Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Rev ; 102(1): 411-454, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34898294

RESUMO

The coevolution of host-pathogen interactions underlies many human physiological traits associated with protection from or susceptibility to infections. Among the mechanisms that animals utilize to control infections are the regulated cell death pathways of pyroptosis, apoptosis, and necroptosis. Over the course of evolution these pathways have become intricate and complex, coevolving with microbes that infect animal hosts. Microbes, in turn, have evolved strategies to interfere with the pathways of regulated cell death to avoid eradication by the host. Here, we present an overview of the mechanisms of regulated cell death in Animalia and the strategies devised by pathogens to interfere with these processes. We review the molecular pathways of regulated cell death, their roles in infection, and how they are perturbed by viruses and bacteria, providing insights into the coevolution of host-pathogen interactions and cell death pathways.


Assuntos
Morte Celular/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Necroptose/fisiologia , Morte Celular Regulada/fisiologia , Animais , Humanos , Piroptose/fisiologia , Transdução de Sinais/fisiologia
2.
Immunol Rev ; 321(1): 52-70, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37897080

RESUMO

Necroptosis is generally considered as an inflammatory cell death form. The core regulators of necroptotic signaling are receptor-interacting serine-threonine protein kinases 1 (RIPK1) and RIPK3, and the executioner, mixed lineage kinase domain-like pseudokinase (MLKL). Evidence demonstrates that necroptosis contributes profoundly to inflammatory respiratory diseases that are common public health problem. Necroptosis occurs in nearly all pulmonary cell types in the settings of inflammatory respiratory diseases. The influence of necroptosis on cells varies depending upon the type of cells, tissues, organs, etc., which is an important factor to consider. Thus, in this review, we briefly summarize the current state of knowledge regarding the biology of necroptosis, and focus on the key molecular mechanisms that define the necroptosis status of specific cell types in inflammatory respiratory diseases. We also discuss the clinical potential of small molecular inhibitors of necroptosis in treating inflammatory respiratory diseases, and describe the pathological processes that engage cross talk between necroptosis and other cell death pathways in the context of respiratory inflammation. The rapid advancement of single-cell technologies will help understand the key mechanisms underlying cell type-specific necroptosis that are critical to effectively treat pathogenic lung infections and inflammatory respiratory diseases.


Assuntos
Proteínas Quinases , Doenças Respiratórias , Humanos , Proteínas Quinases/metabolismo , Necroptose/fisiologia , Morte Celular , Transdução de Sinais , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Apoptose
3.
Nature ; 574(7778): 428-431, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31511692

RESUMO

The aspartate-specific cysteine protease caspase-8 suppresses necroptotic cell death mediated by RIPK3 and MLKL. Indeed, mice that lack caspase-8 die in a RIPK3- and MLKL-dependent manner during embryogenesis1-3. In humans, caspase-8 deficiency is associated with immunodeficiency4 or very early onset inflammatory bowel disease5. The substrates that are cleaved by caspase-8 to prevent necroptosis in vivo have not been defined. Here we show that knock-in mice that express catalytically inactive caspase-8(C362A) die as embryos owing to MLKL-dependent necroptosis, similar to caspase-8-deficient mice. Thus, caspase-8 must cleave itself, other proteins or both to inhibit necroptosis. Mice that express caspase-8(D212A/D218A/D225A/D387A), which cannot cleave itself, were viable, as were mice that express c-FLIP or CYLD proteins that had been mutated to prevent cleavage by caspase-8. By contrast, mice that express RIPK1(D325A), in which the caspase-8 cleavage site Asp325 had been mutated, died mid-gestation. Embryonic lethality was prevented by inactivation of RIPK1, loss of TNFR1, or loss of both MLKL and the caspase-8 adaptor FADD, but not by loss of MLKL alone. Thus, RIPK1(D325A) appears to trigger cell death mediated by TNF, the kinase activity of RIPK1 and FADD-caspase-8. Accordingly, dying endothelial cells that contain cleaved caspase-3 were abnormally abundant in yolk sacs of Ripk1D325A/D325A embryos. Heterozygous Ripk1D325A/+ cells and mice were viable, but were also more susceptible to TNF-induced cell death than were wild-type cells or mice. Our data show that Asp325 of RIPK1 is essential for limiting aberrant cell death in response to TNF, consistent with the idea that cleavage of RIPK1 by caspase-8 is a mechanism for dismantling death-inducing complexes.


Assuntos
Apoptose/fisiologia , Caspase 8/metabolismo , Necroptose/fisiologia , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Desenvolvimento Embrionário/genética , Humanos , Camundongos , Mutação , Proteína Serina-Treonina Quinases de Interação com Receptores/genética
4.
EMBO J ; 39(23): e105753, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33124082

RESUMO

The discovery of alternative signaling pathways that regulate cell death has revealed multiple strategies for promoting cell death with diverse consequences at the tissue and organism level. Despite the divergence in the molecular components involved, membrane permeabilization is a common theme in the execution of regulated cell death. In apoptosis, the permeabilization of the outer mitochondrial membrane by BAX and BAK releases apoptotic factors that initiate the caspase cascade and is considered the point of no return in cell death commitment. Pyroptosis and necroptosis also require the perforation of the plasma membrane at the execution step, which involves Gasdermins in pyroptosis, and MLKL in the case of necroptosis. Although BAX/BAK, Gasdermins and MLKL share certain molecular features like oligomerization, they form pores in different cellular membranes via distinct mechanisms. Here, we compare and contrast how BAX/BAK, Gasdermins, and MLKL alter membrane permeability from a structural and biophysical perspective and discuss the general principles of membrane permeabilization in the execution of regulated cell death.


Assuntos
Morte Celular/imunologia , Morte Celular/fisiologia , Morte Celular Regulada/imunologia , Morte Celular Regulada/fisiologia , Animais , Apoptose/fisiologia , Autofagia/fisiologia , Caspases/metabolismo , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Humanos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Necroptose/fisiologia , Proteínas Quinases/metabolismo , Piroptose/fisiologia , Transdução de Sinais/fisiologia
5.
Acta Neuropathol ; 147(1): 96, 2024 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-38852117

RESUMO

Although apoptosis, pyroptosis, and ferroptosis have been implicated in AD, none fully explains the extensive neuronal loss observed in AD brains. Recent evidence shows that necroptosis is abundant in AD, that necroptosis is closely linked to the appearance of Tau pathology, and that necroptosis markers accumulate in granulovacuolar neurodegeneration vesicles (GVD). We review here the neuron-specific activation of the granulovacuolar mediated neuronal-necroptosis pathway, the potential AD-relevant triggers upstream of this pathway, and the interaction of the necrosome with the endo-lysosomal pathway, possibly providing links to Tau pathology. In addition, we underscore the therapeutic potential of inhibiting necroptosis in neurodegenerative diseases such as AD, as this presents a novel avenue for drug development targeting neuronal loss to preserve cognitive abilities. Such an approach seems particularly relevant when combined with amyloid-lowering drugs.


Assuntos
Doença de Alzheimer , Necroptose , Humanos , Necroptose/fisiologia , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Animais , Neurônios/patologia , Neurônios/metabolismo , Degeneração Neural/patologia , Degeneração Neural/metabolismo
6.
Nat Rev Neurosci ; 20(1): 19-33, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30467385

RESUMO

Apoptosis is crucial for the normal development of the nervous system, whereas neurons in the adult CNS are relatively resistant to this form of cell death. However, under pathological conditions, upregulation of death receptor family ligands, such as tumour necrosis factor (TNF), can sensitize cells in the CNS to apoptosis and a form of regulated necrotic cell death known as necroptosis that is mediated by receptor-interacting protein kinase 1 (RIPK1), RIPK3 and mixed lineage kinase domain-like protein (MLKL). Necroptosis promotes further cell death and neuroinflammation in the pathogenesis of several neurodegenerative diseases, including multiple sclerosis, amyotrophic lateral sclerosis, Parkinson disease and Alzheimer disease. In this Review, we outline the evidence implicating necroptosis in these neurological diseases and suggest that targeting RIPK1 might help to inhibit multiple cell death pathways and ameliorate neuroinflammation.


Assuntos
Encéfalo/metabolismo , Inflamação/metabolismo , Necroptose/fisiologia , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Encéfalo/patologia , Humanos , Inflamação/patologia , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Fosforilação
7.
Respir Res ; 25(1): 271, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987753

RESUMO

BACKGROUND: Airway epithelial cell (AEC) necroptosis contributes to airway allergic inflammation and asthma exacerbation. Targeting the tumor necrosis factor-like ligand 1 A (TL1A)/death receptor 3 (DR3) axis has a therapeutic effect on asthmatic airway inflammation. The role of TL1A in mediating necroptosis of AECs challenged with ovalbumin (OVA) and its contribution to airway inflammation remains unclear. METHODS: We evaluated the expression of the receptor-interacting serine/threonine-protein kinase 3(RIPK3) and the mixed lineage kinase domain-like protein (MLKL) in human serum and lung, and histologically verified the level of MLKL phosphorylation in lung tissue from asthmatics and OVA-induced mice. Next, using MLKL knockout mice and the RIPK3 inhibitor GSK872, we investigated the effects of TL1A on airway inflammation and airway barrier function through the activation of necroptosis in experimental asthma. RESULTS: High expression of necroptosis marker proteins was observed in the serum of asthmatics, and necroptosis was activated in the airway epithelium of both asthmatics and OVA-induced mice. Blocking necroptosis through MLKL knockout or RIPK3 inhibition effectively attenuated parabronchial inflammation, mucus hypersecretion, and airway collagen fiber accumulation, while also suppressing type 2 inflammatory factors secretion. In addition, TL1A/ DR3 was shown to act as a death trigger for necroptosis in the absence of caspases by silencing or overexpressing TL1A in HBE cells. Furthermore, the recombinant TL1A protein was found to induce necroptosis in vivo, and knockout of MLKL partially reversed the pathological changes induced by TL1A. The necroptosis induced by TL1A disrupted the airway barrier function by decreasing the expression of tight junction proteins zonula occludens-1 (ZO-1) and occludin, possibly through the activation of the NF-κB signaling pathway. CONCLUSIONS: TL1A-induced airway epithelial necroptosis plays a significant role in promoting airway inflammation and barrier dysfunction in asthma. Inhibition of the TL1A-induced necroptosis pathway could be a promising therapeutic strategy.


Assuntos
Asma , Camundongos Knockout , Necroptose , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral , Animais , Asma/metabolismo , Asma/patologia , Necroptose/fisiologia , Humanos , Camundongos , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Masculino , Feminino , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Camundongos Endogâmicos C57BL , Proteínas Quinases/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Ovalbumina/toxicidade
8.
Bioorg Chem ; 142: 106964, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37976678

RESUMO

Necroptosis is one of the modes of cell death, and its occurrence and development are associated with the development of numerous diseases. To prevent the progression of necroptosis, it is crucial to inhibit the phosphorylation of three proteins: receptor-interacting protein kinase 1 (RIP1), RIP3, and mixed lineage kinase domain-like protein (MLKL). Through virtual and experimental screening approaches, we have identified 8 small molecular inhibitors with potent antinecroptotic activity and binding affinity to RIP1. Among these compounds, SY-1 demonstrated the most remarkable antinecroptotic activity (EC50 = 105.6 ± 9.6 nM) and binding affinity (RIP1 Kd = 49 nM). It effectively blocked necroptosis and impeded the formation of necrosomes by inhibiting the phosphorylations of the RIP1/RIP3/MLKL pathway triggered by TSZ (TNFα, Smac mimetic and Z-VAD-fmk). Furthermore, SY-1 exhibited a protective effect against tumor necrosis factor (TNF)-induced hypothermia in mice and significantly improved the survival rate (100 %, 30 mg/kg) of mice with systemic inflammatory response syndrome (SIRS) in a dose-dependent manner. Pharmacokinetic parameters of SY-1 were also collected in vitro and in vivo. These results strongly suggest that SY-1 and its derivatives warrant further investigation for their potential therapeutic applications.


Assuntos
Necroptose , Proteínas Quinases , Animais , Camundongos , Proteínas Quinases/metabolismo , Necroptose/fisiologia , Morte Celular , Fosforilação , Fatores de Transcrição/metabolismo , Apoptose
9.
J Periodontal Res ; 58(5): 919-931, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37334934

RESUMO

OBJECTIVE: To explore the mechanism of receptor-interacting protein 1 (RIP1)-mediated necroptosis during periodontitis progression. BACKGROUND: RIP3 and mixed lineage kinase domain-like protein (MLKL) have been detected to be upregulated in periodontitis models. Because RIP1 is involved in necroptosis, it might also play a role in the progression of periodontitis. METHODS: An experimental periodontitis model in BALB/c mice was established by inducing oral bacterial infection. Western blotting and immunofluorescence analyses were used to detect RIP1 expression in the periodontal ligament. Porphyromonas gingivalis was used to stimulate L929 and MC3T3-E1. RIP1 was inhibited using small-interfering RNA. Western blotting, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and enzyme-linked immunosorbent assay (ELISA) analyses were used to detect the effect of necroptosis inhibition on the expression of damage-associated molecular patterns and inflammatory cytokines. Necrostatin-1 (Nec-1) was intraperitoneally injected to inhibit RIP1 expression in mice. Necroptosis activation and inflammatory cytokine expression in periodontal tissue were verified. Tartrate-resistant acid phosphatase staining was applied to observe osteoclasts in the bone tissues of different groups. RESULTS: RIP1-mediated necroptosis was activated in mice with periodontitis. P. gingivalis induced RIP1-mediated necroptosis in L929 and MC3T3-E1 cells. After RIP1 inhibition, the expression levels of high mobility group protein B1 (HMGB1) and inflammatory cytokines were downregulated. After inhibiting RIP1 with Nec-1 in vivo, necroptosis was also inhibited, the expression levels of HMGB1 and inflammatory cytokines were downregulated, and osteoclast counts in the periodontal tissue decreased. CONCLUSION: RIP1-mediated necroptosis plays a role in the pathological process of periodontitis in mice. Nec-1 inhibited necroptosis, alleviated inflammation in periodontal tissue, and reduced bone resorption in periodontitis.


Assuntos
Proteína HMGB1 , Periodontite , Camundongos , Animais , Proteína HMGB1/farmacologia , Necroptose/fisiologia , Periodontite/metabolismo , Citocinas , Apoptose
10.
Biochem J ; 479(1): 75-90, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35029627

RESUMO

Autophagy is a universal cellular homeostatic process, required for the clearance of dysfunctional macromolecules or organelles. This self-digestion mechanism modulates cell survival, either directly by targeting cell death players, or indirectly by maintaining cellular balance and bioenergetics. Nevertheless, under acute or accumulated stress, autophagy can also contribute to promote different modes of cell death, either through highly regulated signalling events, or in a more uncontrolled inflammatory manner. Conversely, apoptotic or necroptotic factors have also been implicated in the regulation of autophagy, while specific factors regulate both processes. Here, we survey both earlier and recent findings, highlighting the intricate interaction of autophagic and cell death pathways. We, Furthermore, discuss paradigms, where this cross-talk is disrupted, in the context of disease.


Assuntos
Apoptose/fisiologia , Autofagia/fisiologia , Necroptose/fisiologia , Transdução de Sinais/fisiologia , Animais , Sobrevivência Celular/fisiologia , Homeostase/fisiologia , Humanos , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo
11.
Biochem J ; 479(5): 609-628, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35244141

RESUMO

Two years after the emergence of SARS-CoV-2, our understanding of COVID-19 disease pathogenesis is still incomplete. Despite unprecedented global collaborative scientific efforts and rapid vaccine development, an uneven vaccine roll-out and the emergence of novel variants of concern such as omicron underscore the critical importance of identifying the mechanisms that contribute to this disease. Overt inflammation and cell death have been proposed to be central drivers of severe pathology in COVID-19 patients and their pathways and molecular components therefore present promising targets for host-directed therapeutics. In our review, we summarize the current knowledge on the role and impact of diverse programmed cell death (PCD) pathways on COVID-19 disease. We dissect the complex connection of cell death and inflammatory signaling at the cellular and molecular level and identify a number of critical questions that remain to be addressed. We provide rationale for targeting of cell death as potential COVID-19 treatment and provide an overview of current therapeutics that could potentially enter clinical trials in the near future.


Assuntos
COVID-19/etiologia , COVID-19/patologia , Antivirais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Humanos , Inflamassomos/fisiologia , Interferons/metabolismo , Necroptose/fisiologia , Neutrófilos/patologia , Neutrófilos/virologia , Piroptose/fisiologia , SARS-CoV-2/patogenicidade , Tratamento Farmacológico da COVID-19
12.
Proc Natl Acad Sci U S A ; 117(31): 18771-18779, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32690704

RESUMO

Human cytomegalovirus (HCMV) is an important human pathogen and a paradigm of intrinsic, innate, and adaptive viral immune evasion. Here, we employed multiplexed tandem mass tag-based proteomics to characterize host proteins targeted for degradation late during HCMV infection. This approach revealed that mixed lineage kinase domain-like protein (MLKL), a key terminal mediator of cellular necroptosis, was rapidly and persistently degraded by the minimally passaged HCMV strain Merlin but not the extensively passaged strain AD169. The strain Merlin viral inhibitor of apoptosis pUL36 was necessary and sufficient both to degrade MLKL and to inhibit necroptosis. Furthermore, mutation of pUL36 Cys131 abrogated MLKL degradation and restored necroptosis. As the same residue is also required for pUL36-mediated inhibition of apoptosis by preventing proteolytic activation of procaspase-8, we define pUL36 as a multifunctional inhibitor of both apoptotic and necroptotic cell death.


Assuntos
Apoptose/fisiologia , Citomegalovirus , Necroptose/fisiologia , Proteínas Virais/metabolismo , Células Cultivadas , Citomegalovirus/química , Citomegalovirus/metabolismo , Citomegalovirus/patogenicidade , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/virologia , Humanos , Ligação Proteica , Proteólise
13.
Proc Natl Acad Sci U S A ; 117(33): 20109-20116, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747526

RESUMO

Herpesviruses are ubiquitous human pathogens that cause a wide range of health complications. Currently, there is an incomplete understanding of cellular factors that contribute to herpesvirus infection. Here, we report an antiviral necroptosis-based genetic screen to identify novel host cell factors required for infection with the ß-herpesvirus murine cytomegalovirus (MCMV). Our genome-wide CRISPR-based screen harnessed the capacity of herpesvirus mutants that trigger antiviral necroptotic cell death upon early viral gene expression. Vascular endothelial growth factor (VEGF) and semaphorin-binding receptor Neuropilin-1 (Nrp-1) emerge as crucial determinants of MCMV infection. We find that elimination of Nrp-1 impairs early viral gene expression and reduces infection rates in endothelial cells, fibroblasts, and macrophages. Furthermore, preincubation of virus with soluble Nrp-1 dramatically inhibits infection by reducing virus attachment. Thus, Nrp-1 is a key determinant of the initial phase of MCMV infection.


Assuntos
Infecções por Citomegalovirus/metabolismo , Muromegalovirus/metabolismo , Necroptose/fisiologia , Neuropilina-1/metabolismo , Animais , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Infecções por Citomegalovirus/genética , Deleção de Genes , Regulação Viral da Expressão Gênica , Camundongos , Muromegalovirus/genética , Neuropilina-1/genética
14.
Proc Natl Acad Sci U S A ; 117(9): 4959-4970, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32071228

RESUMO

Apoptosis and necroptosis are two regulated cell death mechanisms; however, the interaction between these cell death pathways in vivo is unclear. Here we used cerebral ischemia/reperfusion as a model to investigate the interaction between apoptosis and necroptosis. We show that the activation of RIPK1 sequentially promotes necroptosis followed by apoptosis in a temporally specific manner. Cerebral ischemia/reperfusion insult rapidly activates necroptosis to promote cerebral hemorrhage and neuroinflammation. Ripk3 deficiency reduces cerebral hemorrhage and delays the onset of neural damage mediated by inflammation. Reduced cerebral perfusion resulting from arterial occlusion promotes the degradation of TAK1, a suppressor of RIPK1, and the transition from necroptosis to apoptosis. Conditional knockout of TAK1 in microglial/infiltrated macrophages and neuronal lineages sensitizes to ischemic infarction by promoting apoptosis. Taken together, our results demonstrate the critical role of necroptosis in mediating neurovascular damage and hypoperfusion-induced TAK1 loss, which subsequently promotes apoptosis and cerebral pathology in stroke and neurodegeneration.


Assuntos
Apoptose/fisiologia , Necroptose/fisiologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Lesões Encefálicas/metabolismo , Morte Celular , Inflamação/patologia , MAP Quinase Quinase Quinases/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Acidente Vascular Cerebral/patologia
15.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834141

RESUMO

The mechanism of long-term cognitive impairment after neonatal sepsis remains poorly understood, although long-lasting neuroinflammation has been considered the primary contributor. Necroptosis is actively involved in the inflammatory process, and in this study, we aimed to determine whether neonatal sepsis-induced long-term cognitive impairment was associated with activation of necroptosis. Rat pups on postnatal day 3 (P3) received intraperitoneal injections of lipopolysaccharide (LPS, 1 mg/kg) to induce neonatal sepsis. Intracerebroventricular injection of IL-1ß-siRNA and necrostatin-1 (NEC1) were performed to block the production of IL-1ß and activation of necroptosis in the brain, respectively. The Morris water maze task and fear conditioning test were performed on P28-P32 and P34-P35, respectively. Enzyme-linked immunosorbent assay (ELISA), quantitative real-time PCR (RT-PCR), and Western blotting were used to examine the expression levels of proinflammatory cytokines and necroptosis-associated proteins, such as receptor-interacting protein 1 (RIP1) and receptor-interacting protein 3 (RIP3). Sustained elevation of IL-1ß level was observed in the brain after initial neonatal sepsis, which would last for at least 32 days. Sustained necroptosis activation was also observed in the brain. Knockdown of IL-1ß expression in the brain alleviated necroptosis and improved long-term cognitive function. Direct inhibition of necroptosis also improved neurodevelopment and cognitive performance. This research indicated that sustained activation of necroptosis via IL-1ß contributed to long-term cognitive dysfunction after neonatal sepsis.


Assuntos
Sepse Neonatal , Sepse , Ratos , Animais , Necroptose/fisiologia , Encéfalo/metabolismo , Sepse/complicações , Sepse/metabolismo
16.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37894970

RESUMO

Apoptosis has historically been considered the primary form of programmed cell death (PCD) and is responsible for regulating cellular processes during development, homeostasis, and disease. Conversely, necrosis was considered uncontrolled and unregulated. However, recent evidence has unveiled the significance of necroptosis, a regulated form of necrosis, as an important mechanism of PCD alongside apoptosis. The activation of necroptosis leads to cellular membrane disruption, inflammation, and vascularization. This process is crucial in various pathological conditions, including intervertebral disc degeneration (IVDD), neurodegeneration, inflammatory diseases, multiple cancers, and kidney injury. In recent years, extensive research efforts have shed light on the molecular regulation of the necroptotic pathway. Various stimuli trigger necroptosis, and its regulation involves the activation of specific proteins such as receptor-interacting protein kinase 1 (RIPK1), RIPK3, and the mixed lineage kinase domain-like (MLKL) pseudokinase. Understanding the intricate mechanisms governing necroptosis holds great promise for developing novel therapeutic interventions targeting necroptosis-associated IVDD. The objective of this review is to contribute to the growing body of scientific knowledge in this area by providing a comprehensive overview of necroptosis and its association with IVDD. Ultimately, these understandings will allow the development of innovative drugs that can modulate the necroptotic pathway, offering new therapeutic avenues for individuals suffering from necroptosis.


Assuntos
Degeneração do Disco Intervertebral , Proteínas Quinases , Humanos , Proteínas Quinases/metabolismo , Necroptose/fisiologia , Apoptose , Necrose/patologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
17.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(2): 242-251, 2023 Feb 28.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-36999471

RESUMO

Necroptosis is one of the regulated cell death, which involves receptor interacting protein kinase (RIPK) 1/RIPK3/mixed lineage kinase domain like protein (MLKL) signaling pathway. Among them, MLKL is the final execution of necroptosis. The formation of RIPK1/RIPK3/MLKL necrosome induces the phosphorylated MLKL, and the activated MLKL penetrates into the membrane bilayer to form membrane pores, which damages the integrity of the membrane and leads to cell death. In addition to participating in necroptosis, MLKL is also closely related to other cell death, such as NETosis, pyroptosis, and autophagy. Therefore, MLKL is involved in the pathological processes of various diseases related to abnormal cell death pathways (such as cardiovascular diseases, neurodegenerative diseases and cancer), and may be a therapeutic target of multiple diseases. Understanding the role of MLKL in different cell death can lay a foundation for seeking various MLKL-related disease targets, and also guide the development and application of MLKL inhibitors.


Assuntos
Necroptose , Proteínas Quinases , Apoptose , Necroptose/fisiologia , Proteínas Quinases/metabolismo , Piroptose , Proteína Serina-Treonina Quinases de Interação com Receptores , Transdução de Sinais , Humanos
18.
J Neurosci ; 41(48): 9872-9890, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725188

RESUMO

Oligodendrocytes are vulnerable to genetic and environmental insults and its injury leads to demyelinating diseases. The roles of ErbB receptors in maintaining the CNS myelin integrity are largely unknown. Here, we overactivate ErbB receptors that mediate signaling of either neuregulin (NRG) or epidermal growth factor (EGF) family growth factors and found their synergistic activation caused deleterious outcomes in white matter. Sustained ErbB activation induced by the tetracycline-dependent mouse tool Plp-tTA resulted in demyelination, axonal degeneration, oligodendrocyte precursor cell (OPC) proliferation, astrogliosis, and microgliosis in white matter. Moreover, there was hypermyelination before these inflammatory pathologic events. In contrast, sustained ErbB activation induced by another tetracycline-dependent mouse tool Sox10+/rtTA caused hypomyelination in the corpus callosum and optic nerve, which appeared to be a developmental deficit and did not associate with OPC regeneration, astrogliosis, or microgliosis. By tracing the differentiation states of cells expressing tetracycline-controlled transcriptional activator (tTA)/reverse tTA (rtTA)-dependent transgene or pulse-labeled reporter proteins in vitro and in vivo, we found that Plp-tTA targeted mainly mature oligodendrocytes (MOs), whereas Sox10+/rtTA targeted OPCs and newly-formed oligodendrocytes (NFOs). The distinct phenotypes of mice with ErbB overactivation induced by Plp-tTA and Sox10+/rtTA consolidated their nonoverlapping targeting preferences in the oligodendrocyte lineage, and enabled us to demonstrate that ErbB overactivation in MOs induced necroptosis that caused inflammatory demyelination, whereas in OPCs induced apoptosis that caused noninflammatory hypomyelination. Early interference with aberrant ErbB activation ceased oligodendrocyte deaths and restored myelin development in both mice. This study suggests that aberrant ErbB activation is an upstream pathogenetic mechanism of demyelinating diseases, providing a potential therapeutic target.SIGNIFICANCE STATEMENT Primary oligodendropathy is one of the etiologic mechanisms for multiple sclerosis, and oligodendrocyte necroptosis is a pathologic hallmark in the disease. Moreover, the demyelinating disease is now a broad concept that embraces schizophrenia, in which white matter lesions are an emerging feature. ErbB overactivation has been implicated in schizophrenia by genetic analysis and postmortem studies. This study suggests the etiologic implications of ErbB overactivation in myelin pathogenesis and elucidates the pathogenetic mechanisms.


Assuntos
Doenças Desmielinizantes/patologia , Receptores ErbB/metabolismo , Neurogênese/fisiologia , Células Precursoras de Oligodendrócitos/patologia , Oligodendroglia/patologia , Animais , Apoptose/fisiologia , Doenças Desmielinizantes/metabolismo , Feminino , Masculino , Camundongos , Necroptose/fisiologia , Oligodendroglia/metabolismo , Substância Branca/patologia
19.
FASEB J ; 35(7): e21706, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34160104

RESUMO

Acute kidney injury (AKI) is a devastating condition with high morbidity and mortality rates. The pathological features of AKI are tubular injury, infiltration of inflammatory cells, and impaired vascular integrity. Pyruvate kinase is the final rate-limiting enzyme in the glycolysis pathway. We previously showed that pyruvate kinase M2 (PKM2) plays an important role in regulating the glycolytic reprogramming of fibroblasts in renal interstitial fibrosis. The present study aimed to determine the role of PKM2 in fibroblast activation during the pathogenesis of AKI. We found increased numbers of S100A4 positive cells expressing PKM2 in renal tissues from mice with AKI induced via folic acid or ischemia/reperfusion (I/R). The loss of PKM2 in fibroblasts impaired fibroblast proliferation and promoted tubular epithelial cell death including apoptosis, necroptosis, and ferroptosis. Mechanistically, fibroblasts produced less hepatocyte growth factor (HGF) in response to a loss of PKM2. Moreover, in two AKI mouse models, fibroblast-specific deletion of PKM2 blocked HGF signal activation and aggravated AKI after it was induced in mice via ischemia or folic acid. Fibroblast proliferation mediated by PKM2 elicits pro-survival signals that repress tubular cell death and may help to prevent AKI progression. Fibroblast activation mediated by PKM2 in AKI suggests that targeting PKM2 expression could be a novel strategy for treating AKI.


Assuntos
Injúria Renal Aguda/metabolismo , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Células Epiteliais/metabolismo , Fibroblastos/metabolismo , Piruvato Quinase/metabolismo , Animais , Apoptose/fisiologia , Morte Celular/fisiologia , Linhagem Celular , Modelos Animais de Doenças , Fibrose/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Necroptose/fisiologia , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais/fisiologia
20.
Pediatr Res ; 91(1): 73-82, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33731807

RESUMO

BACKGROUND: Dramatic intestinal epithelial cell death leading to barrier dysfunction is one of the mechanism of neonatal necrotizing enterocolitis (NEC), in which Toll-like receptor 4 (TLR4) plays a pivotal role. This study explored the role of necroptosis, a drastic way of cell death in NEC. METHODS: The expression of necroptotic proteins was tested in NEC intestinal tissue and compared with controls. NEC was induced in neonatal wild-type mice and a necroptosis inhibitor was given to investigate whether NEC could be relieved. The general condition, macroscopic scoring, and histological evaluations were performed. The expression of tight junction proteins, inflammatory cytokines, and necroptosis-related proteins was measured, and barrier function was examined. Then, NEC was induced in TLR4-knockout pups to confirm the role of TLR4 in necroptosis. RESULTS: Necroptotic proteins were significantly upregulated in both NEC patient and animal models, together with the expression of TLR4. NEC could be relieved and inflammatory infiltration was decreased by necrostatin-1s. TLR4-knockout mice showed milder tissue degradation and less necroptosis after NEC induction. CONCLUSIONS: Necroptosis is an essential pathological process of NEC. TLR4 may be one stimulator of necroptosis in NEC. Inhibiting the intestinal cell necroptosis might be a useful strategy in the treatment of NEC. IMPACT: Necroptosis is a key pathological process in NEC, which appears to involve TLR4. Anti-necroptosis treatment is a promising strategy that could significantly relieve the symptoms of NEC.


Assuntos
Enterocolite Necrosante/patologia , Necroptose/fisiologia , Receptor 4 Toll-Like/fisiologia , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Apoptose/fisiologia , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptor 4 Toll-Like/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa