Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 379
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 178(4): 901-918.e16, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398343

RESUMO

Physiology and metabolism are often sexually dimorphic, but the underlying mechanisms remain incompletely understood. Here, we use the intestine of Drosophila melanogaster to investigate how gut-derived signals contribute to sex differences in whole-body physiology. We find that carbohydrate handling is male-biased in a specific portion of the intestine. In contrast to known sexual dimorphisms in invertebrates, the sex differences in intestinal carbohydrate metabolism are extrinsically controlled by the adjacent male gonad, which activates JAK-STAT signaling in enterocytes within this intestinal portion. Sex reversal experiments establish roles for this male-biased intestinal metabolic state in controlling food intake and sperm production through gut-derived citrate. Our work uncovers a male gonad-gut axis coupling diet and sperm production, revealing that metabolic communication across organs is physiologically important. The instructive role of citrate in inter-organ communication might be significant in more biological contexts than previously recognized.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Drosophila melanogaster/metabolismo , Ingestão de Alimentos/fisiologia , Mucosa Intestinal/metabolismo , Caracteres Sexuais , Maturação do Esperma/fisiologia , Animais , Ácido Cítrico/metabolismo , Proteínas de Drosophila/metabolismo , Feminino , Expressão Gênica , Janus Quinases/metabolismo , Masculino , RNA-Seq , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Açúcares/metabolismo , Testículo/metabolismo
2.
Int J Mol Sci ; 25(16)2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39201677

RESUMO

Zinc (Zn) is an essential trace element; it exhibits a plethora of physiological properties and biochemical functions. It plays a pivotal role in regulating the cell cycle, apoptosis, and DNA organization, as well as in protein, lipid, and carbohydrate metabolism. Among other important processes, Zn plays an essential role in reproductive health. The ZIP and ZnT proteins are responsible for the mobilization of Zn within the cell. Zn is an inert antioxidant through its interaction with a variety of proteins and enzymes to regulate the redox system, including metallothioneins (MTs), metalloenzymes, and gene regulatory proteins. The role of Zn in the reproductive system is of great importance; processes, such as spermatogenesis and sperm maturation that occur in the testicle and epididymis, respectively, depend on this element for their development and function. Zn modulates the synthesis of androgens, such as testosterone, for these reproductive processes, so Zn deficiency is related to alterations in sperm parameters that lead to male infertility.


Assuntos
Epididimo , Testículo , Zinco , Masculino , Zinco/metabolismo , Epididimo/metabolismo , Humanos , Testículo/metabolismo , Animais , Espermatogênese , Espermatozoides/metabolismo , Infertilidade Masculina/metabolismo , Maturação do Esperma/fisiologia
3.
Reprod Fertil Dev ; 35(2): 27-38, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36592975

RESUMO

After their production in the testis, spermatozoa do not have the capacity to move progressively and are unable to fertilise an oocyte. They sequentially acquire these abilities following their maturation in the epididymis and their capacitation/hyperactivation in the female reproductive system. As gene transcription is silenced in spermatozoa, extracellular factors released from the epididymal epithelium and from secretory glands allow spermatozoa to acquire bioactive molecules and to undergo intrinsic modifications. These modifications include epigenetic changes and post-translational modifications of endogenous proteins, which are important processes in sperm maturation. This article emphasises the roles played by extracellular factors secreted by the epididymis and accessory glands in the control of sperm intercellular signallings and fertilising abilities.


Assuntos
Sêmen , Maturação do Esperma , Masculino , Feminino , Animais , Maturação do Esperma/fisiologia , Testículo/fisiologia , Espermatozoides/metabolismo , Epididimo/metabolismo
4.
Mol Cell Proteomics ; 19(12): 2090-2104, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33008835

RESUMO

Extracellular vesicles (EVs) secreted by the epididymal epithelium transfer to spermatozoa key proteins that are essential in promoting motility and subsequent fertilization success. Using the domestic cat model, the objectives were to (1) characterize and compare protein content of EVs between segments of the epididymis, and (2) compare EV protein compositions between normo- and teratospermic individuals (producing >60% of abnormal spermatozoa). Epididymal EVs from adult cats were isolated and assessed via liquid chromatography tandem MS. Both male types shared 3008 proteins in total, with 98 and 20 EV proteins unique to normospermic and teratospermic males, respectively. Expression levels of several proteins changed between epididymal segments in both male types. Several proteins in both groups were related to sperm motility (e.g. hexokinase 1, adenylate kinase isoenzyme) and zona pellucida or oolemma binding (e.g. disintegrin and metalloproteinase domain proteins, zona binding proteins 1 and 2). Interestingly, seven cauda-derived EV proteins trended downward in teratospermic compared with normospermic males, which may relate to poor sperm quality. Collective results revealed, for the first time, EV proteins related to sequential sperm maturation with differences observed between normospermic and teratospermic individuals.


Assuntos
Epididimo/metabolismo , Vesículas Extracelulares/metabolismo , Proteômica , Maturação do Esperma/fisiologia , Teratozoospermia/metabolismo , Teratozoospermia/veterinária , Animais , Gatos , Ontologia Genética , Masculino , Mapeamento de Interação de Proteínas
5.
Adv Exp Med Biol ; 1358: 345-367, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35641877

RESUMO

Structural and regulatory requirements of mammalian spermatozoa in both development and function make them extremely unique cells. Looking at the complexity of spermatozoon structure and its requirements for both motility and quick breakdown within the post-fertilization environment, as well as its functional needs as an extremely streamlined cell with high energy requirements, demonstrate the high importance of oxidative-reductive processes. The oxidative state of the testis and epididymis during sperm development and maturation highly influences sperm structure, with a high dependence on disulfide bond formation, facilitated by thiol mediated processes. However, once functionally active, sperm transition to a new high-risk functional paradigm requiring low levels of reactive oxygen species (ROS) while also being highly susceptible to oxidative damage due to the high proportion of polyunsaturated fatty acids within the lipid bilayer of the plasmalemma and the lack of cytosolic antioxidant defenses. This chapter highlights how glutathione and thioredoxin systems mediate the oxidative environment of the male reproductive tract and facilitate the successful development, maturation and function of mammalian spermatozoa.


Assuntos
Maturação do Esperma , Espermatozoides , Animais , Fertilidade , Fertilização , Masculino , Mamíferos , Oxirredução , Maturação do Esperma/fisiologia , Espermatozoides/metabolismo
6.
Andrologia ; 54(4): e14367, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35034376

RESUMO

The reactive oxygen species (ROS) play an important role in various aspects of male reproductive function, for spermatozoa to acquire the ability to fertilize. However, the increase in ROS generation, both due to internal and external factors, can induce oxidative stress, causing alterations in the structure and function of phospholipids and proteins. In the nucleus, ROS attack DNA, causing its fragmentation and activation of apoptosis, thus altering gene and protein expression. Accumulating evidence also reveals that endogenously produced ROS can act as second messengers in regulating cell signalling pathways and in the transduction of signals that are responsible for regulating spermatogonia self-renewal and proliferation. In the epididymis, they actively participate in the formation of disulphide bridges required for the final condensation of chromatin, as well as in the phosphorylation and dephosphorylation of proteins contained in the fibrous sheath of the flagellum, stimulating the activation of progressive motility in epididymal spermatozoa. In this review, the role of small amounts of ROS during spermatogenesis and epididymal sperm maturation was discussed.


Assuntos
Epididimo , Testículo , Epididimo/metabolismo , Humanos , Masculino , Espécies Reativas de Oxigênio/metabolismo , Maturação do Esperma/fisiologia , Espermatozoides/metabolismo , Testículo/metabolismo
7.
Reprod Domest Anim ; 57(11): 1406-1417, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35881670

RESUMO

During maturation, spermatozoa acquire motility and fertilizing capacity as they transit through the epididymis. Melatonin is a lipophilic hormone with multiple functions in regulating the fertility. Previous studies have shown that melatonin affected the capacitation or maturation of sperm in the epididymis. The aim of this study was to investigate the effects of melatonin on epididymal caput epithelial cells in sheep. In the study, we used iTRAQ labelling coupled with LC-MS/MS for quantitative identification of differentially expressed proteins in melatonin-treated sheep epididymal caput epithelial cells. We identified 69 differentially expressed protein; 41 were upregulated and 28 were downregulated in samples from sheep in melatonin treated. We validated the differential expression of a subset of these proteins using qPCR and Western blot. Gene ontology annotation identified that the differentially expressed proteins function in cellular processes and metabolic processes. Notably, five of the differentially expressed proteins as SOD1, COL1A1, PRM1, NQO2, and FN1 are involved in sperm migration and sperm maturation. KEGG enrichment analysis demonstrated significant enrichment in several cardiac-related pathways, such as "PI3K-Akt signaling pathway", "AGE-RAGE signaling pathway in diabetic complications", "ECM-receptor interaction", and "Ribosome". Our results suggest that candidate biomarker (SOD1, COL1A1, PRM1, NQO2, and FN1) discovery can aid in understanding sperm development and maturation in sheep. These results provide insights into the potential mechanisms of melatonin regulation of sperm maturation in epididymal caput epithelial cells.


Assuntos
Epididimo , Melatonina , Masculino , Ovinos , Animais , Epididimo/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Proteômica , Cromatografia Líquida/veterinária , Fosfatidilinositol 3-Quinases/metabolismo , Superóxido Dismutase-1/metabolismo , Sêmen , Espectrometria de Massas em Tandem/veterinária , Maturação do Esperma/fisiologia , Espermatozoides/fisiologia , Proteínas/metabolismo , Células Epiteliais
8.
Biochem Biophys Res Commun ; 548: 7-13, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33631677

RESUMO

Lipocalin family members, LCN8 and LCN9, are specifically expressed in the initial segment of mouse caput epididymis. However, the biological functions of the molecules in vivo are yet to be clarified. In this study, CRISPR/Cas9 technology was used to generate Lcn8 and Lcn9 knockout mice, respectively. Lcn8-/- and Lcn9-/- male mice showed normal spermatogenesis and fertility. In the cauda epididymis of Lcn8-/- male mice, morphologically abnormal sperm was increased significantly, the proportion of progressive motility sperm was decreased, the proportion of immobilized sperm was elevated, and the sperm spontaneous acrosome reaction (AR) frequency was increased. Conversely, the knockout of Lcn9 did not have any effect on the ratio of morphologically abnormal sperm, sperm motility, and sperm spontaneous AR frequencies. These results demonstrated the role of LCN8 in maintaining the sperm quality in the epididymis, and suggested that the deficiency of LCN8 leads to epididymal sperm maturation defects.


Assuntos
Epididimo/patologia , Lipocalinas/metabolismo , Maturação do Esperma/fisiologia , Animais , Sequência de Bases , Sistemas CRISPR-Cas/genética , Fertilidade , Masculino , Camundongos Endogâmicos C57BL , Espermatogênese , Espermatozoides
9.
Mol Reprod Dev ; 88(1): 15-33, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33140506

RESUMO

In mammals, sperm need to mature in the epididymis to gain fertilization competency. However, the molecular mechanism underlying buffalo sperm maturation remains elusive. Exploring sperm physiology at the posttranslational modification (PTM) level could help to develop our understanding of these mechanisms. Protein phosphorylation and ubiquitination are major PTMs in the regulation of many biological processes. In the present study, to our knowledge, we report the first phosphoproteome and ubiquitylome of sperm collected from the caput, corpus, and cauda segments of the epididymis using liquid chromatography-mass spectrometry combined with affinity purification. In total, 647 phosphorylation sites in 294 proteins and 1063 ubiquitination sites in 446 proteins were characterized. Some of these proteins were associated with cellular developmental processes and energy metabolic pathways. Interestingly, 84 proteins were both phosphorylated and ubiquitinated, simultaneously. Some of these proteins were involved in, for example, spermatogenesis, reproduction, and spermatid development. Taken together, these data provide a theoretical basis for further functional analysis of phosphorylation and ubiquitination in epididymal sperm of buffalo and other mammals, and serve as an important resource for exploring the physiological mechanism underlying sperm maturation.


Assuntos
Búfalos/metabolismo , Epididimo/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Reprodução/fisiologia , Espermatozoides/metabolismo , Proteínas Ubiquitinadas/metabolismo , Animais , Células Cultivadas , Masculino , Fosforilação/fisiologia , Proteômica/métodos , Maturação do Esperma/fisiologia , Ubiquitinação/fisiologia
10.
Exp Cell Res ; 395(1): 112178, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32679235

RESUMO

Cdc14a is an evolutionarily conserved dual-specific protein phosphatase, and it plays different roles in different organisms. Cdc14a mutations in human have been reported to cause male infertility, while the specific role of Cdc14a in regulation of the male reproductive system remains elusive. In the present study, we established a knockout mouse model to study the function of Cdc14a in male reproductive system. Cdc14a-/- male mice were subfertile and they could only produce very few offspring. The number of sperm was decreased, the sperm motility was impaired, and the proportion of sperm with abnormal morphology was elevated in Cdc14a-/- mice. When we mated Cdc14a-/- male mice with wild-type (WT) female mice, fertilized eggs could be found in female fallopian tubes, however, the majority of these embryos died during development. Some empty spaces were observed in seminiferous tubule of Cdc14a-/- testes. Compared with WT male mice, the proportions of pachytene spermatocytes were increased and germ cells stained with γH2ax were decreased in Cdc14a-/- male mice, indicating that knockout of Cdc14a inhibited meiotic initiation. Subsequently, we analyzed the expression levels of some substrate proteins of Cdc14a, including Cdc25a, Wee1, and PR-Set7, and compared those with WT testes, in which the expression levels of these proteins were significantly increased in Cdc14a-/- testes. Our results revealed that Cdc14a-/- male mice are highly subfertile, and Cdc14a is essential for normal spermatogenesis and sperm function.


Assuntos
Infertilidade Masculina/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Maturação do Esperma/fisiologia , Motilidade dos Espermatozoides/fisiologia , Animais , Infertilidade Masculina/genética , Infertilidade Masculina/fisiopatologia , Masculino , Camundongos Knockout , Espermatócitos/metabolismo , Espermatogênese/genética , Espermatozoides/citologia , Testículo/metabolismo , Testículo/patologia
11.
BMC Vet Res ; 17(1): 255, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34311720

RESUMO

BACKGROUND: During maturation, spermatozoa acquire motility and fertilizing capacity as they transit through the epididymis. In recent years, two-dimensional gel electrophoresis has been employed in proteomics studies conducted in rat, boar and human. However, there has not been a complete information regarding the proteins associated with sperm maturation in the epididymis. In this study, we employed iTRAQ proteomics to investigate proteins associated with sperm maturation between yak and cattleyak epididymis. RESULTS: After a successful sampling and protein extraction, the iTRAQ coupled with LC-MS/MS mass spectrometry and bioinformatics analysis were performed. We identified 288 differentially abundant proteins (DAPs) between yak and cattleyak epididymis; 151 were up-regulated while 137 were down-regulated in cattleyak relative to yak. Gene Ontology analysis identified that down-regulated DAPs in cattleyak were mostly enriched in the acetylation of protein component, along with negative and positive regulatory activities. iTRAQ proteomics data showed that the top up-regulated DAPs were mainly enriched in cell communication, cell adhesion, cytoskeleton organization, stress response, post-translational modifications and metabolic functions while the down-regulated DAPs were predominantly associated with sperm maturation, long-term sperm storage, sperm forward motility, sperm-oocyte fusion and regulatory functions. CONCLUSION: These results provide insight into the molecular mechanisms underlying male cattleyak sterility.


Assuntos
Bovinos/genética , Bovinos/fisiologia , Epididimo/fisiologia , Maturação do Esperma/fisiologia , Espermatozoides/fisiologia , Animais , Regulação para Baixo , Masculino , Mapas de Interação de Proteínas , Proteômica , Regulação para Cima
12.
Reprod Fertil Dev ; 33(18): 855-864, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34844664

RESUMO

The epididymis is an organ that performs all the biochemical changes responsible for sperm maturation. During ageing, histological alterations in the epididymis and decreased protein synthesis have been found. This might affect the sperm maturation process. The aim of this study was to determine if the changes in the epididymis during ageing might cause alterations in sperm maturation. Wistar rats of 3-4months old (young) and 18-21months old (old) were used. The testosterone concentration was determined and the epididymides were dissected and divided in three regions: caput, corpus, and cauda. The tissues were used for histological processing and sperm extraction. Testosterone concentration decreased 34% in the old animals compared to the young ones. The distribution of mannose, sialic acid, and N-acetylglucosamine in the glycocalyx of the sperm membrane of old animals was different from that of young animals. The same occurred with phosphatidylserine externalisation and protein phosphorylation at tyrosine residues. Epididymis histology in old animals showed tubular and cellular degeneration. Our results suggest that ageing affects maturational markers, likely due to alterations in the epididymis as a result of the testosterone decrease associated with ageing.


Assuntos
Envelhecimento/metabolismo , Epididimo/metabolismo , Maturação do Esperma/fisiologia , Espermatozoides/metabolismo , Testosterona/metabolismo , Animais , Masculino , Fosforilação , Ratos , Ratos Wistar , Tirosina/metabolismo
13.
Mol Cell Proteomics ; 18(Suppl 1): S91-S108, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30213844

RESUMO

The functional maturation of spermatozoa that is necessary to achieve fertilization occurs as these cells transit through the epididymis, a highly specialized region of the male reproductive tract. A defining feature of this maturation process is that it occurs in the complete absence of nuclear gene transcription or de novo, protein translation in the spermatozoa. Rather, it is driven by sequential interactions between spermatozoa and the complex external milieu in which they are bathed within lumen of the epididymal tubule. A feature of this dynamic microenvironment are epididymosomes, small membrane encapsulated vesicles that are secreted from the epididymal soma. Herein, we report comparative proteomic profiling of epididymosomes isolated from different segments of the mouse epididymis using multiplexed tandem mass tag (TMT) based quantification coupled with high resolution LC-MS/MS. A total of 1640 epididymosome proteins were identified and quantified via this proteomic method. Notably, this analysis revealed pronounced segment-to-segment variation in the encapsulated epididymosome proteome. Thus, 146 proteins were identified as being differentially accumulated between caput and corpus epididymosomes, and a further 344 were differentially accumulated between corpus and cauda epididymosomes (i.e., fold change of ≤ -1.5 or ≥ 1.5; p, < 0.05). Application of gene ontology annotation revealed a substantial portion of the epididymosome proteins mapped to the cellular component of extracellular exosome and to the biological processes of transport, oxidation-reduction, and metabolism. Additional annotation of the subset of epididymosome proteins that have not previously been identified in exosomes revealed enrichment of categories associated with the acquisition of sperm function (e.g., fertilization and binding to the zona pellucida). In tandem with our demonstration that epididymosomes are able to convey protein cargo to the head of maturing spermatozoa, these data emphasize the fundamental importance of epididymosomes as key elements of the epididymal microenvironment responsible for coordinating post-testicular sperm maturation.


Assuntos
Epididimo/metabolismo , Vesículas Extracelulares/metabolismo , Proteômica , Maturação do Esperma/fisiologia , Testículo/metabolismo , Animais , Antígenos de Superfície/metabolismo , Biotinilação , Vesículas Extracelulares/ultraestrutura , Ontologia Genética , Masculino , Camundongos , Proteínas do Leite/metabolismo , Anotação de Sequência Molecular , Proteoma/metabolismo , Reprodutibilidade dos Testes , Espermatozoides/metabolismo
14.
Mol Cell Proteomics ; 18(Suppl 1): S58-S76, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30072580

RESUMO

Competition to achieve paternity has contributed to the development of a multitude of elaborate male reproductive strategies. In one of the most well-studied examples, the spermatozoa of all mammalian species must undergo a series of physiological changes, termed capacitation, in the female reproductive tract before realizing their potential to fertilize an ovum. However, the evolutionary origin and adaptive advantage afforded by capacitation remains obscure. Here, we report the use of comparative and quantitative proteomics to explore the biological significance of capacitation in an ancient reptilian species, the Australian saltwater crocodile (Crocodylus porosus,). Our data reveal that exposure of crocodile spermatozoa to capacitation stimuli elicits a cascade of physiological responses that are analogous to those implicated in the functional activation of their mammalian counterparts. Indeed, among a total of 1119 proteins identified in this study, we detected 126 that were differentially phosphorylated (± 1.2 fold-change) in capacitated versus, noncapacitated crocodile spermatozoa. Notably, this subset of phosphorylated proteins shared substantial evolutionary overlap with those documented in mammalian spermatozoa, and included key elements of signal transduction, metabolic and cellular remodeling pathways. Unlike mammalian sperm, however, we noted a distinct bias for differential phosphorylation of serine (as opposed to tyrosine) residues, with this amino acid featuring as the target for ∼80% of all changes detected in capacitated spermatozoa. Overall, these results indicate that the phenomenon of sperm capacitation is unlikely to be restricted to mammals and provide a framework for understanding the molecular changes in sperm physiology necessary for fertilization.


Assuntos
Jacarés e Crocodilos/fisiologia , Mamíferos/fisiologia , Maturação do Esperma/fisiologia , Espermatozoides/fisiologia , Testículo/fisiologia , Animais , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Ontologia Genética , Masculino , Anotação de Sequência Molecular , Peptídeos/metabolismo , Fosfopeptídeos/metabolismo , Fosforilação/efeitos dos fármacos , Proteoma/metabolismo , Proteômica , Reprodutibilidade dos Testes , Capacitação Espermática/efeitos dos fármacos , Maturação do Esperma/efeitos dos fármacos , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos
15.
Reprod Domest Anim ; 56(4): 555-576, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33438262

RESUMO

The epididymis is the site of post-testicular sperm maturation, which constitutes the acquisition of sperm motility and the ability to recognize and fertilize oocytes. The role of miRNA in male reproductive system, including the control of different steps leading to proper fertilization such as gametogenesis, sperm maturation and maintenance of male fertility where the deletion of Dicer in mouse germ cells led to infertility, has been demonstrated. The identification of miRNA expression in a region-specific manner will therefore provide valuable insight into the functional differences between the regions of the epididymis. In this study, we employed RNA-seq technology to explore the expression pattern of miRNAs and establish some miRNAs of significant interest with regard to epididymal sperm maturation in the CY epididymis. We identified a total of 431 DE known miRNAs; 119, 185 and 127 DE miRNAs were detected for caput versus corpus, corpus versus cauda and caput versus cauda region pairs, respectively. Our results demonstrate region-specific miRNA expression in the CY epididymis. The GO and KEGG enrichment for the predicted target genes indicated the functional values of miRNAs. Furthermore, we observed that the expression of miR-200a was downregulated in the caput, compared with cauda. Since the family of miR-200 has previously been suggested to contribute to the distinct physiological function of sperm maturation in epididymis of adult rat, we speculate that the downregulation of miR-200a in CY caput epididymis may play an important role of sperm maturation in the epididymis of CY. Therefore, our findings may not only increase our understanding of the molecular mechanisms regulated by the miRNA functions in region-specific miRNA expression in the CY epididymis, it could provide a valuable information to understand the mechanism of male infertility of CY.


Assuntos
Bovinos/fisiologia , Epididimo/metabolismo , MicroRNAs/metabolismo , Maturação do Esperma/fisiologia , Animais , Epididimo/anatomia & histologia , Hibridização Genética/genética , Infertilidade Masculina/genética , Infertilidade Masculina/veterinária , Masculino , MicroRNAs/genética , RNA-Seq/veterinária , Maturação do Esperma/genética
16.
Int J Mol Sci ; 22(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34948301

RESUMO

MFN1 (Mitofusin 1) and MFN2 (Mitofusin 2) are GTPases essential for mitochondrial fusion. Published studies revealed crucial roles of both Mitofusins during embryonic development. Despite the unique mitochondrial organization in sperm flagella, the biological requirement in sperm development and functions remain undefined. Here, using sperm-specific Cre drivers, we show that either Mfn1 or Mfn2 knockout in haploid germ cells does not affect male fertility. The Mfn1 and Mfn2 double knockout mice were further analyzed. We found no differences in testis morphology and weight between Mfn-deficient mice and their wild-type littermate controls. Spermatogenesis was normal in Mfn double knockout mice, in which properly developed TRA98+ germ cells, SYCP3+ spermatocytes, and TNP1+ spermatids/spermatozoa were detected in seminiferous tubules, indicating that sperm formation was not disrupted upon MFN deficiency. Collectively, our findings reveal that both MFN1 and MFN2 are dispensable for sperm development and functions in mice.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Espermatogênese/fisiologia , Espermatozoides/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/fisiologia , Maturação do Esperma/fisiologia , Espermatócitos/metabolismo , Testículo/metabolismo
17.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34638585

RESUMO

Mammalian sperm must undergo two post-testicular processes to become fertilization-competent: maturation in the male epididymis and capacitation in the female reproductive tract. While caput epididymal sperm are unable to move and have not yet acquired fertilization potential, sperm in the cauda epididymis have completed their maturation, can move actively, and have gained the ability to undergo capacitation in the female tract or in vitro. Due to the impossibility of mimicking sperm maturation in vitro, the molecular pathways underlying this process remain largely unknown. We aimed to investigate the use of caput epididymal ligation as a tool for the study of sperm maturation in mice. Our results indicate that after seven days of ligation, caput sperm gained motility and underwent molecular changes comparable with those observed for cauda mature sperm. Moreover, ligated caput sperm were able to activate pathways related to sperm capacitation. Despite these changes, ligated caput sperm were unable to fertilize in vitro. Our results suggest that transit through the epididymis is not required for the acquisition of motility and some capacitation-associated signaling but is essential for full epididymal maturation. Caput epididymal ligation is a useful tool for the study of the molecular pathways involved in the acquisition of sperm motility during maturation.


Assuntos
AMP Cíclico/metabolismo , Fosforilação/fisiologia , Maturação do Esperma/fisiologia , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/fisiologia , Animais , Epididimo/metabolismo , Epididimo/fisiologia , Feminino , Fertilização/fisiologia , Ligadura/métodos , Masculino , Camundongos , Transdução de Sinais/fisiologia , Capacitação Espermática/fisiologia , Espermatozoides/metabolismo
18.
Biol Reprod ; 102(1): 92-101, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31504198

RESUMO

A crucial function of the epididymis is providing a surface glycocalyx that is important for sperm maturation and capacitation. Defensins are antimicrobial peptides expressed in the epididymis. In the macaque epididymis, defensin beta 126 (DEFB126) is important for sperm motility, however, it is not known whether this is the case in humans. The objectives were to determine: (1) if DEFB126 on human ejaculated sperm was correlated with sperm motility in fertile and infertile men, (2) that recombinant DEFB126 could induce immature sperm motility in vitro. Immunofluorescence staining indicated that the proportion of DEFB126-positive sperm was significantly higher in motile sperm. Furthermore, the proportion of DEFB126-labeled sperm was positively correlated with sperm motility and normal morphology. Additional studies indicated that the proportion of DEFB126-positive spermatozoa in fertile volunteers was significantly higher than in volunteers with varicocele, and in infertile volunteers with semen deficiencies. To determine the role of DEFB126 on sperm motility, the DEFB126 gene was cloned and used to generate recombinant DEFB126 in H9C2 cells (rat embryonic heart myoblast cells). Deletion mutations were created into two regions of the protein, which have been linked to male infertility. Immotile testicular spermatozoa were incubated with cells expressing the different forms of DEFB126. Full-length DEFB126 significantly increased motility of co-cultured spermatozoa. However, no increase in sperm motility was observed with the mutated forms of DEFB126. In conclusion, these results support the notion that DEFB126 is important in human sperm maturation and the potential use of DEFB126 for in vitro sperm maturation.


Assuntos
Fertilidade/fisiologia , Infertilidade Masculina/metabolismo , Motilidade dos Espermatozoides/fisiologia , beta-Defensinas/metabolismo , Adulto , Epididimo/metabolismo , Humanos , Infertilidade Masculina/genética , Masculino , Pessoa de Meia-Idade , Maturação do Esperma/fisiologia , Espermatozoides/metabolismo , Adulto Jovem , beta-Defensinas/genética
19.
Biol Reprod ; 100(6): 1505-1520, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30997485

RESUMO

Progressive functional maturation of spermatozoa is completed during the transit of these cells through the epididymis, a tubule structure connecting a testicle to a vas deferens. Epididymal epithelial cells by means of their secretory and absorptive functions determine a highly specialized luminal microenvironment containing multiple organic and inorganic components. The latter include copper ions, which due to their redox properties are indispensable for critical homeostatic processes occurring in spermatozoa floating in different part of epididymis but can be potentially toxic. Main purpose of our study was to determine epididymal region-dependent expression and localization of copper transporters ensuring a tight control of copper concentration in epididymal fluid. We also aimed at identifying proteins responsible for copper uptake by spermatozoa and verifying whether this process is coordinated with copper supply to superoxide dismutase 1 (SOD1), a copper-dependent antioxidant enzyme. Our study identifies two ATPases-ATP7A, ATP7B and Slc31a1, major copper importers/exporters depending on their differential expression on epididymal polarized epithelial cells of the caput, corpus, and cauda. Next, ceruloplasmin seems to be a chief protein transporting copper in the epididymal fluid and providing this biometal to spermatozoa. The entry of copper to germ cells is mediated by Slc31a1 and is correlated with both expressions of copper chaperone for superoxide dismutase (CCS), copper chaperone directly providing copper ions to SOD1 and with the expression and activity of the latter. Our results outline a network of cooperating copper binding proteins expressed in epididymal epithelium and in spermatozoa that orchestrate bioavailability of this microelement for gametes and protect them against copper toxicity.


Assuntos
Proteínas de Transporte de Cobre/metabolismo , Cobre/metabolismo , Epididimo/metabolismo , Espermatozoides/metabolismo , Animais , Animais não Endogâmicos , Transporte Biológico/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte de Cobre/genética , Transportador de Cobre 1/genética , Transportador de Cobre 1/metabolismo , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Masculino , Redes e Vias Metabólicas/genética , Camundongos , Maturação do Esperma/fisiologia , Distribuição Tecidual
20.
Reproduction ; 158(5): R155-R167, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31176304

RESUMO

The epididymis is necessary for post-testicular sperm maturation as it provides the milieu required for spermatozoa to gain the ability for progressive movement and fertilization. In the epididymis the sperm protein, lipid and small RNA content are heavily modified due to interaction with luminal proteins secreted by the epididymal epithelium and extracellular vesicles, epididymosomes. This review focuses on epididymal proteins demonstrated to have an effect on sperm functions, such as motility, capacitation, acrosome reaction, sperm-zona pellucida binding and sperm-egg binding, as well as on embryonic development.


Assuntos
Epididimo/metabolismo , Proteínas/fisiologia , Espermatozoides/fisiologia , Reação Acrossômica/fisiologia , Animais , Humanos , Masculino , Proteínas/metabolismo , Capacitação Espermática/fisiologia , Maturação do Esperma/fisiologia , Interações Espermatozoide-Óvulo/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa