Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 358
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Musculoskelet Neuronal Interact ; 24(2): 127-138, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38825995

RESUMO

OBJECTIVES: The aim of this study was to compare torque-velocity profiles, muscle architecture, tendon dimensions, and bilateral-symmetry between competitive cyclists (CY), competitive runners (RN), ice-hockey players (IH), basketball players (BP), and physically-active individuals (CN) (n=10 for each group). METHODS: Vastus lateralis (VL) muscle and patellar tendon (PT) structures were determined with B-mode ultrasonography, and maximal knee extensor isokinetic torque was assessed at three different velocities. RESULTS: Optimal torque and velocity were lower in runners than CY, BP and IH (p<0.05). Maximal power was similar between the athlete groups but greater than CN (p<0.05). Furthermore, RN and BP reached their peak-torque at longer muscle lengths compared to IH and CY (p<0.05). RN had the lowest VL muscle thickness and the greatest fascicle length, while CY had the greatest pennation angle (p<0.05). CY had the greatest PT thickness, particularly at the proximal and medial sites, while BP at the distal point (p<0.05), with similar trends observed for PT cross-sectional-area. CONCLUSIONS: Our findings show that even if power generating capacity is similar between athletic disciplines, there are discipline-specific muscle adaptations, where particularly runners appear to have muscles adapted for speed rather than torque development, while in cyclists, velocity is sacrificed for torque development.


Assuntos
Atletas , Torque , Humanos , Masculino , Adulto , Adulto Jovem , Músculo Esquelético/fisiologia , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/diagnóstico por imagem , Ultrassonografia/métodos , Ligamento Patelar/fisiologia , Ligamento Patelar/diagnóstico por imagem , Ligamento Patelar/anatomia & histologia , Corrida/fisiologia
2.
Scand J Med Sci Sports ; 34(8): e14712, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39118425

RESUMO

Patellar tendinopathy is more prevalent in males versus female athletes and commonly presents in the medial region of the tendon. Separate measures of patellar tendon strain in the medial, central, and lateral regions of the tendon, however, have not been quantified. The purpose was to investigate the differences in tendon strain between the medial, lateral, and central regions of the patellar tendon in healthy men and women. Strain in the medial and lateral regions of the patellar tendon in healthy participants (10 males, 10 females) was evaluated using ultrasound during isometric quadriceps contractions at 20%, 40%, 60%, 80%, and 100% of maximum voluntary contraction (MVIC) in 60° and 90° of knee flexion. Central strain was also measured at 60% MVIC in 90° of knee flexion. Mixed models were used to determine strain between tendon regions and sex at 60% MVIC in 90° of knee flexion. Sequential modeling was used to fit region, sex, %MVIC, and angle to predict strain. The central region had less strain compared with both medial and lateral regions. The lateral region had higher strain compared with the medial region regardless of sex. Females had higher strain compared with males, regardless of region. Knee position did not influence tendon strain. Patellar tendon strain differs by region and sex. The varying prevalence between sex and in location of patellar tendinopathy may in part be explained by the unbalanced strains. Differential assessment of regional patellar tendon strain may be of importance for understanding injury risk and recovery with exercise.


Assuntos
Ligamento Patelar , Tendinopatia , Ultrassonografia , Humanos , Ligamento Patelar/fisiologia , Ligamento Patelar/diagnóstico por imagem , Masculino , Feminino , Adulto , Adulto Jovem , Fatores Sexuais , Tendinopatia/diagnóstico por imagem , Tendinopatia/fisiopatologia , Músculo Quadríceps/fisiologia , Músculo Quadríceps/diagnóstico por imagem , Contração Isométrica/fisiologia , Fenômenos Biomecânicos
3.
Scand J Med Sci Sports ; 34(9): e14726, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39263841

RESUMO

Patellar tendinopathy (PT) typically affects jumping-sport athletes with functional impairments frequently observed. Alterations to the functional organization of corticomotor neurons within the motor cortex that project to working muscles are evident in some musculoskeletal conditions and linked to functional impairments. We aimed to determine if functional organization of corticomotor neuron projections differs between athletes with PT and asymptomatic controls, and if organization is associated with neuromuscular control. We used a cross-sectional design, and the setting was Monash Biomedical Imaging. Basketball and volleyball athletes with (n = 8) and without PT (n = 8) completed knee extension and ankle dorsiflexion force matching tasks while undergoing fMRI. We determined functional organization via identification of the location of peak corticomotor neuron activation during respective tasks (expressed in X, Y, and Z coordinates) and calculated force matching accuracy for both tasks to quantify neuromuscular control. We observed significant interactions between group and coordinate plane for functional organization of corticomotor projections to knee extensors (p < 0.001) and ankle dorsiflexors (p = 0.016). Compared to controls, PT group peak corticomotor activation during the knee extension task was 9.6 mm medial (p < 0.001) and 5.2 mm posterior (p = 0.036), and during the ankle dorsiflexion task 8.2 mm inferior (p = 0.024). In the PT group, more posterior Y coordinate peak activation location during the knee extension task was associated with greater task accuracy (r = 0.749, p = 0.034). Functional organization of corticomotor neurons differed in jumping athletes with PT compared to controls. Links between functional organization and neuromuscular control in the PT group suggest organizational differences may be relevant to knee extension neuromuscular control preservation.


Assuntos
Basquetebol , Imageamento por Ressonância Magnética , Córtex Motor , Tendinopatia , Voleibol , Humanos , Voleibol/fisiologia , Basquetebol/fisiologia , Córtex Motor/fisiologia , Córtex Motor/fisiopatologia , Estudos Transversais , Tendinopatia/fisiopatologia , Masculino , Adulto Jovem , Feminino , Adulto , Neurônios Motores/fisiologia , Ligamento Patelar/fisiopatologia , Ligamento Patelar/fisiologia , Atletas , Estudos de Casos e Controles
4.
Eur J Appl Physiol ; 124(11): 3201-3214, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38842575

RESUMO

PURPOSE: Imbalances of muscle strength and tendon stiffness can increase the operating strain of tendons and risk of injury. Here, we used a new approach to identify muscle-tendon imbalances and personalize exercise prescription based on tendon strain during maximum voluntary contractions (εmax) to mitigate musculotendinous imbalances in male adult volleyball athletes. METHODS: Four times over a season, we measured knee extensor strength and patellar tendon mechanical properties using dynamometry and ultrasonography. Tendon micromorphology was evaluated through an ultrasound peak spatial frequency (PSF) analysis. While a control group (n = 12) continued their regular training, an intervention group (n = 10) performed exercises (3 × /week) with personalized loads to elicit tendon strains that promote tendon adaptation (i.e., 4.5-6.5%). RESULTS: Based on a linear mixed model, εmax increased significantly in the control group over the 9 months of observation (pCon = 0.010), while there was no systematic change in the intervention group (pInt = 0.575). The model residuals of εmax, as a measure of imbalances in muscle-tendon adaptation, demonstrated a significant reduction over time exclusively in the intervention group (pInt = 0.007). While knee extensor muscle strength increased in both groups by ~ 8% (pCon < 0.001, pInt = 0.064), only the intervention group showed a trend toward increased normalized tendon stiffness (pCon = 0.824, pInt = 0.051). PSF values did not change significantly in either group (p > 0.05). CONCLUSION: These results suggest that personalized exercise prescription can reduce muscle-tendon imbalances in athletes and could provide new opportunities for tendon injury prevention.


Assuntos
Força Muscular , Músculo Esquelético , Humanos , Masculino , Músculo Esquelético/fisiologia , Força Muscular/fisiologia , Adulto , Tendões/fisiologia , Ligamento Patelar/fisiologia , Atletas , Terapia por Exercício/métodos , Adulto Jovem , Voleibol/fisiologia , Exercício Físico/fisiologia
5.
Eur J Appl Physiol ; 124(9): 2707-2723, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38649478

RESUMO

The aim of this study was to investigate the effect of aging and resistance training with a moderate load on the size and mechanical properties of the patellar (PT) and Achilles tendon (AT) and their associated aponeuroses; medial gastrocnemius (MG) and vastus lateralis (VL). Young (Y55; 24.8 ± 3.8 yrs, n = 11) and old men (O55; 70.0 ± 4.6 yrs, n = 13) were assigned to undergo a training program (12 weeks; 3 times/week) of moderate slow resistance training [55% of one repetition maximum (RM)] of the triceps surae and quadriceps muscles. Tendon dimensions were assessed using 1.5 T magnetic resonance imaging before and after 12 weeks. AT and PT cross sectional area (CSA) were determined every 10% of tendon length. Mechanical properties of the free AT, MG aponeurosis, PT, and VL aponeurosis were assessed using ultrasonography (deformation) and tendon force measurements. CSA of the AT but not PT was greater in O55 compared with Y55. At baseline, mechanical properties were generally lower in O55 than Y55 for AT, MG aponeurosis and VL aponeurosis (Young's modulus) but not for PT. CSA of the AT and PT increased equally in both groups following training. Further, for a given force, stiffness and Young's modulus also increased equally for VL aponeurosis and AT, for boths groups. The present study highlights that except for the PT, older men have lower tendon (AT, MG aponeurosis, and VL aponeurosis) mechanical properties than young men and 12-weeks of moderate slow resistance training appears sufficient to improve tendon size and mechanical adaptations in both young and older men. New and Noteworthy: These novel findings suggest that short-term moderate slow resistance training induces equal improvements in tendon size and mechanics regardless of age.


Assuntos
Tendão do Calcâneo , Envelhecimento , Ligamento Patelar , Treinamento Resistido , Humanos , Masculino , Treinamento Resistido/métodos , Ligamento Patelar/fisiologia , Ligamento Patelar/diagnóstico por imagem , Tendão do Calcâneo/fisiologia , Tendão do Calcâneo/diagnóstico por imagem , Idoso , Adulto , Envelhecimento/fisiologia , Músculo Esquelético/fisiologia , Músculo Esquelético/diagnóstico por imagem , Adulto Jovem
6.
J Strength Cond Res ; 38(1): 21-29, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38085619

RESUMO

ABSTRACT: Bontemps, B, Gruet, M, Louis, J, Owens, DJ, Miríc, S, Vercruyssen, F, and Erskine, RM. Patellar tendon adaptations to downhill running training and their relationships with changes in mechanical stress and loading history. J Strength Cond Res 38(1): 21-29, 2024-It is unclear whether human tendon adapts to moderate-intensity, high-volume long-term eccentric exercise, e.g., downhill running (DR) training. This study aimed to investigate the time course of patellar tendon (PT) adaptation to short-term DR training and to determine whether changes in PT properties were related to changes in mechanical stress or loading history. Twelve untrained, young, healthy adults (5 women and 7 men) took part in 4 weeks' DR training, comprising 10 sessions. Running speed was equivalent to 60-65% V̇O2max, and session duration increased gradually (15-30 minutes) throughout training. Isometric knee extensor maximal voluntary torque (MVT), vastus lateralis (VL) muscle physiological cross-sectional area (PCSA) and volume, and PT CSA, stiffness, and Young's modulus were assessed at weeks 0, 2, and 4 using ultrasound and isokinetic dynamometry. Patellar tendon stiffness (+6.4 ± 7.4%), Young's modulus (+6.9 ± 8.8%), isometric MVT (+7.5 ± 12.3%), VL volume (+6.6 ± 3.2%), and PCSA (+3.8 ± 3.3%) increased after 4 weeks' DR (p < 0.05), with no change in PT CSA. Changes in VL PCSA correlated with changes in PT stiffness (r = 0.70; p = 0.02) and Young's modulus (r = 0.63; p = 0.04) from 0 to 4 weeks, whereas changes in MVT did not correlate with changes in PT stiffness and Young's modulus at any time point (p > 0.05). To conclude, 4 weeks' DR training promoted substantial changes in PT stiffness and Young's modulus that are typically observed after high-intensity, low-volume resistance training. These tendon adaptations seemed to be driven primarily by loading history (represented by VL muscle hypertrophy), whereas increased mechanical stress throughout the training period did not seem to contribute to changes in PT stiffness or Young's modulus.


Assuntos
Ligamento Patelar , Corrida , Masculino , Adulto , Humanos , Feminino , Ligamento Patelar/diagnóstico por imagem , Ligamento Patelar/fisiologia , Estresse Mecânico , Força Muscular/fisiologia , Fenômenos Biomecânicos , Módulo de Elasticidade/fisiologia , Músculo Esquelético/fisiologia
7.
Scand J Med Sci Sports ; 32(8): 1182-1191, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35485297

RESUMO

Acute increases in tendon blood flow and oxygenation after stress (i.e., hyperemic response) can enhance tendon recovery. While loading intensity is a fundamental part of resistance training programs, its effects on tendon's hyperemic response are unknown. This study aimed to compare acute changes in total (total hemoglobin [THb]) and oxygenated hemoglobin (HbO2 ) concentrations in the patellar tendon after isometric exercise at different intensities. Thirteen participants performed 8 (5 s) isometric knee extensions at 25%, 50%, and 75% maximal load (maximal voluntarily isometric contraction [MVIC]), separated by 20 min recovery, prescribed in randomized and counterbalanced order. Changes in patellar tendon THb, HbO2 and deoxygenated hemoglobin (HHb) in response to exercise at each intensity were measured using near-infrared spectroscopy. Post-exercise, HbO2 increased with 50% ( η p 2  = 0.305, f = 5.26, p < 0.01) and 75% ( η p 2  = 0.245, f = 4.56, p < 0.01) but not 25% ( η p 2  = 0.088, f = 1.16, p = 0.339) MVIC, while THb increased in 50% ( η p 2  = 0.305, f = 5.26, p = 0.01) but not 25% ( η p 2  = 0.067, f = 0.865, p = 0.51) or 75% ( η p 2  = 0.126, f = 1.729, p = 0.14) MVIC. Additionally, increasing load from 25% to 50% MVIC resulted in greater THb (f = 2.459, p = 0.43), HbO2 (f = 3.389, p = 0.13) and HHb (f = 0.320, p = 0.01) post-exercise responses, but no differences were observed between 50% and 75% MVIC (THb: f = 0.748, p = 0.59; HbO2 : f = 0.825, p = 0.54; HHb: f = 0.713, p = 0.62). Our results suggest there is a loading threshold at ~50% MVIC at which the tendon hyperemic response is fully achieved. Training above this intensity is not expected to provide any additional change to the tendon microvascular response. Therefore, moderate loading seems to be sufficient to fully elicit the patellar tendon hyperemic response that's believed to stimulate tendon healing.


Assuntos
Ligamento Patelar , Exercício Físico/fisiologia , Humanos , Contração Isométrica/fisiologia , Oxiemoglobinas , Ligamento Patelar/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho
8.
J Sport Rehabil ; 30(6): 935-941, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33662932

RESUMO

BACKGROUND: Imaging diagnosis plays a fundamental role in the evaluation and management of injuries suffered in sports activities. OBJECTIVE: To analyze the differences in the thickness of the Achilles tendon, patellar tendon, plantar fascia, and posterior tibial tendon in the following levels of physical activity: persons who run regularly, persons otherwise physically active, and persons with a sedentary lifestyle. DESIGN: Cross-sectional and observational. PARTICIPANTS: The 91 volunteers recruited from students at the university and the Triathlon Club from December 2016 to June 2019. The data were obtained (age, body mass index, and visual analog scale for quality of life together with the ultrasound measurements). RESULTS: Tendon and ligament thickness was greater in the runners group than in the sedentary and active groups with the exception of the posterior tibial tendon. The thickness of the Achilles tendon was greater in the runners than in the other groups for both limbs (P = .007 and P = .005). This was also the case for the cross-sectional area (P < .01) and the plantar fascia at the heel insertion in both limbs (P = .034 and P = .026) and for patellar tendon thickness for the longitudinal measurement (P < .01). At the transversal level, however, the differences were only significant in the right limb (P = .040). CONCLUSION: The thickness of the Achilles tendon, plantar fascia, and patellar tendon is greater in runners than in persons who are otherwise active or who are sedentary.


Assuntos
Tendão do Calcâneo/fisiologia , Exercício Físico/fisiologia , Pé/fisiologia , Músculo Esquelético/fisiologia , Ligamento Patelar/fisiologia , Corrida/fisiologia , Tendão do Calcâneo/diagnóstico por imagem , Adulto , Feminino , Pé/diagnóstico por imagem , Humanos , Masculino , Músculo Esquelético/diagnóstico por imagem , Ligamento Patelar/diagnóstico por imagem , Ultrassonografia , Adulto Jovem
9.
Eur J Appl Physiol ; 120(11): 2371-2382, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32772246

RESUMO

PURPOSE: This study examined whether additional external load during the eccentric phase of lower limb strength training exercises led to greater adaptations in knee extensor strength, muscle architecture, and patellar tendon properties than traditional concentric-eccentric training in already-trained men. METHODS: Twenty-eight men accustomed to strength training were randomized to undertake 10 weeks of supervised traditional (TRAD) or accentuated eccentric loading (AEL) or continue their habitual unsupervised (CON) strength training. TRAD and AEL trained 2∙week-1 with a six-repetition maximum (RM) session and a ten-RM session. TRAD used the same external load in both concentric and eccentric phases, while AEL used 40% greater load during the eccentric than concentric phase. Tests were performed at pre- and post-training, including: maximum unilateral isokinetic (30°·s-1) concentric, eccentric and isometric torques by isokinetic dynamometry, unilateral isometric ramp contractions with muscle-tendon ultrasound imaging to measure tendon stiffness and hysteresis, and resting vastus lateralis and medialis fascicle angle and length measured by extended-field-of-view ultrasound. RESULTS: After training, both TRAD and AEL significantly increased maximum concentric and isometric torque (p < 0.05), but only AEL increased eccentric torque (AEL: + 10 ± 9%, TRAD: + 4 ± 9%) and vastus lateralis (AEL: + 14 ± 14%, TRAD: + 1 ± 10%) and medialis (AEL: + 19 ± 8%, TRAD: + 5 ± 11%) fascicle length. CONCLUSION: Both TRAD and AEL increased maximum knee extensor strength but only AEL increased VL and VM fascicle length. Neither training program promoted changes in fascicle angle or changes in patellar tendon properties in our already-trained men.


Assuntos
Fáscia/fisiologia , Ligamento Patelar/fisiologia , Treinamento Resistido/métodos , Humanos , Contração Isométrica , Masculino , Músculo Esquelético/fisiologia , Aptidão Física , Treinamento Resistido/efeitos adversos , Torque , Adulto Jovem
10.
J Sports Sci ; 38(5): 486-493, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31865835

RESUMO

Biomechanical analysis has typically been confined to a laboratory setting. While attempts have been made to take laboratory testing into the field, this study was designed to assess whether augmented reality (AR) could be used to bring the field into the laboratory. This study aimed to measure knee load in volleyball players through a jump task incorporating AR while maintaining the perception-action couplings by replicating the visual features of a volleyball court. Twelve male volleyball athletes completed four tasks: drop landing, hop jump, spike jump, and spike jump while wearing AR smart glasses. Biomechanical variables included patellar tendon force, knee moment and kinematics of the ankle, knee, hip, pelvis and thorax. The drop landing showed differences in patellar tendon force and knee moment when compared to the other conditions. The hop jump did not present differences in kinetics when compared to the spike conditions, instead of displaying the greatest kinematic differences. As a measure of patellar tendon loading the AR condition showed a close approximation to the spike jump, with no differences present when comparing landing forces and mechanics. Thus, AR may be used in a clinical assessment to better replicate information from the competitive environment.


Assuntos
Desempenho Atlético/fisiologia , Realidade Aumentada , Voleibol/fisiologia , Adolescente , Articulação do Tornozelo/fisiologia , Fenômenos Biomecânicos/fisiologia , Articulação do Quadril/fisiologia , Humanos , Articulação do Joelho/fisiologia , Masculino , Ligamento Patelar/fisiologia , Reprodutibilidade dos Testes , Adulto Jovem
11.
BMC Geriatr ; 19(1): 30, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30704412

RESUMO

BACKGROUND: Regular loading of tendons may counteract the negative effects of aging. However, the influence of strength training loading magnitude on tendon mechanical properties and its relation to matrix collagen content and collagen cross-linking is sparsely described in older adults. The purpose of the present study was to compare the effects of moderate or high load resistance training on tendon matrix and its mechanical properties. METHODS: Seventeen women and 19 men, age 62-70 years, were recruited and randomly allocated to 12 months of heavy load resistance training (HRT), moderate load resistance training (MRT) or control (CON). Pre- and post-intervention testing comprised isometric quadriceps strength test (IsoMVC), ultrasound based testing of in vivo patellar tendon (PT) mechanical properties, MRI-based measurement of PT cross-sectional area (CSA), PT biopsies for assessment of fibril morphology, collagen content, enzymatic cross-links, and tendon fluorescence as a measure of advanced glycation end-products (AGEs). RESULTS: Thirty three participants completed the intervention and were included in the data analysis. IsoMVC increased more after HRT (+ 21%) than MRT (+ 8%) and CON (+ 7%) (p < 0.05). Tendon stiffness (p < 0.05) and Young's modulus (p = 0.05) were also differently affected by training load with a reduction in CON and MRT but not in HRT. PT-CSA increased equally after both MRT and HRT. Collagen content, fibril morphology, enzymatic cross-links, and tendon fluorescence were unaffected by training. CONCLUSION: Despite equal improvements in tendon size after moderate and heavy load resistance training, only heavy. load training seemed to maintain tendon mechanical properties in old age. The effect of load magnitude on tendon biomechanics was unrelated to changes of major load bearing matrix components in the tendon core. The study is a sub-study of the LISA study, which was registered at http://clinicaltrials.gov (NCT02123641) April 25th 2014.


Assuntos
Colágeno/fisiologia , Força Muscular/fisiologia , Ligamento Patelar/fisiologia , Treinamento Resistido/métodos , Suporte de Carga/fisiologia , Idoso , Fenômenos Biomecânicos/fisiologia , Estudos Transversais , Módulo de Elasticidade/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ligamento Patelar/diagnóstico por imagem , Fatores de Tempo
12.
Eur J Appl Physiol ; 119(6): 1387-1394, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30923873

RESUMO

PURPOSE: The discovery of musculoskeletal tissues, including muscle, tendons, and cartilage, as peripheral circadian clocks strongly implicates their role in tissue-specific homeostasis. Age-related dampening and misalignment of the tendon circadian rhythm and its outputs may be responsible for the decline in tendon homeostasis. It is unknown which entrainment signals are responsible for the synchronization of the tendon clock to the light-dark cycle. METHODS: We sought to examine any changes in the expression levels of core clock genes (BMAL1, CLOCK, PER2, CRY1, and NR1D1) in healthy human patellar tendon biopsies obtained from three different intervention studies: increased physical activity (leg kicks for 1 h) in young, reduced activity (2 weeks immobilization of one leg) in young, and in old tendons. RESULTS: The expression level of clock genes in human tendon in vivo was very low and a high variation between individuals was found. We were thus unable to detect any differences in core clock gene expression neither after acute exercise nor immobilization. CONCLUSIONS: We are unable to find evidence for an effect of exercise or immobilization on circadian clock gene expression in human tendon samples.


Assuntos
Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Exercício Físico , Imobilização/efeitos adversos , Ligamento Patelar/metabolismo , Adulto , Idoso , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Humanos , Masculino , Ligamento Patelar/crescimento & desenvolvimento , Ligamento Patelar/fisiologia
13.
J Theor Biol ; 446: 205-211, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29548734

RESUMO

The patella is traditionally understood to be a "joint spacer" that increases the moment arm of the patellar tendon. This characterisation is unsatisfactory as it fails to explain the more interesting characteristics of the patella: 1) that the changing pivot point of the patella causes the ratio of quadriceps to patellar tendon force to almost double as the knee flexes; 2) that the patellar tendon exerts an anteriorly directed force on the tibia when the knee is extended but this switches to a posterior draw as the knee flexes; and 3) that the presence of the patella allows the quadriceps to exert different moments on the femur and tibia. Here, I use a simple, model of the geometry of the knee to calculate the changes in the effective moment arms of the quadriceps on the femur and tibia as the knee extends during vertical jumping. These effective moment arms are then contrasted with the actual changes in moments seen during a vertical jump. This analysis demonstrates that the changing geometry of the knee alone can explain 93% (p < 0.05) of the variance in the characteristic femoral to tibial pattern of moment production during jumping - suggesting that the mechanics of the patella have a crucial influence on the coordination of jumping. These results lend support to the contention that mechanical considerations play a pivotal role in the control of movement by creating a stronger imperative towards a particular movement solution than might be suggested by the large degree of redundancy in the neuromuscular system. This idea is consistent with dynamic systems theories of motor control, i.e. the mechanical structure of the musculoskeletal system itself is important in the organisation of movement (so called mechanical intelligence).


Assuntos
Articulação do Joelho/fisiologia , Locomoção/fisiologia , Modelos Biológicos , Patela/fisiologia , Ligamento Patelar/fisiologia , Fenômenos Biomecânicos , Fêmur/fisiologia , Humanos , Tíbia/fisiologia
14.
BMC Neurol ; 18(1): 17, 2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29433467

RESUMO

BACKGROUND: Neuromuscular electrical stimulation (NMES) is commonly used in skeletal muscles in people with spinal cord injury (SCI) with the aim of increasing muscle recruitment and thus muscle force production. NMES has been conventionally used in clinical practice as functional electrical stimulation (FES), using low levels of evoked force that cannot optimally stimulate muscular strength and mass improvements, and thus trigger musculoskeletal changes in paralysed muscles. The use of high intensity intermittent NMES training using wide-pulse width and moderate-intensity as a strength training tool could be a promising method to increase muscle force production in people with SCI. However, this type of protocol has not been clinically adopted because it may generate rapid muscle fatigue and thus prevent the performance of repeated high-intensity muscular contractions in paralysed muscles. Moreover, superimposing patellar tendon vibration onto the wide-pulse width NMES has been shown to elicit further increases in impulse or, at least, reduce the rate of fatigue in repeated contractions in able-bodied populations, but there is a lack of evidence to support this argument in people with SCI. METHODS: Nine people with SCI received two NMES protocols with and without superimposing patellar tendon vibration on different days (i.e. STIM and STIM+vib), which consisted of repeated 30 Hz trains of 58 wide-pulse width (1000 µs) symmetric biphasic pulses (0.033-s inter-pulse interval; 2 s stimulation train; 2-s inter-train interval) being delivered to the dominant quadriceps femoris. Starting torque was 20% of maximal doublet-twitch torque and stimulations continued until torque declined to 50% of the starting torque. Total knee extensor impulse was calculated as the primary outcome variable. RESULTS: Total knee extensor impulse increased in four subjects when patellar tendon vibration was imposed (59.2 ± 15.8%) but decreased in five subjects (- 31.3 ± 25.7%). However, there were no statistically significant differences between these sub-groups or between conditions when the data were pooled. CONCLUSIONS: Based on the present results there is insufficient evidence to conclude that patellar tendon vibration provides a clear benefit to muscle force production or delays muscle fatigue during wide-pulse width, moderate-intensity NMES in people with SCI. TRIAL REGISTRATION: ACTRN12618000022268 . Date: 11/01/2018. Retrospectively registered.


Assuntos
Terapia por Estimulação Elétrica/métodos , Ligamento Patelar/fisiologia , Músculo Quadríceps/fisiopatologia , Treinamento Resistido/métodos , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/reabilitação , Vibração , Adulto , Feminino , Humanos , Masculino , Contração Muscular , Fadiga Muscular/fisiologia , Força Muscular/fisiologia , Torque
15.
Eur J Appl Physiol ; 118(1): 213-221, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29147849

RESUMO

PURPOSE: The purpose of this study was to compare regional elastic properties between anterior and posterior regions of the patellar tendon, and individual quadriceps muscles, over a range of knee flexion angles. METHODS: An isokinetic dynamometer passively positioned the non-dominant knee of 19 young, healthy participants, at 25°, 40°, 55°, 70° and 85° flexion. Shear wave velocity (SWV, an index of tissue elasticity) was measured using ultrasound shear wave elastography in a relaxed (passive) state, confirmed by electromyography. RESULTS: SWV of the patellar tendon and quadriceps muscles increased with knee flexion (longer muscle-tendon unit; P < 0.001). Within the proximal third of the patellar tendon, SWV was lower in the posterior than anterior region at 70° (P = 0.002) and 85° (P < 0.001), but not at 25°, 40° or 55° (region-by-angle interaction, P = 0.007). No differences were found between anterior and posterior regions within the middle third of the patellar tendon (P = 0.332). For the quadriceps muscles, a significant muscle-by-angle (P < 0.001) interaction was also observed. SWV of VL was greater than VM at 55° (P = 0.005), 70° (P = 0.001) and 85° (P < 0.001), but not at 25° or 40°. SWV of RF was lower than VL at all angles (all P < 0.002) and lower than VM at 55°, 70° and 85° (all P < 0.002). CONCLUSIONS: Passive knee flexion at and beyond 70° was associated with non-uniform elastic properties within the proximal patellar tendon and between individual quadriceps muscles. To what extent this heterogeneity of passive elastic properties contributes to injury remains unknown.


Assuntos
Elasticidade , Ligamento Patelar/fisiologia , Músculo Quadríceps/fisiologia , Feminino , Humanos , Masculino , Contração Muscular , Adulto Jovem
16.
Eur J Appl Physiol ; 118(8): 1715-1724, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29855790

RESUMO

PURPOSE: To determine whether stiffness of the patellar tendon and quadriceps muscles is altered immediately after and 48 h after a single bout of maximal eccentric exercise of the knee extensor muscles. METHODS: Thirteen healthy individuals [group mean (SD) age 22.4 (3.5) years; 7 female] performed a single bout of maximal eccentric exercise of the non-dominant knee extensors, using an isokinetic dynamometer. Shear-wave velocity (an index of tissue stiffness) was recorded from the patellar tendon, vastus medialis (VM), rectus femoris (RF) and vastus lateralis (VL), before, following (post0), and 48 h after (post48) exercise. To investigate features of exercise induced muscle damage, maximal voluntary isometric contraction (MVIC) and self-reported pain and stiffness (numerical rating scales 0 = no pain/stiffness to 100 = worst imaginable pain/stiffness) were measured before, post0, and post48 exercise. Serum creatine kinase (CK) was measured before and post48 exercise. RESULTS: Compared to preexercise, MVIC decreased and self-reported pain and stiffness increased at post0 and post48 and CK levels increased at post48 (all p < 0.01). Compared to preexercise, shear-wave velocity was greater at post0 for the patellar tendon [15.9 (24.6)%, p = 0.01] and RF [23.6 (16.7)%, p < 0.001], each returning to baseline by post48. No significant differences were observed for VL or VM post0 or post48 exercise. CONCLUSION: Maximal eccentric exercise produced an immediate increase in the stiffness of the patellar tendon and RF, resolving by 48 h. As this change was not observed in VL and VM, future studies may explore heterogeneity within synergist muscles following eccentric exercise.


Assuntos
Exercício Físico/fisiologia , Contração Isométrica , Músculo Esquelético/fisiologia , Ligamento Patelar/fisiologia , Adulto , Feminino , Humanos , Masculino
17.
Eur J Appl Physiol ; 118(8): 1737-1749, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29860681

RESUMO

PURPOSE: To investigate potential differences in patellar tendon properties between elite and non-elite soccer players, and to establish whether tendon properties were related to power assessed during unilateral jumps performed in different directions. METHODS: Elite (n = 16; age 18.1 ± 1.0 years) and non-elite (n = 13; age 22.3 ± 2.7 years) soccer players performed vertical, horizontal-forward and medial unilateral countermovement jumps (CMJs) on a force plate. Patellar tendon (PT) cross-sectional area, elongation, strain, stiffness, and Young's modulus (measured at the highest common force interval) were assessed with ultrasonography and isokinetic dynamometry. RESULTS: Elite demonstrated greater PT elongation (6.83 ± 1.87 vs. 4.92 ± 1.88 mm, P = 0.011) and strain (11.73 ± 3.25 vs. 8.38 ± 3.06%, P = 0.009) than non-elite soccer players. Projectile range and peak horizontal power during horizontal-forward CMJ correlated positively with tendon elongation (r = 0.657 and 0.693, P < 0.001) but inversely with Young's modulus (r = - 0.376 and - 0.402; P = 0.044 and 0.031). Peak medial power during medial CMJ correlated positively with tendon elongation (r = 0.658, P < 0.001) but inversely with tendon stiffness (r = - 0.368, P = 0.050). CONCLUSIONS: Not only does a more compliant patellar tendon appear to be an indicator of elite soccer playing status but it may also facilitate unilateral horizontal-forward and medial, but not vertical CMJ performance. These findings should be considered when prescribing talent selection and development protocols related to direction-specific power in elite soccer players.


Assuntos
Desempenho Atlético/fisiologia , Ligamento Patelar/fisiologia , Futebol/fisiologia , Adolescente , Atletas/classificação , Desempenho Atlético/classificação , Fenômenos Biomecânicos , Módulo de Elasticidade , Humanos , Masculino , Músculo Esquelético/fisiologia , Adulto Jovem
18.
Eur J Appl Physiol ; 118(8): 1635-1640, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29804139

RESUMO

PURPOSE: This study aims to compare the isometric strength of hip abductors and external rotators in male athletes with and without patellar tendinopathy (PT), and to examine the correlation between hip strength, pain, and functional scores. METHODS: Sixty male athletes (30 with PT and 30 controls) were recruited from local volleyball and basketball teams. The isometric strength of the hip abductors and external rotators was quantified using a belt-stabilized handheld dynamometer. This study used the visual analog scale (VAS) and the Victorian Institute of Sport Assessment-Patella (VISA-p) questionnaire to measure the intensity of pain and functional scores in athletes with PT, respectively. RESULTS: The normalized isometric strength of the hip abductors and external rotators was significantly less in the PT group compared with controls. In subjects with PT, the normalized isometric strength was decreased by 22.0% (p = 0.000) in the hip abductors and by 20.0% in the hip external rotators (p = 0.004), compared with controls. Significant correlations were found between the normalized isometric strength of the hip abductors and intensity of pain (r = - 0.70; p < 0.05) and VISA-p score (r = 0.63; p < 0.05) in the affected leg in athletes with unilateral PT. CONCLUSIONS: Athletes with PT have decreased isometric strength in their hip abductors and external rotators when compared with controls. In subjects with unilateral PT, decreased isometric strength in the hip abductors is associated with greater intensity of pain and lower functional scores. Results of this study implied that hip muscle assessment and strengthening should be included for reconditioning and rehabilitation in athletes with PT.


Assuntos
Contração Isométrica , Força Muscular , Músculo Esquelético/fisiologia , Ligamento Patelar/fisiologia , Tendinopatia/fisiopatologia , Adolescente , Adulto , Estudos de Casos e Controles , Quadril/fisiologia , Humanos , Masculino , Ligamento Patelar/lesões
19.
Knee Surg Sports Traumatol Arthrosc ; 26(11): 3377-3385, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29560510

RESUMO

PURPOSE: When downsizing the femoral component to prevent mediolateral overhang, notching of the anterior femoral cortex may occur, which could be solved by flexing the femoral component. In this study, we investigated the effect of flexion of the femoral component on patellar tendon moment arm, patellofemoral forces and kinematics in posterior-referencing CR-TKA. Our hypothesis was that flexion of the femoral component increases the patellar tendon moment arm, reduces the patellofemoral forces and provides stable kinematics. METHODS: A validated musculoskeletal model of CR-TKA was used. The flexion of the femoral component was increased in four steps (0°, 3°, 6°, 9°) using posterior referencing, and different alignments were analysed in combination with three implant sizes (3, 4, 5). A chair-rising trial was analysed using the model, while simultaneously estimating quadriceps muscle force, patellofemoral contact force, tibiofemoral and patellofemoral kinematics. RESULTS: Compared to the reference case (size 4 and 0° flexion), for every 3° of increase in flexion of the femoral component the patellar tendon moment arm increased by 1% at knee extension. The peak quadriceps muscle force and patellofemoral contact force decreased by 2%, the patella shifted 0.8 mm more anteriorly and the remaining kinematics remained stable, with knee flexion. With the smaller size, the patellar tendon moment arm decreased by 6%, the quadriceps muscle force and patellofemoral contact force increased by 8 and 12%, and the patellar shifted 5 mm more posteriorly. Opposite trends were found with the bigger size. CONCLUSION: Flexing the femoral component with posterior referencing reduced the patellofemoral contact forces during a simulated chair-rising trial with a patient-specific musculoskeletal model of CR-TKA. There seems to be little risk when flexing and downsizing the femoral component, compared to when using a bigger size and neutral alignment. These findings provide relevant information to surgeons who wish to prevent anterior notching when downsizing the femoral component.


Assuntos
Artroplastia do Joelho/métodos , Simulação por Computador , Prótese do Joelho , Articulação Patelofemoral/fisiologia , Desenho de Prótese , Fenômenos Biomecânicos , Humanos , Ligamentos Articulares/fisiologia , Ligamento Patelar/fisiologia , Músculo Quadríceps/fisiologia , Amplitude de Movimento Articular/fisiologia
20.
Exp Physiol ; 102(4): 448-461, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28205264

RESUMO

NEW FINDINGS: What is the central question of this study? Do tendon and/or muscle-tendon unit stiffness influence rate of torque development? What is the main finding and its importance? In our experimental conditions, some measures of relative (to maximal voluntary torque and tissue length) muscle-tendon unit stiffness had small correlations with voluntary/evoked rate of torque development over matching torque increments. However, absolute and relative tendon stiffness were unrelated to voluntary and evoked rate of torque development. Therefore, the muscle aponeurosis but not free tendon influences the relative rate of torque development. Factors other than tissue stiffness more strongly determine the absolute rate of torque development. The influence of musculotendinous tissue stiffness on contractile rate of torque development (RTD) remains opaque. In this study, we examined the relationships between both patellar tendon (PT) and vastus lateralis muscle-tendon unit (MTU) stiffness and the voluntary and evoked knee-extension RTD. Fifty-two healthy untrained men completed duplicate laboratory sessions. Absolute and relative RTD were measured at 50 N m or 25% maximal voluntary torque (MVT) increments from onset and sequentially during explosive voluntary and evoked octet isometric contractions (supramaximal stimulation; eight pulses at 300 Hz). Isometric MVT was also assessed. Patellar tendon and MTU stiffness were derived from simultaneous force and ultrasound recordings of the PT and vastus lateralis aponeurosis during constant RTD ramp contractions. Absolute and relative (to MVT and resting tissue length) stiffness (k) was measured over identical torque increments as RTD. Pearson's correlations tested relationships between stiffness and RTD measurements over matching absolute/relative torque increments. Absolute and relative PT k were unrelated to equivalent voluntary/evoked (r = 0.020-0.255, P = 0.069-0.891). Absolute MTU k was unrelated to voluntary or evoked RTD (r ≤ 0.191, P ≥ 0.184), but some measures of relative MTU k were related to relative voluntary/evoked RTD (e.g. RTD for 25-50% MVT, r = 0.374/0.353, P = 0.007/0.014). In conclusion, relative MTU k explained a small proportion of the variance in relative voluntary and evoked RTD (both ≤19%), despite no association of absolute MTU k or absolute/relative PT k with equivalent RTD measures. Therefore, the muscle-aponeurosis component but not free tendon was associated with relative RTD, although it seems that an overriding influence of MVT negated any relationship of absolute MTU k and absolute RTD.


Assuntos
Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Ligamento Patelar/fisiologia , Tendões/fisiologia , Adulto , Eletromiografia/métodos , Humanos , Contração Isométrica/fisiologia , Joelho/fisiologia , Articulação do Joelho/fisiologia , Masculino , Contração Muscular/fisiologia , Músculo Quadríceps/fisiologia , Torque
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa