Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 468(7321): 300-4, 2010 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21068841

RESUMO

Motion vision is a major function of all visual systems, yet the underlying neural mechanisms and circuits are still elusive. In the lamina, the first optic neuropile of Drosophila melanogaster, photoreceptor signals split into five parallel pathways, L1-L5. Here we examine how these pathways contribute to visual motion detection by combining genetic block and reconstitution of neural activity in different lamina cell types with whole-cell recordings from downstream motion-sensitive neurons. We find reduced responses to moving gratings if L1 or L2 is blocked; however, reconstitution of photoreceptor input to only L1 or L2 results in wild-type responses. Thus, the first experiment indicates the necessity of both pathways, whereas the second indicates sufficiency of each single pathway. This contradiction can be explained by electrical coupling between L1 and L2, allowing for activation of both pathways even when only one of them receives photoreceptor input. A fundamental difference between the L1 pathway and the L2 pathway is uncovered when blocking L1 or L2 output while presenting moving edges of positive (ON) or negative (OFF) contrast polarity: blocking L1 eliminates the response to moving ON edges, whereas blocking L2 eliminates the response to moving OFF edges. Thus, similar to the segregation of photoreceptor signals in ON and OFF bipolar cell pathways in the vertebrate retina, photoreceptor signals segregate into ON-L1 and OFF-L2 channels in the lamina of Drosophila.


Assuntos
Drosophila melanogaster/fisiologia , Percepção de Movimento/fisiologia , Movimento (Física) , Visão Ocular/fisiologia , Vias Visuais/fisiologia , Animais , Sinalização do Cálcio/efeitos da radiação , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/efeitos da radiação , Feminino , Junções Comunicantes/metabolismo , Junções Comunicantes/efeitos da radiação , Luz , Modelos Neurológicos , Percepção de Movimento/efeitos da radiação , Lobo Óptico de Animais não Mamíferos/citologia , Lobo Óptico de Animais não Mamíferos/fisiologia , Lobo Óptico de Animais não Mamíferos/efeitos da radiação , Células Fotorreceptoras de Invertebrados/metabolismo , Células Fotorreceptoras de Invertebrados/efeitos da radiação , Visão Ocular/efeitos da radiação , Vias Visuais/citologia , Vias Visuais/efeitos da radiação
3.
Artigo em Inglês | MEDLINE | ID: mdl-18165131

RESUMO

Melatonin is a biogenic amine, known from almost all phyla of living organisms. In vertebrates melatonin is produced rhythmically in the pinealocytes of the pineal gland, relaying information of the environmental light/dark cycle to the organism. With regard to crustaceans only a handful of studies exist that has attempted to identify the presence and possible daily variation of this substance. We set out to investigate whether in the crab Neohelice granulata melatonin was produced in the optic lobes of these animals and underwent rhythmic fluctuations related to the daily light/dark cycle. Our experimental animals were divided into three groups exposed to different photoperiods: normal photoperiod (12L:12D), constant dark (DD), and constant light (LL). The optic lobes were collected every 4 hours over a 24-h period for melatonin quantification by radioimmunoassay (RIA). N. granulata kept under 12 L:12D and DD conditions, showed daily melatonin variations with two peaks of abundance (p<0.05), one during the day and another, more extensive one, at night. Under LL-conditions no significant daily variations were noticeable (p>0.05). These results demonstrate the presence of a daily biphasic fall and rise of melatonin in the eyestalk of N. granulata and suggest that continuous exposure to light inhibits the production of melatonin synthesis.


Assuntos
Braquiúros/efeitos da radiação , Melatonina/biossíntese , Lobo Óptico de Animais não Mamíferos/efeitos da radiação , Estimulação Luminosa , Fotoperíodo , Glândula Pineal/efeitos da radiação , Animais , Braquiúros/fisiologia , Ritmo Circadiano/fisiologia , Luz , Melatonina/análise , Lobo Óptico de Animais não Mamíferos/metabolismo , Glândula Pineal/citologia , Glândula Pineal/metabolismo , Radioimunoensaio , Fatores de Tempo
4.
Curr Biol ; 21(24): 2077-84, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22137471

RESUMO

Detecting motion is a feature of all advanced visual systems [1], nowhere more so than in flying animals, like insects [2, 3]. In flies, an influential autocorrelation model for motion detection, the elementary motion detector circuit (EMD; [4, 5]), compares visual signals from neighboring photoreceptors to derive information on motion direction and velocity. This information is fed by two types of interneuron, L1 and L2, in the first optic neuropile, or lamina, to downstream local motion detectors in columns of the second neuropile, the medulla. Despite receiving carefully matched photoreceptor inputs, L1 and L2 drive distinct, separable pathways responding preferentially to moving "on" and "off" edges, respectively [6, 7]. Our serial electron microscopy (EM) identifies two types of transmedulla (Tm) target neurons, Tm1 and Tm2, that receive apparently matched synaptic inputs from L2. Tm2 neurons also receive inputs from two retinotopically posterior neighboring columns via L4, a third type of lamina neuron. Light microscopy reveals that the connections in these L2/L4/Tm2 circuits are highly determinate. Single-cell transcript profiling suggests that nicotinic acetylcholine receptors mediate transmission within the L2/L4/Tm2 circuits, whereas L1 is apparently glutamatergic. We propose that Tm2 integrates sign-conserving inputs from neighboring columns to mediate the detection of front-to-back motion generated during forward motion.


Assuntos
Drosophila melanogaster/fisiologia , Visão Ocular/fisiologia , Vias Visuais/fisiologia , Adaptação Fisiológica , Animais , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/efeitos da radiação , Interneurônios/fisiologia , Microscopia Eletrônica , Percepção de Movimento , Lobo Óptico de Animais não Mamíferos/citologia , Lobo Óptico de Animais não Mamíferos/fisiologia , Lobo Óptico de Animais não Mamíferos/efeitos da radiação , Células Fotorreceptoras de Invertebrados/citologia , Células Fotorreceptoras de Invertebrados/metabolismo , Células Fotorreceptoras de Invertebrados/efeitos da radiação , Receptores de Glutamato/fisiologia , Receptores Nicotínicos/fisiologia , Transdução de Sinais , Visão Ocular/efeitos da radiação , Vias Visuais/citologia , Vias Visuais/efeitos da radiação
5.
Artigo em Inglês | MEDLINE | ID: mdl-17063341

RESUMO

This study examines the relationship between cyclical variations in optic-lobe dopamine levels and the circadian behavioural rhythmicity exhibited by forager bees. Our results show that changing the light-dark regimen to which bees are exposed has a significant impact not only on forager behaviour, but also on the levels of dopamine that can be detected in the optic lobes of the brain. Consistent with earlier reports, we show that foraging behaviour exhibits properties characteristic of a circadian rhythm. Foraging activity is entrained by daily light cycles to periods close to 24 h, it changes predictably in response to phase shifts in light, and it is able to free-run under constant conditions. Dopamine levels in the optic lobes also undergo cyclical variations, and fluctuations in endogenous dopamine levels are influenced significantly by alterations to the light/dark cycle. However, the time course of these changes is markedly different from changes observed at a behavioural level. No direct correlation could be identified between levels of dopamine in the optic lobes and circadian rhythmic activity of the honey bee.


Assuntos
Abelhas/fisiologia , Ritmo Circadiano/fisiologia , Dopamina/metabolismo , Lobo Óptico de Animais não Mamíferos/metabolismo , Fotoperíodo , Animais , Relógios Biológicos/fisiologia , Dopamina/efeitos da radiação , Feminino , Gânglios dos Invertebrados/metabolismo , Luz , Lobo Óptico de Animais não Mamíferos/efeitos da radiação
6.
J Neurosci ; 17(4): 1493-504, 1997 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-9006990

RESUMO

Early experience can affect nervous system development in both vertebrate and invertebrate animals. We have now demonstrated that visual stimulation modifies the size of the optic lobes in the laboratory fruitfly Drosophila melanogaster. Monocular deprivation (painting over one eye) decreases the aggregate volume of the lamina, medulla, and lobula plate by up to 6%. The laminae of control flies kept in complete darkness showed a more robust volume difference that could be as much as 30%. An electron microscopy study revealed that the changes in the lamina are largely attributable to an increase in the terminals of the photoreceptor cell axons. The volume of the lamina increases during the first 24 hr after emergence, and it grows more in the light than in darkness. When flies are kept in the dark for the first 12 hr of their adult life and are then brought back to light for the next 3.5 days, the lamina is almost as small as in flies raised for 4 d in constant darkness. Twelve hour dark shifts at a later time are less effective. This finding suggests a critical period for lamina development during day 1 of the adult. The lamina depends on visual stimulation to maintain its size during the first 5 d after emergence. Dark-rearing for 1 d or more at any stage during that period decreases its volume to the level of flies raised in constant darkness. A lamina that is once reduced in size seems not to recover.


Assuntos
Drosophila melanogaster/fisiologia , Plasticidade Neuronal , Lobo Óptico de Animais não Mamíferos/fisiologia , Visão Ocular/fisiologia , Animais , AMP Cíclico/metabolismo , Luz , Rede Nervosa/efeitos da radiação , Lobo Óptico de Animais não Mamíferos/efeitos da radiação , Estimulação Luminosa
7.
Proc Natl Acad Sci U S A ; 91(7): 2664-8, 1994 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-8146172

RESUMO

The Drosophila segment-polarity gene patched (ptc) is an integral component of the segmentation gene cascade acting in the early embryo. At later stages of embryogenesis, ptc is expressed in the primordia of epithelial placodes of a specific portion of the brain, the optic lobes. Mutant analysis shows that the lack of ptc activity alters the fate of optic-lobe primordia precursors. In ptc mutants they give rise to supernumerary neurons in the larval light-sensory system, termed Bolwig organ, which is derived from precursor cells next to the optic-lobe anlagen. We specifically eliminated ptc protein by chromophore-assisted laser inactivation (CALI) in late wild-type embryos. Such embryos show a normal segment pattern, but they develop phenocopies equivalent to the phenotype of ptc mutant Bolwig organs. Our results demonstrate that the CALI technique can be applied to separate genetic functions at different developmental stages of a living organism and that the segment-polarity gene ptc is redeployed to functionally discriminate between distinct developmental pathways in adjacent pools of precursor cells.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster/embriologia , Hormônios de Inseto/biossíntese , Proteínas de Membrana/biossíntese , Lobo Óptico de Animais não Mamíferos/embriologia , Animais , Corantes/efeitos da radiação , Drosophila melanogaster/efeitos da radiação , Hormônios de Inseto/efeitos da radiação , Lasers , Proteínas de Membrana/efeitos da radiação , Lobo Óptico de Animais não Mamíferos/efeitos da radiação , Radiossensibilizantes , Receptores de Superfície Celular , Corantes de Rosanilina/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa