions, has resulted in changes in color vision with subsequent behavioral and niche adaptations. Lepidoptera are a fascinating model to address whether evolutionary change in opsin content and sequence evolution are associated with changes in vision phenotype. Until recently, the lack of high-quality genome data representing broad sampling across the lepidopteran phylogeny has greatly limited our ability to accurately address this question. Here, we annotate opsin genes in 219 lepidopteran genomes representing 33 families, reconstruct their evolutionary history, and analyze shifts in selective pressures and expression between genes and species. We discover 44 duplication events in opsin genes across ∼300 million years of lepidopteran evolution. While many duplication events are species or family specific, we find retention of an ancient long-wavelength-sensitive (LW) opsin duplication derived by retrotransposition within the speciose superfamily Noctuoidea (in the families Nolidae, Erebidae, and Noctuidae). This conserved LW retrogene shows life stage-specific expression suggesting visual sensitivities or other sensory functions specific to the early larval stage. This study provides a comprehensive order-wide view of opsin evolution across Lepidoptera, showcasing high rates of opsin duplications and changes in expression patterns.


Assuntos
Visão de Cores , Lepidópteros , Humanos , Animais , Opsinas/genética , Duplicação Gênica , Lepidópteros/genética , Evolução Molecular , Opsinas de Bastonetes/química , Opsinas de Bastonetes/genética , Insetos/genética , Filogenia , Expressão Gênica
3.
Mol Phylogenet Evol ; 194: 108040, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38395320

RESUMO

Fern-spore-feeding (FSF) is rare and found in only four families of Lepidoptera. Stathmopodidae is the most speciose family that contains FSF species, and its subfamily Cuprininae exclusively specializes on FSF. However, three species of Stathmopodinae also specialize on FSF. To better understand the evolutionary history of FSF and, more generally, the significance of specialization on a peculiar host, a phylogenetic and taxonomic revision for this group is necessary. We reconstructed the most comprehensive molecular phylogeny, including one mitochondrial and four nuclear genes, of Stathmopodidae to date, including 137 samples representing 62 species, with a particular focus on the FSF subfamily, Cuprininae, including 33 species (41% of named species) from 6 of the 7 Cuprininae genera. Species from two other subfamilies, Stathmopodinae and Atkinsoniinae, were also included. We found that FSF evolved only once in Stathmopodidae and that the previous hypothesis of multiple origins of FSF was misled by inadequate taxonomy. Moreover, we showed that (1) speciation/extinction rates do not differ significantly between FSF and non-FSF groups and that (2) oligophage is the ancestral character state in Cuprininae. We further revealed that a faster rate of accumulating specialists over time, and thus a higher number of specialists, was achieved by a higher transition rate from oligophagages to specialists compared to the transition rate in the opposite direction. We finish by describing three new genera, Trigonodagen. nov., Petalagen. nov., and Pediformisgen. nov., and revalidating five genera: Cuprina, Calicotis, Thylacosceles, Actinoscelis, Thylacosceloides in Cuprininae, and we provide an updated taxonomic key to genera and a revised global checklist of Cuprininae.


Assuntos
Gleiquênias , Lepidópteros , Animais , Lepidópteros/genética , Filogenia , Insetos , Esporos
4.
Bull Entomol Res ; 114(1): 107-123, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38193275

RESUMO

The subfamilies Salassinae and Agliinae are two monogeneric groups of the family Saturniidae. They were regarded as the non-cocooning saturniids in Asia. Since very little information on their life history and mitogenome has been reported, their origin and evolution are still poorly understood. In this study, nature-imitated rearing is used to record the life history of two Aglia and five Salassa species. In addition, four complete mitogenomes are presented, which are the first ones of these two subfamilies. The results show that both Salassinae and Agliinae have lost their cocooning. Moreover, the phylogenetic analysis demonstrates that the subfamily Saturniinae is not monophyletic due to the inclusion of Agliinae and Salassinae.


Assuntos
Genoma Mitocondrial , Lepidópteros , Animais , Lepidópteros/genética , Filogenia , Insetos , Ásia
5.
PLoS Genet ; 17(4): e1009514, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33901186

RESUMO

The regulatory subunits (P60 in insects, P85 in mammals) determine the activation of the catalytic subunits P110 in phosphatidylinositol 3-kinases (PI3Ks) in the insulin pathway for cell proliferation and body growth. However, the regulatory subunits also promote apoptosis via an unclear regulatory mechanism. Using Helicoverpa armigera, an agricultural pest, we showed that H. armigera P60 (HaP60) was phosphorylated under insulin-like peptides (ILPs) regulation at larval growth stages and played roles in the insulin/ insulin-like growth factor (IGF) signaling (IIS) to determine HaP110 phosphorylation and cell membrane translocation; whereas, HaP60 was dephosphorylated and its expression increased under steroid hormone 20-hydroxyecdysone (20E) regulation during metamorphosis. Protein tyrosine phosphatase non-receptor type 6 (HaPTPN6, also named tyrosine-protein phosphatase corkscrew-like isoform X1 in the genome) was upregulated by 20E to dephosphorylate HaP60 and HaP110. 20E blocked HaP60 and HaP110 translocation to the cell membrane and reduced their interaction. The phosphorylated HaP60 mediated a cascade of protein phosphorylation and forkhead box protein O (HaFOXO) cytosol localization in the IIS to promote cell proliferation. However, 20E, via G protein-coupled-receptor-, ecdysone receptor-, and HaFOXO signaling axis, upregulated HaP60 expression, and the non-phosphorylated HaP60 interacted with phosphatase and tensin homolog (HaPTEN) to induce apoptosis. RNA interference-mediated knockdown of HaP60 and HaP110 in larvae repressed larval growth and apoptosis. Thus, HaP60 plays dual functions to promote cell proliferation and apoptosis by changing its phosphorylation status under ILPs and 20E regulation, respectively.


Assuntos
Proliferação de Células/genética , Insulina/genética , Metamorfose Biológica/genética , Fosfatidilinositol 3-Quinases/genética , Animais , Apoptose/genética , Ecdisterona/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Larva/genética , Larva/crescimento & desenvolvimento , Lepidópteros/genética , Lepidópteros/crescimento & desenvolvimento , Peptídeos , Fosforilação/genética , Receptores Acoplados a Proteínas G/genética , Somatomedinas
6.
BMC Biol ; 21(1): 265, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37981687

RESUMO

BACKGROUND: Lepidoptera is one of the most species-rich animal groups, with substantial karyotype variations among species due to chromosomal rearrangements. Knowledge of the evolutionary patterns of lepidopteran chromosomes still needs to be improved. RESULTS: Here, we used chromosome-level genome assemblies of 185 lepidopteran insects to reconstruct an ancestral reference genome and proposed a new chromosome nomenclature. Thus, we renamed over 5000 extant chromosomes with this system, revealing the historical events of chromosomal rearrangements and their features. Additionally, our findings indicate that, compared with autosomes, the Z chromosome in Lepidoptera underwent a fast loss of conserved genes, rapid acquisition of lineage-specific genes, and a low rate of gene duplication. Moreover, we presented evidence that all available 67 W chromosomes originated from a common ancestor chromosome, with four neo-W chromosomes identified, including one generated by fusion with an autosome and three derived through horizontal gene transfer. We also detected nearly 4000 inter-chromosomal gene movement events. Notably, Geminin is transferred from the autosome to the Z chromosome. When located on the autosome, Geminin shows female-biased expression, but on the Z chromosome, it exhibits male-biased expression. This contributes to the sexual dimorphism of body size in silkworms. CONCLUSIONS: Our study sheds light on the complex evolutionary history of lepidopteran chromosomes based on ancestral chromosome reconstruction and novel chromosome nomenclature.


Assuntos
Evolução Biológica , Lepidópteros , Animais , Feminino , Masculino , Geminina/genética , Genoma , Cromossomos Sexuais/genética , Lepidópteros/genética , Evolução Molecular
7.
J Insect Sci ; 24(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38457335

RESUMO

The soybean bud borer, a soybean pest in Brazil, was initially identified as Crocidosema aporema (Walsingham 1914) (Lepidoptera: Tortricidae). Outbreaks of this species have recently increased, but identification of this pest remains uncertain, and the historical factors associated with its geographic distribution in Brazil are little known. Here, we conducted a species characterization and phylogeographic analysis based on molecular and morphological evidence. Ninety individuals of bud-borers Lepidoptera were collected in different regions of Brazil. We sequenced COI and COII mitochondrial genes and examined wing patterns and male genital morphology. DNA barcoding approach revealed that 10 individuals were Argyrotaenia sphaleropa (Meyrick 1909) (Lepidoptera: Tortricidae) and 80 were a species of the genus Crocidosema Zeller. The morphology of the adult genitalia and wings proved to be insufficient to confirm the identification of Brazilian individuals as C. aporema, a species originally described from a high-elevation site in Costa Rica. Furthermore, the genetic distance between putative C. aporema specimens from Brazil and Costa Rica (ranging from 5.2% to 6.4%) supports the hypothesis that the Brazilian specimens are not referable to C. aporema. Our analysis revealed a single genetic strain (i.e., species) with low genetic diversity on soybean crops. We found no indication that the genetic structure was related to geographic distance among populations or edaphoclimatic regions. The population expansion of the soybean bud borer coincides with the increase in the area of soybean production in Brazil, suggesting that expanded soybean farming has allowed a significant increase in the effective population size of this pest.


Assuntos
Lepidópteros , Mariposas , Masculino , Animais , Lepidópteros/genética , Brasil , Glycine max/genética , Mariposas/genética , Filogeografia , Demografia
8.
J Insect Sci ; 24(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38412293

RESUMO

The butterfly genus of Teinopalpus, endemic to Asia, embodies a distinct species of mountain-dwelling butterflies with specific habitat requirements. These species are rare in the wild and hold high conservation and research value. Similar to other protected species, the genetic analysis of the rare Teinopalpus aureus poses challenges due to the complexity of sampling. In this study, we successfully extracted DNA and amplified mitochondrial genomic DNA from various noninvasive sources such as larval feces, larval exuviae, larval head capsules, pupal exuviaes, and filamentous gland secretions, all integral parts of butterfly metamorphosis. This was conducted as part of a research initiative focused on the artificial conservation of T. aureus population in Jinggang Shan Nature Reserve. Our findings illustrated the successful extraction of DNA from multiple noninvasive sources, achieved through modified DNA extraction methodologies. Although the DNA concentration obtained from noninvasive samples was lower than that from muscle tissues of newly dead larvae during rearing, all samples met the requirements for PCR amplification and sequencing, yielding complete circular sequences. These sequences are pivotal for both interspecific and intraspecific genetic relationship analysis. Our methods can be extended to other insects, especially scarce species.


Assuntos
Borboletas , Genoma Mitocondrial , Lepidópteros , Animais , Borboletas/genética , Lepidópteros/genética , Filogenia , Análise de Sequência de DNA , DNA Mitocondrial/genética , Larva/genética
9.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256210

RESUMO

MicroRNAs (miRNAs) play a pivotal role in important biological processes by regulating post-transcriptional gene expression and exhibit differential expression patterns during development, immune responses, and stress challenges. The diamondback moth causes significant economic damage to crops worldwide. Despite substantial advancements in understanding the molecular biology of this pest, our knowledge regarding the role of miRNAs in regulating key immunity-related genes remains limited. In this study, we leveraged whole transcriptome resequencing data from Plutella xylostella infected with Metarhizium anisopliae to identify specific miRNAs targeting the prophenoloxidase-activating protease1 (PAP1) gene and regulate phenoloxidase (PO) cascade during melanization. Seven miRNAs (pxy-miR-375-5p, pxy-miR-4448-3p, pxy-miR-279a-3p, pxy-miR-3286-3p, pxy-miR-965-5p, pxy-miR-8799-3p, and pxy-miR-14b-5p) were screened. Luciferase reporter assays confirmed that pxy-miR-279a-3p binds to the open reading frame (ORF) and pxy-miR-965-5p to the 3' untranslated region (3' UTR) of PAP1. Our experiments demonstrated that a pxy-miR-965-5p mimic significantly reduced PAP1 expression in P. xylostella larvae, suppressed PO activity, and increased larval mortality rate. Conversely, the injection of pxy-miR-965-5p inhibitor could increase PAP1 expression and PO activity while decreasing larval mortality rate. Furthermore, we identified four LncRNAs (MSTRG.32910.1, MSTRG.7100.1, MSTRG.6802.1, and MSTRG.22113.1) that potentially interact with pxy-miR-965-5p. Interference assays using antisense oligonucleotides (ASOs) revealed that silencing MSTRG.7100.1 and MSTRG.22113.1 increased the expression of pxy-miR-965-5p. These findings shed light on the potential role of pxy-miR-965-5p in the immune response of P. xylostella to M. anisopliae infection and provide a theoretical basis for biological control strategies targeting the immune system of this pest.


Assuntos
Lepidópteros , Metarhizium , MicroRNAs , Animais , Metarhizium/genética , Lepidópteros/genética , Regiões 3' não Traduzidas , Bioensaio , Larva/genética , MicroRNAs/genética
10.
Genome ; 66(6): 116-130, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36971261

RESUMO

Transposable elements (TEs) are DNA sequences that possess the ability to move from one genomic location to another. These sequences contribute to a significant fraction of the genomes of most eukaryotes and can impact their architecture and regulation. In this paper, we present the first data related to the identification and characterization of TEs present in the transcriptome of Anticarsia gemmatalis. Approximately, 835 transcripts showed significant similarity to TEs and (or) characteristic domains. Retrotransposons accounted for 71.2% (595 sequences) of the identified elements, while DNA transposons were less abundant, with 240 annotations (28.8%). TEs were classified into 30 superfamilies, with SINE3/5S and Gypsy being the most abundant. Based on the sequences of TEs found in the transcriptome, we were able to locate conserved regions in the chromosomes of this species. The analysis of differential expression of TEs in susceptible and resistant strains, challenged and not challenged with Bacillus thuringiensis (Bt) from in silico analysis, indicated that exposure to Bt can regulate the transcription of mobile genetic elements in the velvetbean caterpillar. Thus, these data contribute significantly to the knowledge of the structure and composition of these elements in the genome of this species, and suggest the role of stress on their expression.


Assuntos
Lepidópteros , Mariposas , Animais , Lepidópteros/genética , Elementos de DNA Transponíveis , Transcriptoma , Mariposas/genética
11.
Arch Insect Biochem Physiol ; 112(1): e21914, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35570199

RESUMO

Loxostege turbidalis, Loxostege aeruginalis, Pyrausta despicata, and Crambus perlellus belong to Crambidae, Pyraloidea. Their mitochondrial genomes (mitogenomes) were successfully sequenced. The mitogenomes of L. turbidalis, L. aeruginalis, P. despicata, and C. perlellus are 15 240 bp, 15 339 bp, 15 389 bp, and 15 440 bp. The four mitogenomes all have a typical insect mitochondrial gene order, including 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes, and one A + T rich region (control region). The PCGs are initiated by the typical ATN codons, except CGA for the cox1 gene. Most PCGs terminate with common codon TAA or TAG, the incomplete codon T is found as the stop codon for cox2, nad4, and nad5. Most tRNA genes exhibit typical cloverleaf structure, except trnS1 (AGN) lacking the dihydrouridine (DHU) arm. The secondary structure of rRNA of four mitogenomes were predicted. Poly-T structure and micro-satellite regions are conserved in control regions. The phylogenetic analyses based on 13 PCGs showed the relationships of subfamilies in Pyraloidea. Pyralidae, and Crambidae are monophyletic, respectively. Pyralidae comprises four subfamilies, which form the following topology with high support values: (Galleriinae + ((Pyralinae + Epipaschiinae)+ Phycitinae)). Crambidae includes seven subfamilies and is divided into two lineages. Pyraustinae and Spilomelinae are sister groups of each other, and form the "PS clade." Other five subfamilies (Crambinae, Acentropinae, Scopariinae, Schoenobiinae, and Glaphyriinae) form the "non-PS clade" in the Bayesian inference tree. However, Schoenobiinae is not grouped with the other four subfamilies and located at the base of Crambidae in two maximum likelihood trees.


Assuntos
Genoma Mitocondrial , Lepidópteros , Mariposas , Animais , Lepidópteros/genética , Filogenia , Teorema de Bayes , Mariposas/genética , RNA de Transferência/genética , Códon
12.
Arch Insect Biochem Physiol ; 114(4): e22061, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37905450

RESUMO

The sophisticated olfactory system of insects is plays a critical role in detecting chemical signals and guiding insect behaviors, such as selecting mates, finding hosts, evading predators, and discovering oviposition sites. Therefore, exploring and clarifying the molecular processes of this system is crucial for developing new insecticides or efficient pest control methods. Plodia interpunctella (Hübner) is a disruptive insect pest damaging the stored grains over the world. However, the olfactory processes of P. interpunctella remain unclear. Herein, we employed a transcriptome analysis to identify olfactory and differentially expressed genes to characterize their expression patterns in different developmental stages and antennal tissue. Subsequently, a total of 172 potential olfactory-related genes included 42 odorant-binding proteins, 12 chemosensory proteins, 51 odorant receptors, 13 gustatory receptors, three sensory neuron membrane proteins, and 51 ionotropic receptors. Furthermore, phylogenetic analysis and BLASTx best-hit analyses showed that these olfactory genes were closely linked with those identified in other lepidopterans. Transcriptome analysis revealed 49 differentially expressed olfactory-related genes, and a semiquantitative reverse transcription polymerase chain reaction showed that 11 olfactory genes were particularly expressed in the legs and wings of female P. interpunctella. Meanwhile, PintOBP29 was notably expressed in female antennae and legs. Genes with high expression levels in the abdomen showed high expression in the legs, but low expression in the antennae. Our findings provide the candidate genetic factors for analysis of the olfactory processes in P. interpunctella.


Assuntos
Lepidópteros , Mariposas , Receptores Odorantes , Feminino , Animais , Lepidópteros/genética , Lepidópteros/metabolismo , Transcriptoma , Filogenia , Mariposas/genética , Mariposas/metabolismo , Perfilação da Expressão Gênica , Receptores de Superfície Celular/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Antenas de Artrópodes/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
13.
Bull Entomol Res ; 113(1): 86-97, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35817762

RESUMO

MicroRNAs (miRNAs) are small noncoding RNAs (sRNAs) that regulate gene expression by inhibiting translation or degrading mRNA. Although the functions of miRNAs in many biological processes have been reported, there is currently no research on the possible roles of miRNAs in Micromelalopha troglodyta (Graeser) involved in the response of plant allelochemicals. In this article, six sRNA libraries (three treated with tanic acid and three control) from M. troglodyta were constructed using Illumina sequencing. From the results, 312 known and 43 novel miRNAs were differentially expressed. Notably, some of the most abundant miRNAs, such as miR-432, miR-541-3p, and miR-4448, involved in important physiological processes were also identified. To better understand the function of the targeted genes, we performed Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The results indicated that differentially expressed miRNA targets were involved in metabolism, development, hormone biosynthesis, and immunity. Finally, we visualized a miRNA-mRNA regulatory module that supports the role of miRNAs in host-allelochemical interactions. To our knowledge, this is the first report on miRNAs responding to tannic acid in M. troglodyta. This study provides indispensable information for understanding the potential roles of miRNAs in M. troglodyta and the applications of these miRNAs in M. troglodyta management.


Assuntos
Lepidópteros , MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , Lepidópteros/genética , Lepidópteros/metabolismo , Redes Reguladoras de Genes , Análise de Sequência de RNA , Perfilação da Expressão Gênica
14.
Pestic Biochem Physiol ; 194: 105485, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532315

RESUMO

The widespread use of pyrethroid pesticides has brought serious economic losses in sericulture, but there is still no viable solution. The key to solving the problem is to improve silkworm resistance to pesticides, which depends on understanding the resistance mechanism of silkworms to pesticides. This study aimed to use transcriptomes to understand the underlying mechanism of silkworm resistance to fenpropathrin, which will provide a theoretical molecular reference for breeding pesticide-resistant silkworm varieties. In this study, the fat bodies of two strains with differential resistance after 12 h of fenpropathrin feeding were analyzed using RNA-Seq. After feeding fenpropathrin, 760 differentially expressed genes (DEGs) were obtained in the p50(r) strain and 671 DEGs in the 8y strain. The DEGs involved in resistance to fenpropathrin were further identified by comparing the two strains, including 207 upregulated DEGs in p50(r) and 175 downregulated DEGs in 8y. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that these fenpropathrin-related DEGs are mainly enriched in the metabolism and transporter pathways. Moreover, 28 DEGs involved in the metabolic pathway and 18 in the transporter pathway were identified. Furthermore, organic cation transporter protein 6 (BmOCT6), a transporter pathway member, was crucial in enhancing the tolerance of BmN cells to fenpropathrin. Finally, the knockdown of the expression of the homologs of BmOCT6 in Glyphodes pyloalis (G. pyloalis) significantly decreased the resistant level of larvae to fenpropathrin. The findings showed that the metabolism and transporter pathways are associated with resistance to fenpropathrin in silkworm, and OCT6 is an effective and potential target not only for silkworm breeding but also for pest biocontrol.


Assuntos
Bombyx , Lepidópteros , Praguicidas , Piretrinas , Animais , Bombyx/genética , Bombyx/metabolismo , Transcriptoma , Lepidópteros/genética , Corpo Adiposo , Perfilação da Expressão Gênica , Piretrinas/toxicidade , Piretrinas/metabolismo , Praguicidas/metabolismo
15.
Genomics ; 114(4): 110440, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35905835

RESUMO

The moth Heortia vitessoides Moore (Lepidoptera: Crambidae) is a major pest of ecologically, commercially and culturally important agarwood-producing trees in the genus Aquilaria. In particular, H. vitessoides is one of the most destructive defoliating pests of the incense tree Aquilaria sinesis, which produces a valuable fragrant wood used as incense and in traditional Chinese medicine [33]. Nevertheless, a genomic resource for H. vitessoides is lacking. Here, we present a chromosomal-level assembly for H. vitessoides, consisting of a 517 megabase (Mb) genome assembly with high physical contiguity (scaffold N50 of 18.2 Mb) and high completeness (97.9% complete BUSCO score). To aid gene annotation, 8 messenger RNA transcriptomes from different developmental stages were generated, and a total of 16,421 gene models were predicted. Expansion of gene families involved in xenobiotic metabolism and development were detected, including duplications of cytosolic sulfotransferase (SULT) genes shared among lepidopterans. In addition, small RNA sequencing of 5 developmental stages of H. vitessoides facilitated the identification of 85 lepidopteran conserved microRNAs, 94 lineage-specific microRNAs, as well as several microRNA clusters. A large proportion of the H. vitessoides genome consists of repeats, with a 29.12% total genomic contribution from transposable elements, of which long interspersed nuclear elements (LINEs) are the dominant component (17.41%). A sharp decrease in the genome-wide percentage of LINEs with lower levels of genetic distance to family consensus sequences suggests that LINE activity has peaked in H. vitessoides. In contrast, opposing patterns suggest a substantial recent increase in DNA and LTR element activity. Together with annotations of essential sesquiterpenoid hormonal pathways, neuropeptides, microRNAs and transposable elements, the high-quality genomic and transcriptomic resources we provide for the economically important moth H. vitessoides provide a platform for the development of genomic approaches to pest management, and contribute to addressing fundamental research questions in Lepidoptera.


Assuntos
Lepidópteros , MicroRNAs , Mariposas , Animais , Elementos de DNA Transponíveis , Lepidópteros/genética , Mariposas/genética , Árvores/genética
16.
Int J Mol Sci ; 24(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38003357

RESUMO

Heat-shock proteins (HSPs) serve as molecular chaperones in the RNA interference (RNAi) pathway of eukaryotic organisms. In model organisms, Hsp70 and Hsp90 facilitate the folding and remodeling of the client protein Argonaute (Ago). However, the specific function of HSPs in the RNAi pathway of Plutella xylostella (L.) (Lepidoptera: Plutellidae) remains unknown. In this study, we identified and analyzed the coding sequences of PxHsc70-4 and PxHsp83 (also known as PxHsp90). Both PxHsc70-4 and PxHsp83 exhibited three conserved domains that covered a massive portion of their respective regions. The knockdown or inhibition of PxHsc70-4 and PxHsp83 in vitro resulted in a significant increase in the gene expression of the dsRNA-silenced reporter gene PxmRPS18, leading to a decrease in its RNAi efficiency. Interestingly, the overexpression of PxHsc70-4 and PxHsp83 in DBM, Sf9, and S2 cells resulted in an increase in the bioluminescent activity of dsRNA-silenced luciferase, indicating a decrease in its RNAi efficiency via the overexpression of Hsp70/Hsp90. Furthermore, the inhibition of PxHsc70-4 and PxHsp83 in vivo resulted in a significant increase in the gene expression of PxmRPS18. These findings demonstrated the essential involvement of a specific quantity of Hsc70-4 and Hsp83 in the siRNA pathway in P. xylostella. Our study offers novel insights into the roles played by HSPs in the siRNA pathway in lepidopteran insects.


Assuntos
Lepidópteros , Humanos , Animais , Interferência de RNA , Lepidópteros/genética , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , RNA Interferente Pequeno/genética , RNA de Cadeia Dupla/genética
17.
BMC Genomics ; 23(1): 718, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271350

RESUMO

BACKGROUND: Semiothisa cinerearia belongs to Geometridae, which is one of the most species-rich families of lepidopteran insects. It is also one of the most economically significant pests of the Chinese scholar tree (Sophora japonica L.), which is an important urban greenbelt trees in China due to its high ornamental value. A genome assembly of S. cinerearia would facilitate study of the control and evolution of this species. RESULTS: We present a reference genome for S. cinerearia; the size of the genome was ~ 580.89 Mb, and it contained 31 chromosomes. Approximately 43.52% of the sequences in the genome were repeat sequences, and 21,377 protein-coding genes were predicted. Some important gene families involved in the detoxification of pesticides (P450) have expanded in S. cinerearia. Cytochrome P450 gene family members play key roles in mediating relationships between plants and insects, and they are important in plant secondary metabolite detoxification and host-plant selection. Using comparative analysis methods, we find positively selected gene, Sox15 and TipE, which may play important roles during the larval-pupal metamorphosis development of S. cinerearia. CONCLUSION: This assembly provides a new genomic resource that will aid future comparative genomic studies of Geometridae species and facilitate future evolutionary studies on the S. cinerearia.


Assuntos
Lepidópteros , Praguicidas , Animais , Lepidópteros/genética , Cromossomos , Sistema Enzimático do Citocromo P-450/genética , Evolução Molecular
18.
Mol Biol Evol ; 38(7): 2897-2914, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33739418

RESUMO

Horizontal gene transfer (HGT) is a potentially critical source of material for ecological adaptation and the evolution of novel genetic traits. However, reports on posttransfer duplication in organism genomes are lacking, and the evolutionary advantages conferred on the recipient are generally poorly understood. Sucrase plays an important role in insect physiological growth and development. Here, we performed a comprehensive analysis of the evolution of insect ß-fructofuranosidase transferred from bacteria via HGT. We found that posttransfer duplications of ß-fructofuranosidase were widespread in Lepidoptera and sporadic occurrences of ß-fructofuranosidase were found in Coleoptera and Hymenoptera. ß-fructofuranosidase genes often undergo modifications, such as gene duplication, differential gene loss, and changes in mutation rates. Lepidopteran ß-fructofuranosidase gene (SUC) clusters showed marked divergence in gene expression patterns and enzymatic properties in Bombyx mori (moth) and Papilio xuthus (butterfly). We generated SUC1 mutations in B. mori using CRISPR/Cas9 to thoroughly examine the physiological function of SUC. BmSUC1 mutant larvae were viable but displayed delayed growth and reduced sucrase activities that included susceptibility to the sugar mimic alkaloid found in high concentrations in mulberry. BmSUC1 served as a critical sucrase and supported metabolic homeostasis in the larval midgut and silk gland, suggesting that gene transfer of ß-fructofuranosidase enhanced the digestive and metabolic adaptation of lepidopteran insects. These findings highlight not only the universal function of ß-fructofuranosidase with a link to the maintenance of carbohydrate metabolism but also an underexplored function in the silk gland. This study expands our knowledge of posttransfer duplication and subsequent functional diversification in the adaptive evolution and lineage-specific adaptation of organisms.


Assuntos
Evolução Biológica , Duplicação Gênica , Transferência Genética Horizontal , Lepidópteros/genética , beta-Frutofuranosidase/genética , Animais , Feminino , Homeostase , Larva/crescimento & desenvolvimento , Larva/metabolismo , Lepidópteros/enzimologia , Masculino , Sacarase/metabolismo
19.
Insect Mol Biol ; 31(3): 273-285, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34923695

RESUMO

Atrijuglans hetaohei Yang (Lepidoptera: Gelechioidea) is one of the major pests that can seriously damage the walnut tree, leading to harvest loss. Sex pheromones regulate mating communication and reproduction in insects and provide targets for developing a novel pest control strategy. In this study, by transcriptomic sequencing and analysis of the female pheromone gland (PG) and male genitalia of A. hetaohei, we identified 92 putative genes, of which 7 desaturases (Dess), 8 fatty acyl reductases (FARs), 4 fatty acid synthetases (FASs), 2 aldehyde oxidases (AOXs), 4 acetyltransferases (ACTs), 1 chemosensory protein (CSP), and 2 odorant-binding proteins (OBPs) were predominantly expressed in the female PG, while 5 Dess, 11 FARs, 7 FASs, 6 AOXs, 1 ACT, and 1 CSP showed more robust expression in the male genitalia. Moreover, phylogenetic analysis revealed that 7 Dess and 1 FAR were grouped with genes involved in pheromone synthesis in other Lepidoptera species. Thus, we proposed that these candidate genes are possibly involved in the sex pheromone biosynthetic pathway in A. hetaohei. Our findings will provide a solid genetic basis for further exploring the function of the tissue-biased genes and may be useful to screen potential targets for interfering chemical communication in A. hetaohei.


Assuntos
Lepidópteros , Mariposas , Atrativos Sexuais , Animais , Feminino , Perfilação da Expressão Gênica , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Lepidópteros/genética , Masculino , Mariposas/genética , Mariposas/metabolismo , Filogenia , Atrativos Sexuais/metabolismo , Transcriptoma
20.
Mol Biol Rep ; 49(11): 10557-10564, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36169899

RESUMO

BACKGROUND: Cotton is continuously exposed to sucking and chewing insect pest pressure since emergence to harvesting. Pink bollworm (Pectinophora gossypiella) has become major chewing insect pest to reduce the cotton yield and results in bad lint quality even in transgenic crops. The efficiency of insecticidal genes has been compromised due to extensive utilization of transgenic crops. METHODS AND RESULTS: The present study was conducted to evaluate the efficacy of an alternate cry1Ia12 insecticidal gene against pink bollworm (PBW) in cotton. Agrobacterium tumefaciens strain LBA4404 harboring pCAMBIA2300 expression vector containing cry1Ia12 gene under the control of 35S CaMV was used to transform a local cotton cultivar GS-01. The various molecular analyses revealed the transgene integration and expression in primary transformants. Among five selected transgenic plants, tcL-08 showed maximum (16.06-fold) mRNA expression of cry1Ia12 gene whereas tcL-03 showed minimum (2.33-fold) expression. Feeding bioassays of 2nd and 3rd instar pink bollworm (PBW) larvae on immature cotton bolls, flowers and cotton squares revealed up to 33.33% mortality on tcL-08 while lowest mortality (13.33%) was observed in tcL-03 and tcL-15. Furthermore, the average weight and size of survived larvae fed on transgenic plants was significantly lesser than the average weight of larvae survived on non-transgenic plants. CONCLUSIONS: The present study suggests the cry1Ia12 gene as an alternate insecticidal gene for the resistance management of cotton bollworms, especially PBW.


Assuntos
Inseticidas , Lepidópteros , Mariposas , Animais , Lepidópteros/genética , Toxinas de Bacillus thuringiensis , Inseticidas/farmacologia , Proteínas Hemolisinas/genética , Endotoxinas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mariposas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Larva/genética , Larva/metabolismo , Gossypium/genética , Gossypium/metabolismo , Controle de Pragas , Resistência a Inseticidas/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa