Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(25): 11162-11174, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38857410

RESUMO

Thermal treatment has emerged as a promising approach for either the end-of-life treatment or regeneration of granular activated carbon (GAC) contaminated with per- and polyfluoroalkyl substances (PFAS). However, its effectiveness has been limited by the requirement for high temperatures, the generation of products of incomplete destruction, and the necessity to scrub HF in the flue gas. This study investigates the use of common alkali and alkaline-earth metal additives to enhance the mineralization of perfluorooctanesulfonate (PFOS) adsorbed onto GAC. When treated at 800 °C without an additive, only 49% of PFOS was mineralized to HF. All additives tested demonstrated improved mineralization, and Ca(OH)2 had the best performance, achieving a mineralization efficiency of 98% in air or N2. Its ability to increase the reaction rate and shift the byproduct selectivity suggests that its role may be catalytic. Moreover, additives reduced HF in the flue gas by instead reacting with the additive to form inorganic fluorine (e.g., CaF2) in the starting waste material. A hypothesized reaction mechanism is proposed that involves the electron transfer from O2- defect sites of CaO to intermediates formed during the thermal decomposition of PFOS. These findings advocate for the use of additives in the thermal treatment of GAC for disposal or reuse, with the potential to reduce operating costs and mitigate the environmental impact associated with incinerating PFAS-laden wastes.


Assuntos
Ácidos Alcanossulfônicos , Carvão Vegetal , Fluorocarbonos , Carvão Vegetal/química , Ácidos Alcanossulfônicos/química , Fluorocarbonos/química , Metais Alcalinoterrosos/química , Adsorção , Álcalis/química , Temperatura Alta
2.
J Am Chem Soc ; 145(1): 216-223, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36541447

RESUMO

Protein nanocages are of increasing interest for use as drug capsules, but the encapsulation and release of drug molecules at appropriate times require the reversible association and dissociation of the nanocages. One promising approach to addressing this challenge is the design of metal-dependent associating proteins. Such designed proteins typically have Cys or His residues at the protein surface for connecting the associating proteins through metal-ion coordination. However, Cys and His residues favor interactions with soft and borderline metal ions, such as Au+ and Zn2+, classified by the hard and soft acids and bases concept, restricting the types of metal ions available to drive association. Here, we show the alkaline earth (AE) metal-dependent association of the recently designed artificial protein nanocage TIP60, which is composed of 60-mer fusion proteins. The introduction of a Glu (hard base) mutation to the fusion protein (K67E mutant) prevented the formation of the 60-mer but formed the expected cage structure in the presence of Ca, Sr, or Ba ions (hard acids). Cryogenic electron microscopy (cryo-EM) analysis indicated a Ba ion at the interface of the subunits. Furthermore, we demonstrated the encapsulation and release of single-stranded DNA molecules using this system. Our results provide insights into the design of AE metal-dependent association and dissociation mechanisms for proteins.


Assuntos
Metais Alcalinoterrosos , Metais , Metais Alcalinoterrosos/química , Metais/química , Íons , DNA de Cadeia Simples
3.
Luminescence ; 38(7): 1307-1318, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36349979

RESUMO

In the present work, the physical properties of alkali-earth metal and transition metal hydroxides are comprehensively investigated using the density functional theory. Here, the alkali-earth metals Ca, Mg, and transition metals Cd, Zn are considered from the II-A and II-B groups in the periodic table of elements. The first principle electronic structure calculations show that these bulk hydroxide materials are direct band gap material. Ca(OH)2 and Mg(OH)2 exhibit an insulating behavior with a very large band gap. However, Cd(OH)2 and Zn(OH)2 are found to be wide band gap semiconductors. The dielectric and optical studies reveal that these materials have a high degree of anisotropy. Hence, the light propagation in these materials behaves differently in the direction perpendicular and parallel to the optical axis, and exhibits birefringence. Therefore, these materials may be useful for optical communication. The calculated electron energy loss suggests that these materials can also be used for unwanted signal noise suppression. The wide band gap makes them useful for high-power applications. Moreover, Ca(OH)2 and Mg(OH)2 are found to be suitable for dielectric medium.


Assuntos
Cádmio , Hidróxidos , Hidróxidos/química , Metais Alcalinoterrosos/química , Eletrônica
4.
Phys Chem Chem Phys ; 24(20): 12121-12125, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35545953

RESUMO

Microhydrated H2-tagged ion pairs (Ca2+, AcO-)(H2O)n=0-8 and (Ba2+, AcO-)(H2O)n=0-5 are investigated by IR photodissociation laser spectroscopy and DFT-D frequency calculations. The detailed picture of the first steps of ion dissociation reveals two mechanisms, where water molecules promote dissociation either directly or indirectly depending on the nature of the cation.


Assuntos
Metais Alcalinoterrosos , Água , Ácidos Carboxílicos , Cátions , Metais Alcalinoterrosos/química , Água/química
5.
Anal Biochem ; 616: 114099, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33388294

RESUMO

Precipitation of DNA is performed frequently in molecular biology laboratories for the purpose of purification and concentration of samples and also for transfer of DNA into cells. Metal ions are used to facilitate these processes, though their precise functions are not well characterized. In the current study we have investigated the precipitation of double-stranded DNA by group 1 and group 2 metal ions. Double-stranded DNAs were not sedimented efficiently by metals alone, even at high concentrations. Increasing the pH to 11 or higher caused strong DNA precipitation in the presence of the divalent group 2 metals magnesium, calcium, strontium and barium, but not group 1 metals. Group 2 sedimentation profiles were distinctly different from that of the transition metal zinc, which caused precipitation at pH 8. Analysis of DNAs recovered from precipitates formed with calcium revealed that structural integrity was retained and that sedimentation efficiency was largely size-independent above 400 bp. Several tests supported a model whereby single-stranded DNA regions formed by denaturation at high pH became bound by the divalent metal cations. Neutralization of negative surface charges reduced the repulsive forces between molecules, leading to formation of insoluble aggregates that could be further stabilized by cation bridging (ionic crosslinking).


Assuntos
Precipitação Química , DNA/química , Metais Alcalinos/química , Metais Alcalinoterrosos/química , Cátions Bivalentes/química , Cátions Monovalentes/química , Cloretos/química , DNA/isolamento & purificação , Concentração de Íons de Hidrogênio , Espectroscopia Fotoeletrônica , Zinco/química
6.
Chem Rec ; 21(8): 1898-1911, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34197009

RESUMO

Biodegradable polyesters such as poly(ϵ-caprolactone) (PCL) and poly(lactic acid) (PLA) have been considered for use in several areas, such as drug delivery devices, sutures, tissue engineering, and GBR membranes, due to its bio-renewability, biodegradability, and biocompatibility. Several synthetic techniques for the preparation of polyesters have been reported in the literature, amongst which the ring-opening polymerization (ROP) of cyclic esters is the most efficient. A convenient approach to access iso-selective PLAs is polymerization of racemic lactide (rac-LA), which shows excellent stereoregularity without the need for costly chiral auxiliaries or ligands. In this personal account, we review a series of methods that have been practiced to the synthesis of biodegradable polyesters from various cyclic monomers using alkali and alkaline earth metal complexes as efficient catalysts.


Assuntos
Complexos de Coordenação/química , Metais Alcalinos/química , Metais Alcalinoterrosos/química , Poliésteres/química , Boranos/química , Catálise , Calcogênios/química , Ciclização , Ésteres/química , Poliésteres/síntese química
7.
Chemphyschem ; 21(1): 99-112, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31674092

RESUMO

Herein, we report a computational database for the complexes of alkali [Li(I), Na(I), K(I)] and alkaline-earth [Be(II), Mg(II) and Ca(II)] cations with 25 small ligands with varying charge and donor atoms ("O", "N", and "S") that provides geometries and accurate bond energies useful to analyze metal-ligand interactions in proteins and nucleic acids. The role of the ligand→metal charge transfer, the equilibrium bond distance, the electronegativity of the donor atom, the ligand polarizability, and the relative stability of the complexes are discussed in detail. The interacting quantum atoms (IQA) method is used to decompose the binding energy into electrostatic and quantum mechanical contributions. In addition, bond energies are also estimated by means of multipolar electrostatic calculations. No simple correlation exists between bond energies and structural/electronic descriptors unless the data are segregated by the type of ligand or metal. The electrostatic attraction of some molecules (H2 O, NH3 , CH3 OH) towards the metal cations is well reproduced using their (unrelaxed) atomic multipoles, but the same comparison is much less satisfactory for other ligands (e. g. benzene, thiol/thiolate groups, etc.). Besides providing reference structures and bond energies, the database can contribute to validate molecular mechanics potentials capable of yielding a balanced description of alkali and alkaline-earth metals binding to biomolecules.


Assuntos
Álcalis/química , Benzeno/química , Teoria da Densidade Funcional , Metais Alcalinoterrosos/química , Compostos Organometálicos/química , Compostos de Sulfidrila/química , Termodinâmica , Ligantes , Eletricidade Estática
8.
Phys Chem Chem Phys ; 22(10): 5584-5596, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32107511

RESUMO

The identity of metal ions surrounding DNA is key to its biological function and materials applications. In this work, we compare atomistic molecular dynamics simulations of double strand DNA (dsDNA) with four alkaline earth metal ions (Mg2+, Ca2+, Sr2+, and Ba2+) to elucidate the physical interactions that govern DNA-ion binding. Simulations accurately model the ion-phosphate distance of Mg2+ and reproduce ion counting experiments for Ca2+, Sr2+, and Ba2+. Our analysis shows that alkaline earth metal ions prefer to bind at the phosphate backbone compared to the major groove and negligible binding occurs in the minor groove. Larger alkaline earth metal ions with variable first solvation shells (Ca2+, Sr2+, and Ba2+) show both direct and indirect binding, where indirect binding increases with ion size. Mg2+ does not fit this trend because the strength of its first solvation shell predicts indirect binding only. Ions bound to the phosphate backbone form fewer contacts per ion compared to the major groove. Within the major groove, metal ions preferentially bind to guanine-cystosine base pairs and form simultaneous contacts with the N7 and O6 atoms of guanine. Overall, we find that the interplay among ion size, DNA-ion interaction, and the size and flexibility of the first solvation shell are key to predicting how alkaline earth metal ions interact with DNA.


Assuntos
DNA/química , Íons/química , Metais Alcalinoterrosos/química , Metais/química , Simulação de Dinâmica Molecular , Água/química
9.
Luminescence ; 35(5): 673-683, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31965707

RESUMO

The solution combustion technique was used to synthesize MLaAl3 O7 (M = Ba, Ca, Mg, and Sr) nanophosphors-doped with Eu3+ using metal nitrates as precursors. The photoluminescence (PL) emission spectra exhibited three peaks at 587-591, 610-616, and 653-654 corresponding to 5 D0 →7 F1 , 5 D0 →7 F2 , and 5 D0 →7 F3 transitions, respectively. Upon excitation at 254 nm, these nanophosphors displayed strong red emission with the dominant peak attributed to the 5 D0 →7 F2 transition of Eu3+ . The materials were further heated at 900 and 1050°C for 2 h to examine the consequence of temperature on crystal lattice and PL emission intensity. X-ray diffraction (XRD) analysis proved that all the synthesized materials were of a crystalline nature. CaLaAl3 O7 material has a tetragonal crystal structure with space group P421m. Scherer's equation was used to calculate the crystallite size of synthesized phosphors using XRD data. A Fourier transformation infrared study was used to observe the stretching vibrations of metal-oxygen bonds. Infrared peaks for stretching vibrations corresponding to lanthanum-oxygen and aluminium-oxygen bonds were found at 582 and 777 cm-1 respectively for CaLaAl3 O7 phosphor material. Transmission electron microscopy images were used to determine the size of particles (18-37 nm for the as-prepared materials) and also to analyze the three-dimensional view of these materials. The experimental data indicate that these materials may be promising red-emitting nanophosphors for use in white light-emitting diodes.


Assuntos
Alumínio/química , Substâncias Luminescentes/química , Metais Alcalinoterrosos/química , Metais Pesados/química , Nanopartículas/química , Oxigênio/química , Luminescência , Tamanho da Partícula , Processos Fotoquímicos , Propriedades de Superfície
10.
Langmuir ; 35(14): 4995-5003, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30892902

RESUMO

The fabrication of peptide assemblies to mimic the functions of natural proteins represents an intriguing aim in the fields of soft materials. Herein, we present a kind of novel peptide-based adhesive coacervate for the exploration of the environment-responsive underwater adhesion. Adhesive coacervates are designed and synthesized by self-assembled condensation of a tripeptide and polyoxometalates in aqueous solution. Rheological measurements demonstrate that the adhesive coacervates exhibit shear thinning behavior, which allows them to be conveniently delivered for interfacial spreading through a narrow gauge syringe without high pressure. The complex coacervates are susceptible to pH and metal ions, resulting in the occurrence of a phase transition from the fluid phase to the gel state. Scanning electron microscopy demonstrates that the microscale structures of the gel-like phases are composed of interconnected three-dimensional porous networks. The rheological study reveals that the gel-like assemblies exhibited mechanical stiffness and self-healing properties. Interestingly, the gel-like samples show the capacity to adhere to various wet solid substrates under the waterline. The adhesion strength of the peptide-based gel is quantified by lap shear mechanical analysis. The fluid coacervate is further exploited in the preparation of "on-site" injectable underwater adhesives triggered by environmental factors. This finding is exciting and serves to expand our capability for the fabrication of peptide-based underwater adhesives in a controllable way.


Assuntos
Metais Alcalinoterrosos/química , Metais Pesados/química , Peptídeos/química , Compostos de Tungstênio/química , Adesivos/química , Concentração de Íons de Hidrogênio , Íons/química , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Reologia , Propriedades de Superfície
11.
Eur Biophys J ; 48(8): 757-772, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31655894

RESUMO

The binding of alkaline earth cations Mg2+, Ca2+, and Sr2+ (M2+) to unilamellar 1,2-dimyristoyl-sn-glycero-3-phosphatidic acid (DMPA) vesicles was analysed by pH potentiometry, differential scanning calorimetry (DSC), isothermal titration calorimetry (ITC) and FT-IR spectroscopy. The binding of alkaline earth cations induces deprotonation of the DMPA headgroup even at very low concentration of divalent cations (~ 100 µM). The amount of deprotonated DMPA was measured by pH potentiometry as a function of divalent cation concentration. The thermotropic phase behaviour of DMPA:M2+ complexes was studied by DSC and FT-IR as a function of pH of the dispersion (pH 7 and pH 3-5). The formation of metastable phases was observed, especially for Ca2+ and Sr2+ at pH 3-5. In unbuffered solutions, the divalent cations bind to single and/or double negatively charged DMPA, leading to the formation of different complexes and changes in the mixing behaviour of the two complexes. At pH 7, all three equimolar lipid/cation mixtures form a very stable, highly ordered 1:1 DMPA:M2+ complex. At lower divalence, the presence of a mixture of 2:1 and 1:1 complexes was observed. FT-IR spectroscopy experiments indicated an ordering of the acyl chains of DMPA after ion binding even in the liquid-crystalline phase and the induction of the dissociation of the second proton from the headgroup induced by Ca2+ or Sr2+ binding at pH 7. With ITC, the binding enthalpy ΔH of Mg2+, Ca2+, and Sr2+ to DMPA model membranes in the gel and in the liquid-crystalline phase was measured. Evidence for dehydration of hydrophobic surfaces due to cation binding was derived from changes in heat capacity.


Assuntos
Compostos de Anilina/química , Membranas Artificiais , Metais Alcalinoterrosos/química , Eletricidade Estática , Concentração de Íons de Hidrogênio , Fosfatos/química , Vibração
12.
Inorg Chem ; 58(21): 14720-14727, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31613605

RESUMO

Although alkaline earth metal cations play an important role in our daily life, little attention has been paid to the field of fast quantitative analysis of their content due to a lack of satisfactory precision and a fast and convenient means of detection. In this study, we have designed a set of molecular tweezers based on the calix[4]arene chemosensor L, which was found to exhibit high selectivity and sensitivity toward Ca2+, Sr2+, and Ba2+ (by UV-vis and fluorescence methods) with low detection limits of the order of 10-7 to 10-8 M and high association constants (of the order of 106). More significantly, sensor L not only can recognize Ca2+, Sr2+, and Ba2+ but also can further discriminate between these three cations via the differing red shifts in their UV-vis spectra (560 nm for L·Ca2+, 570 nm for L·Sr2+, and 580 nm for L·Ba2+ complex) which is attributed to their different atomic radii. A rare synergistic effect for the recognition mechanism has been demonstrated by 1H NMR spectroscopic titration. Sensor L constructed a high shielding field by the cooperation of Tris with alkaline earth metal ion after complex. Additionally, the presence of acetoxymethyl group in sensor L results in enhancement of cell permeability, and as a consequence, sensor L exhibited excellent sensing and imaging (in vivo) in living cells and in zebrafish.


Assuntos
Bário/análise , Cálcio/análise , Calixarenos/química , Metais Alcalinoterrosos/química , Imagem Óptica , Compostos Organometálicos/química , Fenóis/química , Estrôncio/análise , Animais , Sobrevivência Celular , Células HeLa , Humanos , Compostos Organometálicos/síntese química , Células Tumorais Cultivadas , Peixe-Zebra
13.
Molecules ; 24(20)2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658670

RESUMO

Zeolite N is a synthetic zeolite of the EDI framework family from the more than 200 known zeolite types. Previous experimental laboratory and field data show that zeolite N has a high capacity for exchange of ions. Computational modelling and simulation techniques are effective tools that help explain the atomic-scale behaviour of zeolites under different processing conditions and allow comparison with experiment. In this study, the ion exchange behaviour of synthetic zeolite N in an aqueous environment is investigated by molecular dynamics simulations. The exchange mechanism of K+ extra-framework cations with alkaline and alkaline-earth cations NH4+, Li+, Na+, Rb+, Cs+, Mg2+ and Ca2+ is explored in different crystallographic directions inside the zeolite N structure. Moreover, the effect of different framework partial charges on MD simulation results obtained from different DFT calculations are examined. The results show that the diffusion and exchange of cations in zeolite N are affected by shape and size of channels controlling the ion exchange flow as well as the nature of cation, ionic size and charge density.


Assuntos
Simulação por Computador , Metais Alcalinoterrosos/química , Modelos Químicos , Zeolitas/química
14.
Anal Chem ; 90(21): 12861-12869, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30260210

RESUMO

Fatty acids (FA) play vital biological roles as energy sources, signaling molecules and key building blocks of complex lipids in cell membranes. Modifications to FA structure and composition are associated with the onset and progression of a number of chronic diseases. Consequently, the sensitive detection and unambiguous structure elucidation of FA is integral to the advancement of biomedical sciences. Recent advances in FA analysis have taken advantage of wet chemical derivatization to enhance detection and drive unique fragmentation in tandem mass spectrometry protocols. Here, we significantly further this approach through demonstrating gas-phase charge inversion of singly deprotonated FA ions, [M - H]-, using doubly charged tris-phenanthroline alkaline earth metal complexes, [Cat(Phen)3]2+ (Cat = Mg2+, Ca2+, Sr2+, or Ba2+). Metal cationized FA, [M - H + Cat]+ are obtained after the gas-phase ion/ion reaction. Low-energy collision-induced dissociation (CID) of the [M - H + Cat]+ cations facilitates double bond localization for a variety of monounsaturated and polyunsaturated FAs. Ultimately, detailed characterization presented unambiguous distinction among FA double bond positional isomers, such as n-3 and n-6 isomers. The method was successfully used to identify the FA profile of corn oil, including double bond localization for unsaturated FAs present.


Assuntos
Complexos de Coordenação/química , Ácidos Graxos Insaturados/análise , Gases/química , Metais Alcalinoterrosos/química , Fenantrolinas/química , Óleo de Milho/análise , Óleo de Milho/química , Ácidos Graxos Insaturados/química , Ligantes , Estrutura Molecular
15.
Biochim Biophys Acta ; 1860(5): 892-901, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26327285

RESUMO

BACKGROUND: ITC is a powerful technique that can reliably assess the thermodynamic underpinnings of a wide range of binding events. When metal ions are involved, complications arise in evaluating the data due to unavoidable solution chemistry that includes metal speciation and a variety of linked equilibria. SCOPE OF REVIEW: This paper identifies these concerns, provides recommendations to avoid common mistakes, and guides the reader through the mathematical treatment of ITC data to arrive at a set of thermodynamic state functions that describe identical chemical events and, ideally, are independent of solution conditions. Further, common metal chromophores used in biological metal sensing studies are proposed as a robust system to determine unknown solution competition. MAJOR CONCLUSIONS: Metal ions present several complications in ITC experiments. This review presents strategies to avoid these pitfalls and proposes and experimentally validates mathematical approaches to deconvolute complex equilibria that exist in these systems. GENERAL SIGNIFICANCE: This review discusses the wide range of complications that exists in metal-based ITC experiments. It provides a starting point for scientists new to this field and articulates concerns that will help experienced researchers troubleshoot experiments.


Assuntos
Aminoquinolinas/química , Ácido Edético/química , Fura-2/análogos & derivados , Metais Alcalinoterrosos/química , Proteínas/química , Sítios de Ligação , Calorimetria , Cátions Bivalentes , Fura-2/química , Humanos , Cinética , Ligantes , Modelos Químicos , Ligação Proteica , Termodinâmica
16.
Langmuir ; 33(12): 2986-2992, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28267925

RESUMO

The translational diffusion dynamics of the zwitterionic lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) at a planar phosphorylated support surface containing metal ions (Mg2+, Ca2+, Ba2+, Ni2+, Zn2+, Cd2+, Zr4+) was investigated using X-ray photoelectron spectroscopy (XPS) and fluorescence recovery after photobleaching (FRAP). Fluorescence recovery curves yielded diffusion constants on the order of 2-5 µm2/s for the chromophore-tagged 12:0 NBD-Lyso-PC. Ionic interactions between the zwitterionic headgroup and metal ions were found to play a secondary role in mediating lipid fluidity. This work provides quantitative insight into the extent to which the fluidity of a supported lipid film is mediated by the ionic interactions between headgroup and surface versus that of the lipid-lipid tailgroup interactions.


Assuntos
Metais Alcalinoterrosos/química , Metais Pesados/química , Fosfolipídeos/química , Termodinâmica , Difusão , Fluorescência , Estrutura Molecular , Espectroscopia Fotoeletrônica
17.
Phys Chem Chem Phys ; 19(18): 11111-11119, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28425557

RESUMO

This paper reports designing a novel single composition blue/red color illuminating phosphor followed by fabricating "smart" agricultural/horticultural LED lighting. Color-tunable Eu2+/Mn2+ co-activated alkaline earth phosphates, Na(Sr,Ba)PO4 and Ca3Mg3(PO4)4, are considered, and the stable doping sites for the corresponding activators are identified by using first-principle DFT calculations. We can realize the designated color purity with stable thermal quenching preserved luminescence behavior is induced by the Eu2+ center positioned at different coordination states with intermixed Sr2+/Ba2+ sites in Na(Sr,Ba)PO4 hosts. Moreover, we demonstrate that the resultant LED lighting adopting the proposed novel phosphor composition stimulates the enhanced photosynthesis reaction for indoor hydroponics plants, such as oats and onions, which is superior to the narrow line emission band induced by the mixture of conventional red/green/blue LEDs. Thus, using the color-tunable single composition luminescent material may produce an innovative energy-efficient artificial lighting for indoor plant growth.


Assuntos
Európio/química , Iluminação/instrumentação , Substâncias Luminescentes/química , Manganês/química , Fosfatos/química , Luminescência , Substâncias Luminescentes/síntese química , Metais Alcalinoterrosos/química , Fosfatos/síntese química , Desenvolvimento Vegetal/efeitos da radiação
18.
Chemistry ; 22(13): 4564-83, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26864122

RESUMO

Alkaline-earth (Ae=Ca, Sr, Ba) complexes are shown to catalyse the chemoselective cross-dehydrocoupling (CDC) of amines and hydrosilanes. Key trends were delineated in the benchmark couplings of Ph3 SiH with pyrrolidine or tBuNH2 . Ae{E(SiMe3)2}2 ⋅(THF)x (E=N, CH; x=2-3) are more efficient than {N^N}Ae{E(SiMe3)2}⋅(THF)n (E=N, CH; n=1-2) complexes (where {N^N}(-) ={ArN(o-C6H4)C(H)=NAr}(-) with Ar=2,6-iPr2 -C6H3) bearing an iminoanilide ligand, and alkyl precatalysts are better than amido analogues. Turnover frequencies (TOFs) increase in the order Ca30 products) includes diamines and di(hydrosilane)s. Kinetic analysis of the Ba-promoted CDC of pyrrolidine and Ph3SiH shows that 1) the kinetic law is rate=k[Ba](1) [amine](0) [hydrosilane](1), 2) electron-withdrawing p-substituents on the arylhydrosilane improve the reaction rate and 3) a maximal kinetic isotopic effect (kSiH/kSiD =4.7) is seen for Ph3SiX (X=H, D). DFT calculations identified the prevailing mechanism; instead of an inaccessible σ-bond-breaking metathesis pathway, the CDC appears to follow a stepwise reaction path with N-Si bond-forming nucleophilic attack of the catalytically competent Ba pyrrolide onto the incoming silane, followed by rate limiting hydrogen-atom transfer to barium. The participation of a Ba silyl species is prevented energetically. The reactivity trend Ca

Assuntos
Aminas/química , Metais Alcalinoterrosos/química , Silanos/química , Aminação , Catálise , Cinética , Ligantes , Modelos Moleculares , Polimerização
19.
Environ Sci Technol ; 50(21): 11654-11662, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27712057

RESUMO

The uptakes of calcium (Ca), strontium (Sr), and barium (Ba) by two cyanobacterial strains, Cyanothece sp. PCC7425 and Gloeomargarita lithophora, both forming intracellular carbonates, were investigated in laboratory cultures. In the culture medium BG-11 amended with 250 µM Ca and 50 or 250 µM Sr and Ba, G. lithophora accumulated first Ba, then Sr, and finally Ca. Sr and Ba were completely accumulated by G. lithophora cells at rates between 0.02 and 0.10 fmol h-1 cell-1 and down to extracellular concentrations below the detection limits of inductively coupled plasma atomic emission spectroscopy. Accumulation of Sr and Ba did not affect the growth rate of the strain. This sequential accumulation occurred mostly intracellularly within polyphosphate and carbonate granules and resulted in the formation of core-shell structures in carbonates. In contrast, Cyanothece sp. PCC7425 showed neither a preferential accumulation of heavier alkaline earth metals nor core-shell structures in the carbonates. This indicated that fractionation between alkaline earth metals was not inherent to intracellularly calcifying cyanobacteria but was likely a genetically based trait of G. lithophora. Overall, the capability of G. lithophora to sequester preferentially Sr and Ba at high rates may be of considerable interest for designing new remediation strategies and better understanding the geochemical cycles of these elements.


Assuntos
Bário/química , Metais Alcalinoterrosos/química , Carbonatos/química , Cianobactérias , Estrôncio/química
20.
Chemistry ; 21(18): 6765-79, 2015 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-25801822

RESUMO

A comprehensive computational exploration of plausible alternative mechanistic pathways for the intramolecular hydroamination (HA) of aminoalkenes by a recently reported class of kinetically stabilised iminoanilide alkaline-earth silylamido compounds [{N^N}Ae{N(SiMe3)2}⋅(thf)n] ({N^N} = iminoanilide; Ae = Ca, Sr, Ba) is presented. On the one hand, a proton-assisted concerted N-C/C-H bond-forming pathway to afford the cycloamine in a single step can be invoked and on the other hand, a stepwise σ-insertive pathway that involves a fast, reversible migratory olefin 1,2-insertion step linked to a less rapid, irreversible metal-C azacycle tether σ-bond aminolysis. Notably, these alternative mechanistic avenues are equally consistent with reported key experimental features. The present study, which employs a thoroughly benchmarked and reliable DFT methodology, supports the prevailing mechanism to be a stepwise σ-insertive pathway that sees an initial conversion of the {N^N}Ae silylamido into the catalytically competent {N^N}Ae amidoalkene compound and involves thereafter facile and reversible insertive N-C bond-forming ring closure, linked to irreversible intramolecular Ae-C tether σ-bond aminolysis at the transient {N^N}Ae alkyl intermediate. Turnover-limiting protonolysis accounts for the substantial primary kinetic isotope effect observed; its DFT-derived barrier satisfactorily matches the empirically determined Eyring parameter and predicts the decrease in rate observed across the series Ca>Sr>Ba correctly. Non-competitive kinetic demands militate against the operation of the concerted proton-assisted pathway, which describes N-C bond-forming ring closure triggered by concomitant amino proton delivery at the C=C linkage evolving through a multi-centre TS structure. Valuable insights into the catalytic structure-activity relationships are unveiled by a detailed comparison of [{N^N}Ae(NHR)] catalysts. Moreover, the intriguingly opposite trends in reactivity observed in intramolecular (Ca>Sr>Ba) and intermolecular (Ca

Assuntos
Alcenos/química , Aminas/química , Anilidas/química , Iminas/química , Metais Alcalinoterrosos/química , Compostos Organometálicos/química , Aminação , Catálise , Ciclização , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa