Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38.340
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 41: 181-205, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37126417

RESUMO

There is a dramatic remodeling of the T cell compartment during aging. The most notorious changes are the reduction of the naive T cell pool and the accumulation of memory-like T cells. Memory-like T cells in older people acquire a phenotype of terminally differentiated cells, lose the expression of costimulatory molecules, and acquire properties of senescent cells. In this review, we focus on the different subsets of age-associated T cells that accumulate during aging. These subsets include extremely cytotoxic T cells with natural killer properties, exhausted T cells with altered cytokine production, and regulatory T cells that gain proinflammatory features. Importantly, all of these subsets lose their lymph node homing capacity and migrate preferentially to nonlymphoid tissues, where they contribute to tissue deterioration and inflammaging.


Assuntos
Envelhecimento , Subpopulações de Linfócitos T , Humanos , Animais , Linfócitos T Reguladores , Diferenciação Celular
2.
Annu Rev Immunol ; 41: 483-512, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36750317

RESUMO

Transforming growth factor ß (TGF-ß) is a key cytokine regulating the development, activation, proliferation, differentiation, and death of T cells. In CD4+ T cells, TGF-ß maintains the quiescence and controls the activation of naive T cells. While inhibiting the differentiation and function of Th1 and Th2 cells, TGF-ß promotes the differentiation of Th17 and Th9 cells. TGF-ß is required for the induction of Foxp3 in naive T cells and the development of regulatory T cells. TGF-ß is crucial in the differentiation of tissue-resident memory CD8+ T cells and their retention in the tissue, whereas it suppresses effector T cell function. In addition, TGF-ß also regulates the generation or function of natural killer T cells, γδ T cells, innate lymphoid cells, and gut intraepithelial lymphocytes. Here I highlight the major findings and recent advances in our understanding of TGF-ß regulation of T cells and provide a personal perspective of the field.


Assuntos
Linfócitos T CD8-Positivos , Fator de Crescimento Transformador beta1 , Animais , Humanos , Diferenciação Celular , Imunidade Inata , Linfócitos/metabolismo , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
3.
Annu Rev Immunol ; 40: 95-119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35471838

RESUMO

A high diversity of αß T cell receptors (TCRs), capable of recognizing virtually any pathogen but also self-antigens, is generated during T cell development in the thymus. Nevertheless, a strict developmental program supports the selection of a self-tolerant T cell repertoire capable of responding to foreign antigens. The steps of T cell selection are controlled by cortical and medullary stromal niches, mainly composed of thymic epithelial cells and dendritic cells. The integration of important cues provided by these specialized niches, including (a) the TCR signal strength induced by the recognition of self-peptide-MHC complexes, (b) costimulatory signals, and (c) cytokine signals, critically controls T cell repertoire selection. This review discusses our current understanding of the signals that coordinate positive selection, negative selection, and agonist selection of Foxp3+ regulatory T cells. It also highlights recent advances that have unraveled the functional diversity of thymic antigen-presenting cell subsets implicated in T cell selection.


Assuntos
Sinais (Psicologia) , Receptores de Antígenos de Linfócitos T , Animais , Humanos , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais , Linfócitos T Reguladores
4.
Annu Rev Immunol ; 39: 51-76, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33428453

RESUMO

T lymphocytes, the major effector cells in cellular immunity, produce cytokines in immune responses to mediate inflammation and regulate other types of immune cells. Work in the last three decades has revealed significant heterogeneity in CD4+ T cells, in terms of their cytokine expression, leading to the discoveries of T helper 1 (Th1), Th2, Th17, and T follicular helper (Tfh) cell subsets. These cells possess unique developmental and regulatory pathways and play distinct roles in immunity and immune-mediated pathologies. Other types of T cells, including regulatory T cells and γδ T cells, as well as innate lymphocytes, display similar features of subpopulations, which may play differential roles in immunity. Mechanisms exist to prevent cytokine production by T cells to maintain immune tolerance to self-antigens, some of which may also underscore immune exhaustion in the context of tumors. Understanding cytokine regulation and function has offered innovative treatment of many human diseases.


Assuntos
Citocinas , Linfócitos T Reguladores , Animais , Humanos , Tolerância Imunológica , Imunidade Celular , Linfócitos T Auxiliares-Indutores , Células Th17
5.
Annu Rev Immunol ; 39: 759-790, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33710920

RESUMO

As the professional antigen-presenting cells of the immune system, dendritic cells (DCs) sense the microenvironment and shape the ensuing adaptive immune response. DCs can induce both immune activation and immune tolerance according to the peripheral cues. Recent work has established that DCs comprise several phenotypically and functionally heterogeneous subsets that differentially regulate T lymphocyte differentiation. This review summarizes both mouse and human DC subset phenotypes, development, diversification, and function. We focus on advances in our understanding of how different DC subsets regulate distinct CD4+ T helper (Th) cell differentiation outcomes, including Th1, Th2, Th17, T follicular helper, and T regulatory cells. We review DC subset intrinsic properties, local tissue microenvironments, and other immune cells that together determine Th cell differentiation during homeostasis and inflammation.


Assuntos
Tolerância Imunológica , Ativação Linfocitária , Animais , Células Dendríticas , Humanos , Camundongos , Linfócitos T Reguladores , Células Th17
6.
Annu Rev Immunol ; 38: 421-453, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31990619

RESUMO

Foxp3-expressing CD4+ regulatory T (Treg) cells play key roles in the prevention of autoimmunity and the maintenance of immune homeostasis and represent a major barrier to the induction of robust antitumor immune responses. Thus, a clear understanding of the mechanisms coordinating Treg cell differentiation is crucial for understanding numerous facets of health and disease and for developing approaches to modulate Treg cells for clinical benefit. Here, we discuss current knowledge of the signals that coordinate Treg cell development, the antigen-presenting cell types that direct Treg cell selection, and the nature of endogenous Treg cell ligands, focusing on evidence from studies in mice. We also highlight recent advances in this area and identify key unanswered questions.


Assuntos
Diferenciação Celular/imunologia , Linfopoese/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Biomarcadores , Diferenciação Celular/genética , Deleção Clonal , Seleção Clonal Mediada por Antígeno , Humanos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Linfopoese/genética , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/citologia , Timo/citologia , Timo/imunologia , Timo/metabolismo
7.
Annu Rev Immunol ; 38: 541-566, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-32017635

RESUMO

Naturally occurring CD4+ regulatory T cells (Tregs), which specifically express the transcription factor FoxP3 in the nucleus and CD25 and CTLA-4 on the cell surface, are a functionally distinct T cell subpopulation actively engaged in the maintenance of immunological self-tolerance and homeostasis. Recent studies have facilitated our understanding of the cellular and molecular basis of their generation, function, phenotypic and functional stability, and adaptability. It is under investigation in humans how functional or numerical Treg anomalies, whether genetically determined or environmentally induced, contribute to immunological diseases such as autoimmune diseases. Also being addressed is how Tregs can be targeted to control physiological and pathological immune responses, for example, by depleting them to enhance tumor immunity or by expanding them to treat immunological diseases. This review discusses our current understanding of Treg immunobiology in normal and disease states, with a perspective on the realization of Treg-targeting therapies in the clinic.


Assuntos
Suscetibilidade a Doenças , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Doenças Autoimunes/etiologia , Doenças Autoimunes/metabolismo , Doenças Autoimunes/patologia , Doenças Autoimunes/terapia , Autoimunidade , Biomarcadores , Gerenciamento Clínico , Humanos , Ativação Linfocitária/imunologia , Terapia de Alvo Molecular , Tolerância a Antígenos Próprios/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
8.
Annu Rev Immunol ; 34: 609-33, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27168246

RESUMO

The immune system is responsible for defending an organism against the myriad of microbial invaders it constantly confronts. It has become increasingly clear that the immune system has a second major function: the maintenance of organismal homeostasis. Foxp3(+)CD4(+) regulatory T cells (Tregs) are important contributors to both of these critical activities, defense being the primary purview of Tregs circulating through lymphoid organs, and homeostasis ensured mainly by their counterparts residing in parenchymal tissues. This review focuses on so-called tissue Tregs. We first survey existing information on the phenotype, function, sustaining factors, and human equivalents of the three best-characterized tissue-Treg populations-those operating in visceral adipose tissue, skeletal muscle, and the colonic lamina propria. We then attempt to distill general principles from this body of work-as concerns the provenance, local adaptation, molecular sustenance, and targets of action of tissue Tregs, in particular.


Assuntos
Tecido Adiposo/imunologia , Colo/imunologia , Mucosa/imunologia , Músculo Esquelético/imunologia , Linfócitos T Reguladores/imunologia , Animais , Fatores de Transcrição Forkhead/metabolismo , Homeostase , Humanos , Especificidade de Órgãos
9.
Cell ; 186(3): 591-606.e23, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36669483

RESUMO

Dysregulation of the immune system is a cardinal feature of opioid addiction. Here, we characterize the landscape of peripheral immune cells from patients with opioid use disorder and from healthy controls. Opioid-associated blood exhibited an abnormal distribution of immune cells characterized by a significant expansion of fragile-like regulatory T cells (Tregs), which was positively correlated with the withdrawal score. Analogously, opioid-treated mice also showed enhanced Treg-derived interferon-γ (IFN-γ) expression. IFN-γ signaling reshaped synaptic morphology in nucleus accumbens (NAc) neurons, modulating subsequent withdrawal symptoms. We demonstrate that opioids increase the expression of neuron-derived C-C motif chemokine ligand 2 (Ccl2) and disrupted blood-brain barrier (BBB) integrity through the downregulation of astrocyte-derived fatty-acid-binding protein 7 (Fabp7), which both triggered peripheral Treg infiltration into NAc. Our study demonstrates that opioids drive the expansion of fragile-like Tregs and favor peripheral Treg diapedesis across the BBB, which leads to IFN-γ-mediated synaptic instability and subsequent withdrawal symptoms.


Assuntos
Interferon gama , Transtornos Relacionados ao Uso de Opioides , Síndrome de Abstinência a Substâncias , Linfócitos T Reguladores , Animais , Camundongos , Analgésicos Opioides/administração & dosagem , Interferon gama/metabolismo , Transtornos Relacionados ao Uso de Opioides/metabolismo , Transtornos Relacionados ao Uso de Opioides/patologia
10.
Nat Immunol ; 25(1): 66-76, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38168955

RESUMO

CD4+ T cells are central to various immune responses, but the molecular programs that drive and maintain CD4+ T cell immunity are not entirely clear. Here we identify a stem-like program that governs the CD4+ T cell response in transplantation models. Single-cell-transcriptomic analysis revealed that naive alloantigen-specific CD4+ T cells develop into TCF1hi effector precursor (TEP) cells and TCF1-CXCR6+ effectors in transplant recipients. The TCF1-CXCR6+CD4+ effectors lose proliferation capacity and do not reject allografts upon adoptive transfer into secondary hosts. By contrast, the TCF1hiCD4+ TEP cells have dual features of self-renewal and effector differentiation potential, and allograft rejection depends on continuous replenishment of TCF1-CXCR6+ effectors from TCF1hiCD4+ TEP cells. Mechanistically, TCF1 sustains the CD4+ TEP cell population, whereas the transcription factor IRF4 and the glycolytic enzyme LDHA govern the effector differentiation potential of CD4+ TEP cells. Deletion of IRF4 or LDHA in T cells induces transplant acceptance. These findings unravel a stem-like program that controls the self-renewal capacity and effector differentiation potential of CD4+ TEP cells and have implications for T cell-related immunotherapies.


Assuntos
Regulação da Expressão Gênica , Linfócitos T Reguladores , Diferenciação Celular
11.
Nat Immunol ; 25(3): 496-511, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38356058

RESUMO

Visceral adipose tissue (VAT) is an energy store and endocrine organ critical for metabolic homeostasis. Regulatory T (Treg) cells restrain inflammation to preserve VAT homeostasis and glucose tolerance. Here, we show that the VAT harbors two distinct Treg cell populations: prototypical serum stimulation 2-positive (ST2+) Treg cells that are enriched in males and a previously uncharacterized population of C-X-C motif chemokine receptor 3-positive (CXCR3+) Treg cells that are enriched in females. We show that the transcription factors GATA-binding protein 3 and peroxisome proliferator-activated receptor-γ, together with the cytokine interleukin-33, promote the differentiation of ST2+ VAT Treg cells but repress CXCR3+ Treg cells. Conversely, the differentiation of CXCR3+ Treg cells is mediated by the cytokine interferon-γ and the transcription factor T-bet, which also antagonize ST2+ Treg cells. Finally, we demonstrate that ST2+ Treg cells preserve glucose homeostasis, whereas CXCR3+ Treg cells restrain inflammation in lean VAT and prevent glucose intolerance under high-fat diet conditions. Overall, this study defines two molecularly and developmentally distinct VAT Treg cell types with unique context- and sex-specific functions.


Assuntos
Proteína 1 Semelhante a Receptor de Interleucina-1 , Linfócitos T Reguladores , Feminino , Masculino , Humanos , Gordura Intra-Abdominal , Citocinas , Inflamação , Glucose
12.
Nat Immunol ; 25(1): 54-65, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38062135

RESUMO

The nature of activation signals is essential in determining T cell subset differentiation; however, the features that determine T cell subset preference acquired during intrathymic development remain elusive. Here we show that naive CD4+ T cells generated in the mouse thymic microenvironment lacking Scd1, encoding the enzyme catalyzing oleic acid (OA) production, exhibit enhanced regulatory T (Treg) cell differentiation and attenuated development of experimental autoimmune encephalomyelitis. Scd1 deletion in K14+ thymic epithelia recapitulated the enhanced Treg cell differentiation phenotype of Scd1-deficient mice. The dearth of OA permitted DOT1L to increase H3K79me2 levels at the Atp2a2 locus of thymocytes at the DN2-DN3 transition stage. Such epigenetic modification persisted in naive CD4+ T cells and facilitated Atp2a2 expression. Upon T cell receptor activation, ATP2A2 enhanced the activity of the calcium-NFAT1-Foxp3 axis to promote naive CD4+ T cells to differentiate into Treg cells. Therefore, OA availability is critical for preprogramming thymocytes with Treg cell differentiation propensities in the periphery.


Assuntos
Ácido Oleico , Timócitos , Animais , Camundongos , Ácido Oleico/metabolismo , Timo , Linfócitos T Reguladores , Diferenciação Celular , Fatores de Transcrição Forkhead/genética
13.
Nat Immunol ; 25(5): 902-915, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38589618

RESUMO

Repetitive exposure to antigen in chronic infection and cancer drives T cell exhaustion, limiting adaptive immunity. In contrast, aberrant, sustained T cell responses can persist over decades in human allergic disease. To understand these divergent outcomes, we employed bioinformatic, immunophenotyping and functional approaches with human diseased tissues, identifying an abundant population of type 2 helper T (TH2) cells with co-expression of TCF7 and LEF1, and features of chronic activation. These cells, which we termed TH2-multipotent progenitors (TH2-MPP) could self-renew and differentiate into cytokine-producing effector cells, regulatory T (Treg) cells and follicular helper T (TFH) cells. Single-cell T-cell-receptor lineage tracing confirmed lineage relationships between TH2-MPP, TH2 effectors, Treg cells and TFH cells. TH2-MPP persisted despite in vivo IL-4 receptor blockade, while thymic stromal lymphopoietin (TSLP) drove selective expansion of progenitor cells and rendered them insensitive to glucocorticoid-induced apoptosis in vitro. Together, our data identify TH2-MPP as an aberrant T cell population with the potential to sustain type 2 inflammation and support the paradigm that chronic T cell responses can be coordinated over time by progenitor cells.


Assuntos
Fator 1-alfa Nuclear de Hepatócito , Hipersensibilidade , Fator 1 de Ligação ao Facilitador Linfoide , Células-Tronco Multipotentes , Fator 1 de Transcrição de Linfócitos T , Células Th2 , Humanos , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/genética , Células Th2/imunologia , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Fator 1-alfa Nuclear de Hepatócito/genética , Hipersensibilidade/imunologia , Células-Tronco Multipotentes/metabolismo , Células-Tronco Multipotentes/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Diferenciação Celular , Citocinas/metabolismo , Linfopoietina do Estroma do Timo , Animais , Células Cultivadas , Camundongos
14.
Nat Immunol ; 25(6): 1020-1032, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38831106

RESUMO

The efficacy of T cell-based immunotherapies is limited by immunosuppressive pressures in the tumor microenvironment. Here we show a predominant role for the interaction between BTLA on effector T cells and HVEM (TNFRSF14) on immunosuppressive tumor microenvironment cells, namely regulatory T cells. High BTLA expression in chimeric antigen receptor (CAR) T cells correlated with poor clinical response to treatment. Therefore, we deleted BTLA in CAR T cells and show improved tumor control and persistence in models of lymphoma and solid malignancies. Mechanistically, BTLA inhibits CAR T cells via recruitment of tyrosine phosphatases SHP-1 and SHP-2, upon trans engagement with HVEM. BTLA knockout thus promotes CAR signaling and subsequently enhances effector function. Overall, these data indicate that the BTLA-HVEM axis is a crucial immune checkpoint in CAR T cell immunotherapy and warrants the use of strategies to overcome this barrier.


Assuntos
Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Receptores Imunológicos , Membro 14 de Receptores do Fator de Necrose Tumoral , Microambiente Tumoral , Animais , Humanos , Imunoterapia Adotiva/métodos , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/imunologia , Membro 14 de Receptores do Fator de Necrose Tumoral/genética , Camundongos , Microambiente Tumoral/imunologia , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Linfócitos T Reguladores/imunologia , Transdução de Sinais , Linhagem Celular Tumoral , Neoplasias/imunologia , Neoplasias/terapia , Camundongos Knockout
15.
Cell ; 184(15): 3847-3849, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34297928

RESUMO

Treg-mediated immunosuppression must be tightly regulated to support immunity while limiting tissue damage. In this issue of Cell, Wong et al. and Marangoni et al. use high-resolution imaging to define feedback circuits that quantitatively control local Treg expansion and function.


Assuntos
Terapia de Imunossupressão , Linfócitos T Reguladores , Tolerância Imunológica , Linfócitos T Reguladores/imunologia
16.
Cell ; 184(7): 1775-1789.e19, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33711260

RESUMO

Regulatory T cells prevent the emergence of autoantibodies and excessive IgE, but the precise mechanisms are unclear. Here, we show that BCL6-expressing Tregs, known as follicular regulatory T (Tfr) cells, produce abundant neuritin protein that targets B cells. Mice lacking Tfr cells or neuritin in Foxp3-expressing cells accumulated early plasma cells in germinal centers (GCs) and developed autoantibodies against histones and tissue-specific self-antigens. Upon immunization, these mice also produced increased plasma IgE and IgG1. We show that neuritin is taken up by B cells, causes phosphorylation of numerous proteins, and dampens IgE class switching. Neuritin reduced differentiation of mouse and human GC B cells into plasma cells, downregulated BLIMP-1, and upregulated BCL6. Administration of neuritin to Tfr-deficient mice prevented the accumulation of early plasma cells in GCs. Production of neuritin by Tfr cells emerges as a central mechanism to suppress B cell-driven autoimmunity and IgE-mediated allergies.


Assuntos
Linfócitos B/imunologia , Proteínas do Tecido Nervoso/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Autoanticorpos/imunologia , Autoimunidade , Linfócitos B/citologia , Linfócitos B/metabolismo , Diferenciação Celular , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Proteínas Ligadas por GPI/metabolismo , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Histonas/imunologia , Switching de Imunoglobulina , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Plasmócitos/citologia , Plasmócitos/imunologia , Plasmócitos/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/metabolismo
17.
Cell ; 184(15): 3981-3997.e22, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34157301

RESUMO

A fraction of mature T cells can be activated by peripheral self-antigens, potentially eliciting host autoimmunity. We investigated homeostatic control of self-activated T cells within unperturbed tissue environments by combining high-resolution multiplexed and volumetric imaging with computational modeling. In lymph nodes, self-activated T cells produced interleukin (IL)-2, which enhanced local regulatory T cell (Treg) proliferation and inhibitory functionality. The resulting micro-domains reciprocally constrained inputs required for damaging effector responses, including CD28 co-stimulation and IL-2 signaling, constituting a negative feedback circuit. Due to these local constraints, self-activated T cells underwent transient clonal expansion, followed by rapid death ("pruning"). Computational simulations and experimental manipulations revealed the feedback machinery's quantitative limits: modest reductions in Treg micro-domain density or functionality produced non-linear breakdowns in control, enabling self-activated T cells to subvert pruning. This fine-tuned, paracrine feedback process not only enforces immune homeostasis but also establishes a sharp boundary between autoimmune and host-protective T cell responses.


Assuntos
Retroalimentação Fisiológica , Homeostase/imunologia , Ativação Linfocitária/imunologia , Linfócitos T Reguladores/imunologia , Animais , Autoantígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células , Interleucina-2/metabolismo , Microdomínios da Membrana/metabolismo , Camundongos Endogâmicos C57BL , Modelos Imunológicos , Comunicação Parácrina , Transdução de Sinais
18.
Cell ; 184(16): 4168-4185.e21, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34216539

RESUMO

Metabolism is a major regulator of immune cell function, but it remains difficult to study the metabolic status of individual cells. Here, we present Compass, an algorithm to characterize cellular metabolic states based on single-cell RNA sequencing and flux balance analysis. We applied Compass to associate metabolic states with T helper 17 (Th17) functional variability (pathogenic potential) and recovered a metabolic switch between glycolysis and fatty acid oxidation, akin to known Th17/regulatory T cell (Treg) differences, which we validated by metabolic assays. Compass also predicted that Th17 pathogenicity was associated with arginine and downstream polyamine metabolism. Indeed, polyamine-related enzyme expression was enhanced in pathogenic Th17 and suppressed in Treg cells. Chemical and genetic perturbation of polyamine metabolism inhibited Th17 cytokines, promoted Foxp3 expression, and remodeled the transcriptome and epigenome of Th17 cells toward a Treg-like state. In vivo perturbations of the polyamine pathway altered the phenotype of encephalitogenic T cells and attenuated tissue inflammation in CNS autoimmunity.


Assuntos
Autoimunidade/imunologia , Modelos Biológicos , Células Th17/imunologia , Acetiltransferases/metabolismo , Trifosfato de Adenosina/metabolismo , Aerobiose/efeitos dos fármacos , Algoritmos , Animais , Autoimunidade/efeitos dos fármacos , Cromatina/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Citocinas/metabolismo , Eflornitina/farmacologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Epigenoma , Ácidos Graxos/metabolismo , Glicólise/efeitos dos fármacos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Camundongos Endogâmicos C57BL , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Oxirredução/efeitos dos fármacos , Putrescina/metabolismo , Análise de Célula Única , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Células Th17/efeitos dos fármacos , Transcriptoma/genética
19.
Cell ; 184(15): 3998-4015.e19, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34157302

RESUMO

Foxp3+ T regulatory (Treg) cells promote immunological tumor tolerance, but how their immune-suppressive function is regulated in the tumor microenvironment (TME) remains unknown. Here, we used intravital microscopy to characterize the cellular interactions that provide tumor-infiltrating Treg cells with critical activation signals. We found that the polyclonal Treg cell repertoire is pre-enriched to recognize antigens presented by tumor-associated conventional dendritic cells (cDCs). Unstable cDC contacts sufficed to sustain Treg cell function, whereas T helper cells were activated during stable interactions. Contact instability resulted from CTLA-4-dependent downregulation of co-stimulatory B7-family proteins on cDCs, mediated by Treg cells themselves. CTLA-4-blockade triggered CD28-dependent Treg cell hyper-proliferation in the TME, and concomitant Treg cell inactivation was required to achieve tumor rejection. Therefore, Treg cells self-regulate through a CTLA-4- and CD28-dependent feedback loop that adjusts their population size to the amount of local co-stimulation. Its disruption through CTLA-4-blockade may off-set therapeutic benefits in cancer patients.


Assuntos
Antígeno CTLA-4/metabolismo , Retroalimentação Fisiológica , Neoplasias/imunologia , Linfócitos T Reguladores/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Antígenos CD28/metabolismo , Proliferação de Células , Células Dendríticas/imunologia , Proteínas de Fluorescência Verde/metabolismo , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia , Interleucina-2/metabolismo , Ligantes , Linfonodos/metabolismo , Ativação Linfocitária/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/metabolismo , Neoplasias/patologia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Microambiente Tumoral
20.
Nat Immunol ; 24(10): 1748-1761, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37563308

RESUMO

In atherosclerosis, some regulatory T (Treg) cells become exTreg cells. We crossed inducible Treg and exTreg cell lineage-tracker mice (FoxP3eGFP-Cre-ERT2ROSA26CAG-fl-stop-fl-tdTomato) to atherosclerosis-prone Apoe-/- mice, sorted Treg cells and exTreg cells and determined their transcriptomes by bulk RNA sequencing (RNA-seq). Genes that were differentially expressed between mouse Treg cells and exTreg cells and filtered for their presence in a human single-cell RNA-sequencing (scRNA-seq) panel identified exTreg cell signature genes as CST7, NKG7, GZMA, PRF1, TBX21 and CCL4. Projecting these genes onto the human scRNA-seq with CITE-seq data identified human exTreg cells as CD3+CD4+CD16+CD56+, which was validated by flow cytometry. Bulk RNA-seq of sorted human exTreg cells identified them as inflammatory and cytotoxic CD4+T cells that were significantly distinct from both natural killer and Treg cells. DNA sequencing for T cell receptor-ß showed clonal expansion of Treg cell CDR3 sequences in exTreg cells. Cytotoxicity was functionally demonstrated in cell killing and CD107a degranulation assays, which identifies human exTreg cells as cytotoxic CD4+T cells.


Assuntos
Aterosclerose , Linfócitos T Reguladores , Humanos , Animais , Camundongos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa