RESUMO
Myxococcus xanthus is a common soil bacterium with a complex life cycle, which is known for production of secondary metabolites. However, little is known about the effects of nutrient availability on M. xanthus metabolite production. In this study, we utilize confocal Raman microscopy (CRM) to examine the spatiotemporal distribution of chemical signatures secreted by M. xanthus and their response to varied nutrient availability. Ten distinct spectral features are observed by CRM from M. xanthus grown on nutrient-rich medium. However, when M. xanthus is constrained to grow under nutrient-limited conditions, by starving it of casitone, it develops fruiting bodies, and the accompanying Raman microspectra are dramatically altered. The reduced metabolic state engendered by the absence of casitone in the medium is associated with reduced, or completely eliminated, features at 1140 cm-1, 1560 cm-1, and 1648 cm-1. In their place, a feature at 1537 cm-1 is observed, this feature being tentatively assigned to a transitional phase important for cellular adaptation to varying environmental conditions. In addition, correlating principal component analysis heat maps with optical images illustrates how fruiting bodies in the center co-exist with motile cells at the colony edge. While the metabolites responsible for these Raman features are not completely identified, three M. xanthus peaks at 1004, 1151, and 1510 cm-1 are consistent with the production of lycopene. Thus, a combination of CRM imaging and PCA enables the spatial mapping of spectral signatures of secreted factors from M. xanthus and their correlation with metabolic conditions.
Assuntos
Myxococcus xanthus/metabolismo , Técnicas de Cultura de Células , Meios de Cultura/química , Meios de Cultura/metabolismo , Metaboloma , Myxococcus xanthus/química , Myxococcus xanthus/crescimento & desenvolvimento , Análise Espectral RamanRESUMO
MreB is a bacterial actin that is important for cell shape and cell wall biosynthesis in many bacterial species. MreB also plays crucial roles in Myxococcus xanthus gliding motility, but the underlying mechanism remains unknown. Here we tracked the dynamics of single MreB particles in M. xanthus using single-particle tracking photoactivated localization microscopy. We found that a subpopulation of MreB particles moves rapidly along helical trajectories, similar to the movements of the MotAB-like gliding motors. The rapid MreB motion was stalled in the mutants that carried truncated gliding motors. Remarkably, M. xanthus MreB moves one to two orders of magnitude faster than its homologs that move along with the cell wall synthesis machinery in Bacillus subtilis and Escherichia coli, and this rapid movement was not affected by the inhibitors of cell wall biosynthesis. Our results show that in M. xanthus, MreB provides a scaffold for the gliding motors while the gliding machinery drives the movement of MreB filaments, analogous to the interdependent movements of myosin motors and actin in eukaryotic cells.
Assuntos
Actinas/metabolismo , Proteínas de Bactérias/metabolismo , Movimento Celular/fisiologia , Myxococcus xanthus/metabolismo , Myxococcus xanthus/fisiologia , Actinas/química , Actinas/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Mutação , Myxococcus xanthus/química , Myxococcus xanthus/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteína Vermelha FluorescenteRESUMO
In bacteria, cell-surface polysaccharides fulfill important physiological functions, including interactions with the environment and other cells as well as protection from diverse stresses. The Gram-negative delta-proteobacterium Myxococcus xanthus is a model to study social behaviors in bacteria. M. xanthus synthesizes four cell-surface polysaccharides, i.e., exopolysaccharide (EPS), biosurfactant polysaccharide (BPS), spore coat polysaccharide, and O-antigen. Here, we describe recent progress in elucidating the three Wzx/Wzy-dependent pathways for EPS, BPS and spore coat polysaccharide biosynthesis and the ABC transporter-dependent pathway for O-antigen biosynthesis. Moreover, we describe the functions of these four cell-surface polysaccharides in the social life cycle of M. xanthus.
Assuntos
Membrana Celular/metabolismo , Myxococcus xanthus/química , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/metabolismo , Membrana Celular/química , Myxococcus xanthus/citologia , Myxococcus xanthus/metabolismo , Polissacarídeos Bacterianos/químicaRESUMO
Myxococcus xanthus kills susceptible bacteria using myxovirescin A (TA) during predation. However, whether prey cells in nature can escape M. xanthus by developing resistance to TA is unknown. We observed that many field-isolated Bacillus licheniformis strains could survive encounters with M. xanthus, which was correlated to their TA resistance. A TA glycoside was identified in the broth of predation-resistant B. licheniformis J32 co-cultured with M. xanthus, and a glycosyltransferase gene (yjiC) was up-regulated in J32 after the addition of TA. Hetero-expressed YjiC-modified TA to a TA glucoside (TA-Gluc) by conjugating a glucose moiety to the C-21 hydroxyl group, and the resulting compound was identical to the TA glycoside present in the co-culture broth. TA-Gluc exhibited diminished bactericidal activity due to its weaker binding with LspA, as suggested by in silico docking data. Heterologous expression of the yjiC gene conferred both TA and M. xanthus-predation resistance to the host Escherichia coli cells. Furthermore, under predatory pressure, B. licheniformis Y071 rapidly developed predation resistance by acquiring TA resistance through the overexpression of yjiC and lspA genes. These results suggest that M. xanthus predation resistance in B. licheniformis is due to the TA deactivation by glucosylation, which is induced in a predator-mediated manner.
Assuntos
Bacillus licheniformis/enzimologia , Proteínas de Bactérias/metabolismo , Glicosiltransferases/metabolismo , Macrolídeos/metabolismo , Myxococcus xanthus/metabolismo , Bacillus licheniformis/metabolismo , Proteínas de Bactérias/genética , Glicosilação , Glicosiltransferases/genética , Macrolídeos/química , Myxococcus xanthus/química , Myxococcus xanthus/genéticaRESUMO
Combining high-resolution single cell tracking experiments with numerical simulations, we show that starvation-induced fruiting body formation in Myxococcus xanthus is a phase separation driven by cells that tune their motility over time. The phase separation can be understood in terms of cell density and a dimensionless Péclet number that captures cell motility through speed and reversal frequency. Our work suggests that M. xanthus takes advantage of a self-driven nonequilibrium phase transition that can be controlled at the single cell level.
Assuntos
Myxococcus xanthus/fisiologia , Movimento Celular/fisiologia , Myxococcus xanthus/química , Myxococcus xanthus/citologia , Transição de FaseRESUMO
The type VI secretion system (T6SS) is a versatile molecular weapon used by many bacteria against eukaryotic hosts or prokaryotic competitors. It consists of a cytoplasmic bacteriophage tail-like structure anchored in the bacterial cell envelope via a cytoplasmic baseplate and a periplasmic membrane complex. Rapid contraction of the sheath in the bacteriophage tail-like structure propels an inner tube/spike complex through the target cell envelope to deliver effectors. While structures of purified contracted sheath and purified membrane complex have been solved, because sheaths contract upon cell lysis and purification, no structure is available for the extended sheath. Structural information about the baseplate is also lacking. Here, we use electron cryotomography to directly visualize intact T6SS structures inside Myxococcus xanthus cells. Using sub-tomogram averaging, we resolve the structure of the extended sheath and membrane-associated components including the baseplate. Moreover, we identify novel extracellular bacteriophage tail fiber-like antennae. These results provide new structural insights into how the extended sheath prevents premature disassembly and how this sophisticated machine may recognize targets.
Assuntos
Myxococcus xanthus/ultraestrutura , Sistemas de Secreção Tipo VI/ultraestrutura , Bacteriófagos/ultraestrutura , Microscopia Crioeletrônica/instrumentação , Microscopia Crioeletrônica/métodos , Microscopia Intravital/instrumentação , Microscopia Intravital/métodos , Estrutura Molecular , Myxococcus xanthus/química , Myxococcus xanthus/citologia , Ligação Proteica , Multimerização Proteica , Sistemas de Secreção Tipo VI/químicaRESUMO
Precursor-directed biosynthesis was used to introduce selected aryl carboxylic acids into the pseudochelin pathway, which had recently been assembled in Myxococcus xanthus. Overall, 14 previously undescribed analogues of the natural products myxochelin B and pseudochelin A were generated and structurally characterized. A subset of 10 derivatives together with their parental molecules were evaluated for their activity toward human 5-lipoxygenase. This testing revealed pseudochelin A as the most potent 5-lipoxygenase inhibitor among the naturally occurring compounds, whereas myxochelin A is the least active. Replacement of the catechol moieties in myxochelin B and pseudochelin A affected the bioactivity to different degrees.
Assuntos
Proteínas de Bactérias/farmacologia , Catecóis/farmacologia , Engenharia Genética , Inibidores de Lipoxigenase/farmacologia , Lisina/análogos & derivados , Myxococcus xanthus/química , Humanos , Inibidores de Lipoxigenase/isolamento & purificação , Lisina/farmacologia , Myxococcus xanthus/genéticaRESUMO
Polyphosphate kinase 1 (Ppk1) catalyzes reverse transfer of the terminal phosphate from ATP to form polyphosphate (polyP) and from polyP to form ATP, and is responsible for the synthesis of most of cellular polyPs. When Ppk1 from Myxococcus xanthus was incubated with 0.2 mM polyP60-70 and 1 mM ATP or ADP, the rate of ATP synthesis was approximately 1.5-fold higher than that of polyP synthesis. If in the same reaction the proportion of ADP in the ATP/ADP mixture exceeded one-third, the equilibrium shifted to ATP synthesis, suggesting that M. xanthus Ppk1 preferentially catalyzed ATP formation. At the same time, GTP and GDP were not recognized as substrates by Ppk1. In the absence of polyP, Ppk1 generated ATP and AMP from ADP, and ADP from ATP and AMP, suggesting that the enzyme catalyzed the transfer of a phosphate group between ADP molecules yielding ATP and AMP, thus exhibiting adenylate kinase activity.
Assuntos
Proteínas de Bactérias/metabolismo , Myxococcus xanthus/enzimologia , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Cinética , Myxococcus xanthus/química , Myxococcus xanthus/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/química , Fosfotransferases (Aceptor do Grupo Fosfato)/genéticaRESUMO
Cryo-electron tomography (CET) produces three-dimensional images of cells in a near-native state at macromolecular resolution, but identifying structures of interest can be challenging. Here we describe a correlated cryo-PALM (photoactivated localization microscopy)-CET method for localizing objects within cryo-tomograms to beyond the diffraction limit of the light microscope. Using cryo-PALM-CET, we identified multiple and new conformations of the dynamic type VI secretion system in the crowded interior of Myxococcus xanthus.
Assuntos
Sistemas de Secreção Bacterianos , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Myxococcus xanthus/ultraestrutura , Imageamento Tridimensional/métodos , Myxococcus xanthus/químicaRESUMO
The gene encoding a novel acidic lipoxygenase from Myxococcus xanthus DK1622 (accession: WP_011551853.1) was cloned into vector pET-28a and expressed in Escherichia coli BL21(DE3). The recombinant enzyme (rMxLOX), with a molecular weight of approximately 80 kDa, was purified to homogeneity using one-step nickel-affinity chromatography and showed an activity of 5.6 × 104 U/mg. The optimum pH and temperature for rMxLOX activity were found to be 3.0 and 30 °C, respectively. Purified rMxLOX exhibited activity towards linoleic acid and arachidonic acid as substrates, with linoleic acid being the better substrate (Km and kcat values of 0.048 mM and 13.3/s, respectively). The synthetic dye aniline blue was decolorized 69.7 ± 3.5%, following incubation with rMxLOX for 35 min. These results reveal the potential for the use of rMxLOX in the pulp, textile, and wastewater treatment industries.
Assuntos
Ácido Araquidônico/metabolismo , Proteínas de Bactérias/metabolismo , Ácido Linoleico/metabolismo , Lipoxigenase/metabolismo , Myxococcus xanthus/química , Compostos de Anilina/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Cromatografia de Afinidade , Clonagem Molecular , Ensaios Enzimáticos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Lipoxigenase/genética , Lipoxigenase/isolamento & purificação , Peso Molecular , Myxococcus xanthus/enzimologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , TemperaturaRESUMO
Chemosensory systems (CSS) are complex regulatory pathways capable of perceiving external signals and translating them into different cellular behaviors such as motility and development. In the δ-proteobacterium Myxococcus xanthus, chemosensing allows groups of cells to orient themselves and aggregate into specialized multicellular biofilms termed fruiting bodies. M. xanthus contains eight predicted CSS and 21 chemoreceptors. In this work, we systematically deleted genes encoding components of each CSS and chemoreceptors and determined their effects on M. xanthus social behaviors. Then, to understand how the 21 chemoreceptors are distributed among the eight CSS, we examined their phylogenetic distribution, genomic organization and subcellular localization. We found that, in vivo, receptors belonging to the same phylogenetic group colocalize and interact with CSS components of the respective phylogenetic group. Finally, we identified a large chemosensory module formed by three interconnected CSS and multiple chemoreceptors and showed that complex behaviors such as cell group motility and biofilm formation require regulatory apparatus composed of multiple interconnected Che-like systems.
Assuntos
Quimiotaxia/genética , Regulação Bacteriana da Expressão Gênica , Myxococcus xanthus/genética , Transdução de Sinais/genética , Biofilmes/crescimento & desenvolvimento , Movimento Celular/genética , Movimento , Myxococcus xanthus/química , Myxococcus xanthus/crescimento & desenvolvimento , FilogeniaRESUMO
The E-signal is one of five intercellular signals (named A- to E-signal) guiding fruiting body development in Myxococcus xanthus, and it has been shown to be a combination of the branched-chain fatty acid (FA) iso-15 : 0 and the diacylmonoalkyl ether lipid TG1. Developmental mutants HB015 (Δbkd MXAN_4265::kan) and elbD (MXAN_1528::kan) are blocked at different stages of fruiting body and spore formation as they cannot form the required iso-FA or the actual ether lipid, respectively. In order to define the structural basis of the E-signal, different mono- and triglycerides containing ether or ester bonds were synthesized and used for complementation of these mutants. Here, the monoalkylglyceride dl-1-O-(13-methyltetradecyl)glycerol exhibited comparably high levels of complementation in both mutants, restoring fruiting body and spore formation, identifying iso-15 : 0 O-alkylglycerol, part of the natural lipid TG1, as the 'signalophore' of E-signalling.
Assuntos
Ácidos Graxos/química , Ácidos Graxos/metabolismo , Myxococcus xanthus/metabolismo , Transdução de Sinais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Estrutura Molecular , Myxococcus xanthus/química , Myxococcus xanthus/genética , Myxococcus xanthus/crescimento & desenvolvimento , Esporos Bacterianos/química , Esporos Bacterianos/genética , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/metabolismoRESUMO
UNLABELLED: NADP(+) is a vital cofactor involved in a wide variety of activities, such as redox potential and cell death. Here, we show that NADP(+) negatively regulates an acetyltransferase from Myxococcus xanthus, Mxan_3215 (MxKat), at physiologic concentrations. MxKat possesses an NAD(P)-binding domain fused to the Gcn5-type N-acetyltransferase (GNAT) domain. We used isothermal titration calorimetry (ITC) and a coupled enzyme assay to show that NADP(+) bound to MxKat and that the binding had strong effects on enzyme activity. The Gly11 residue of MxKat was confirmed to play an important role in NADP(+) binding using site-directed mutagenesis and circular dichroism spectrometry. In addition, using mass spectrometry, site-directed mutagenesis, and a coupling enzymatic assay, we demonstrated that MxKat acetylates acetyl coenzyme A (acetyl-CoA) synthetase (Mxan_2570) at Lys622 in response to changes in NADP(+) concentration. Collectively, our results uncovered a mechanism of protein acetyltransferase regulation by the coenzyme NADP(+) at physiological concentrations, suggesting a novel signaling pathway for the regulation of cellular protein acetylation. IMPORTANCE: Microorganisms have developed various protein posttranslational modifications (PTMs), which enable cells to respond quickly to changes in the intracellular and extracellular milieus. This work provides the first biochemical characterization of a protein acetyltransferase (MxKat) that contains a fusion between a GNAT domain and NADP(+)-binding domain with Rossmann folds, and it demonstrates a novel signaling pathway for regulating cellular protein acetylation in M. xanthus. We found that NADP(+) specifically binds to the Rossmann fold of MxKat and negatively regulates its acetyltransferase activity. This finding provides novel insight for connecting cellular metabolic status (NADP(+) metabolism) with levels of protein acetylation, and it extends our understanding of the regulatory mechanisms underlying PTMs.
Assuntos
Acetato-CoA Ligase/genética , Proteínas de Bactérias/metabolismo , Coenzimas/metabolismo , Regulação Enzimológica da Expressão Gênica , Myxococcus xanthus/enzimologia , NADP/metabolismo , Acetato-CoA Ligase/química , Acetato-CoA Ligase/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Coenzimas/química , Regulação Bacteriana da Expressão Gênica , Cinética , Dados de Sequência Molecular , Myxococcus xanthus/química , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo , NADP/química , Alinhamento de SequênciaRESUMO
Myxococcus xanthus is a Gram-negative deltaproteobacterium that has evolved the ability to differentiate into metabolically quiescent spores that are resistant to heat and desiccation. An essential feature of the differentiation processes is the assembly of a rigid, cell wall-like spore coat on the surface of the outer membrane. In this study, we characterize the spore coat composition and describe the machinery necessary for secretion of spore coat material and its subsequent assembly into a stress-bearing matrix. Chemical analyses of isolated spore coat material indicate that the spore coat consists primarily of short 1-4- and 1-3-linked GalNAc polymers that lack significant glycosidic branching and may be connected by glycine peptides. We show that 1-4-linked glucose (Glc) is likely a minor component of the spore coat with the majority of the Glc arising from contamination with extracellular polysaccharides, O-antigen, or storage compounds. Neither of these structures is required for the formation of resistant spores. Our analyses indicate the GalNAc/Glc polymer and glycine are exported by the ExoA-I system, a Wzy-like polysaccharide synthesis and export machinery. Arrangement of the capsular-like polysaccharides into a rigid spore coat requires the NfsA-H proteins, members of which reside in either the cytoplasmic membrane (NfsD, -E, and -G) or outer membrane (NfsA, -B, and -C). The Nfs proteins function together to modulate the chain length of the surface polysaccharides, which is apparently necessary for their assembly into a stress-bearing matrix.
Assuntos
Myxococcus xanthus/química , Antígenos O/química , Polissacarídeos/química , Esporos Bacterianos/química , Proteínas de Bactérias/química , Centrifugação com Gradiente de Concentração , Microscopia Eletrônica , Mutação , Oligossacarídeos/química , FenótipoRESUMO
Subsets of proteins involved in distinct functional processes are subject to different selective pressures. We investigated whether there is an amino acid composition bias (AACB) inherent in discrete subsets of proteins, and whether we could identify changing patterns of AACB during the life cycle of the social bacterium Myxococcus xanthus. We quantitatively characterised the cellular, soluble secreted, and outer membrane vesicle (OMV) sub-proteomes of M. xanthus, identifying 315 proteins. The AACB of the cellular proteome differed only slightly from that deduced from the genome, suggesting that genome-inferred proteomes can accurately reflect the AACB of their host. Inferred AA deficiencies arising from prey consumption were exacerbated by the requirements of the 68%GC genome, whose character thus seems to be selected for directly rather than via the proteome. In our analysis, distinct subsets of the proteome (whether segregated spatially or temporally) exhibited distinct AACB, presumably tailored according to the needs of the organism's lifestyle and nutrient availability. Secreted AAs tend to be of lower cost than those retained in the cell, except for the early developmental A-signal, which is a particularly costly sub-proteome. We propose a model of AA reallocation during the M. xanthus life cycle, involving ribophagy during early starvation and sequestration of limiting AAs within cells during development.
Assuntos
Aminoácidos/química , Proteínas de Bactérias/química , Myxococcus xanthus/química , Proteoma , Proteínas da Membrana Bacteriana Externa/química , Cromatografia Líquida , Genoma Bacteriano , Espectrometria de Massas , Proteômica , Ribossomos/química , Transdução de SinaisRESUMO
The social soil bacterium, Myxococcus xanthus, displays a variety of complex and highly coordinated behaviours, including social motility, predatory rippling and fruiting body formation. Here we show that M. xanthus cells produce a network of outer membrane extensions in the form of outer membrane vesicle chains and membrane tubes that interconnect cells. We observed peritrichous display of vesicles and vesicle chains, and increased abundance in biofilms compared with planktonic cultures. By applying a range of imaging techniques, including three-dimensional (3D) focused ion beam scanning electron microscopy, we determined these structures to range between 30 and 60 nm in width and up to 5 µm in length. Purified vesicle chains consist of typical M. xanthus lipids, fucose, mannose, N-acetylglucosamine and N-acetylgalactoseamine carbohydrates and a small set of cargo protein. The protein content includes CglB and Tgl outer membrane proteins known to be transferable between cells in a contact-dependent manner. Most significantly, the 3D organization of cells within biofilms indicates that cells are connected via an extensive network of membrane extensions that may connect cells at the level of the periplasmic space. Such a network would allow the transfer of membrane proteins and other molecules between cells, and therefore could provide a mechanism for the coordination of social activities.
Assuntos
Proteínas da Membrana Bacteriana Externa/química , Biofilmes , Matriz Extracelular/ultraestrutura , Myxococcus xanthus/química , Membrana Celular/ultraestrutura , Microscopia Eletrônica de Varredura , Myxococcus xanthus/fisiologia , Myxococcus xanthus/ultraestruturaRESUMO
MazF is an mRNA interferase that cleaves mRNAs at a specific RNA sequence. MazF from E. coli (MazF-ec) cleaves RNA at A^CA. To date, a large number of MazF homologs that cleave RNA at specific three- to seven-base sequences have been identified from bacteria to archaea. MazF-ec forms a dimer, in which the interface between the two subunits is known to be the RNA substrate-binding site. Here, we investigated the role of the two loops in MazF-ec, which are closely associated with the interface of the MazF-ec dimer. We examined whether exchanging the loop regions of MazF-ec with those from other MazF homologs, such as MazF from Myxococcus xanthus (MazF-mx) and MazF from Mycobacterium tuberculosis (MazF-mt3), affects RNA cleavage specificity. We found that exchanging loop 2 of MazF-ec with loop 2 regions from either MazF-mx or MazF-mt3 created a new cleavage sequence at (A/U)(A/U)AA^C in addition to the original cleavage site, A^CA, whereas exchanging loop 1 did not alter cleavage specificity. Intriguingly, exchange of loop 2 with 8 or 12 consecutive Gly residues also resulted in a new RNA cleavage site at (A/U)(A/U)AA^C. The present study suggests a method for expanding the RNA cleavage repertoire of mRNA interferases, which is crucial for potential use in the regulation of specific gene expression and for biotechnological applications.
Assuntos
Proteínas de Ligação a DNA/química , Endorribonucleases/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Mycobacterium tuberculosis/enzimologia , Myxococcus xanthus/enzimologia , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Microbiologia Industrial , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Mutação , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Myxococcus xanthus/química , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo , Peptídeos/metabolismo , RNA Bacteriano/química , RNA Mensageiro/química , Alinhamento de SequênciaRESUMO
Bactofilins are fibre-forming bacterial cytoskeletal proteins. Here, we report the structural and biochemical characterization of MXAN_7475 (BacM), one of the four bactofilins of Myxococcus xanthus. Absence of BacM leads to a characteristic 'crooked' cell morphology and an increased sensitivity to antibiotics targeting cell wall biosynthesis. The absence of the other three bactofilins MXAN_4637-4635 (BacN-P) has no obvious phenotype. In M. xanthus, BacM exists as a 150-amino-acid full-length version and as a version cleaved before Ser28. In the cell, native BacM forms 3 nm wide fibres, which assemble into bundles forming helix-like cytoplasmic cables throughout the cell, and in a subset of cells additionally a polarly arranged lateral rod-like structure. Isolated fibres consist almost completely of the N-terminally truncated version, suggesting that the proteolytic cleavage occurs before or during fibre formation. Fusion of BacM to mCherry perturbs BacM function and cellular fibre arrangement, resulting for example in the formation of one prominent polar corkscrew-like structure per cell. Immunofluorescence staining of BacM and MreB shows that their cellular distributions are not matching. Taken together, these data suggest that rod-shaped bacteria like M. xanthus use bactofilin fibres to achieve and maintain their characteristic cell morphology and cell wall stability.
Assuntos
Proteínas de Bactérias/metabolismo , Fenômenos Fisiológicos Celulares , Proteínas do Citoesqueleto/metabolismo , Myxococcus xanthus/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/ultraestrutura , Parede Celular/metabolismo , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/ultraestrutura , Farmacorresistência Bacteriana , Imunofluorescência , Immunoblotting , Microscopia Eletrônica , Microscopia de Fluorescência , Myxococcus xanthus/química , Myxococcus xanthus/citologia , Myxococcus xanthus/genética , Myxococcus xanthus/ultraestrutura , Ligação Proteica , Isoformas de ProteínasRESUMO
The MIDA touch: A concise and highly convergent protecting-group-free total synthesis of (-)-myxalamideâ A involves a stereoselective vinylogous Mukaiyama aldol reaction of a vinylketene silyl N,O-acetal, together with a one-pot Stille/Suzuki-Miyaura cross-coupling reaction using Burke's N-methyliminodiacetic acid (MIDA) boronate to connect left- and right-hand fragments of the molecule (see scheme).
Assuntos
Aldeídos/química , Antibacterianos/síntese química , Myxococcus xanthus/química , Antibacterianos/química , Polienos/síntese química , Polienos/química , EstereoisomerismoRESUMO
A Myxococcus xanthus cytoplasmic bacterial tyrosine kinase, BtkA, showed phosphorylation activity in the presence of Exo. Phosphorylated BtkA was expressed late after starvation induction and early after glycerol induction. The btkA mutant was unable to complete maturation to heat- and sonication-resistant spores under both starvation- and glycerol-induced developmental conditions.