Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.208
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 623(7988): 820-827, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37938771

RESUMO

The majority of oncogenic drivers are intracellular proteins, constraining their immunotherapeutic targeting to mutated peptides (neoantigens) presented by individual human leukocyte antigen (HLA) allotypes1. However, most cancers have a modest mutational burden that is insufficient for generating responses using neoantigen-based therapies2,3. Neuroblastoma is a paediatric cancer that harbours few mutations and is instead driven by epigenetically deregulated transcriptional networks4. Here we show that the neuroblastoma immunopeptidome is enriched with peptides derived from proteins essential for tumorigenesis. We focused on targeting the unmutated peptide QYNPIRTTF discovered on HLA-A*24:02, which is derived from the neuroblastoma-dependency gene and master transcriptional regulator PHOX2B. To target QYNPIRTTF, we developed peptide-centric chimeric antigen receptors (PC-CARs) through a counter panning strategy using predicted potentially cross-reactive peptides. We further proposed that PC-CARs can recognize peptides on additional HLA allotypes when presenting a similar overall molecular surface. Informed by our computational modelling results, we show that PHOX2B PC-CARs also recognize QYNPIRTTF presented by HLA-A*23:01, the most common non-A2 allele in people with African ancestry. Finally, we demonstrate potent and specific killing of neuroblastoma cells expressing these HLAs in vitro and complete tumour regression in mice. These data suggest that PC-CARs have the potential to expand the pool of immunotherapeutic targets to include non-immunogenic intracellular oncoproteins and allow targeting through additional HLA allotypes in a clinical setting.


Assuntos
Antígenos de Neoplasias , Neuroblastoma , Proteínas Oncogênicas , Peptídeos , Receptores de Antígenos Quiméricos , Animais , Humanos , Camundongos , África/etnologia , Alelos , Sequência de Aminoácidos , Carcinogênese , Reações Cruzadas , Antígenos HLA-A/química , Antígenos HLA-A/imunologia , Neuroblastoma/genética , Neuroblastoma/imunologia , Neuroblastoma/terapia , Proteínas Oncogênicas/antagonistas & inibidores , Proteínas Oncogênicas/imunologia , Peptídeos/antagonistas & inibidores , Peptídeos/química , Peptídeos/imunologia , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/uso terapêutico
2.
FASEB J ; 38(10): e23644, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38738472

RESUMO

Tumors typically lack canonical danger signals required to activate adaptive immunity and also frequently employ substantial immunomodulatory mechanisms that downregulate adaptive responses and contribute to escape from immune surveillance. Given the variety of mechanisms involved in shielding tumors from immune recognition, it is not surprising that single-agent immunomodulatory approaches have been largely unsuccessful in generating durable antitumor responses. Here we report a unique combination of immunomodulatory and cytostatic agents that recondition the tumor microenvironment and eliminate complex and/or poor-prognosis tumor types including the non-immunogenic 4T-1 model of TNBC, the aggressive MOC-2 model of HNSCC, and the high-risk MYCN-amplified model of neuroblastoma. A course of therapy optimized for TNBC cured a majority of tumors in both ectopic and orthotopic settings and eliminated metastatic spread in all animals tested at the highest doses. Immune responses were transferable between therapeutic donor and naïve recipient through adoptive transfer, and a sizeable abscopal effect on distant, untreated lesions could be demonstrated experimentally. Similar results were observed in HNSCC and neuroblastoma models, with characteristic remodeling of the tumor microenvironment documented in all model systems. scRNA-seq analysis implicated upregulation of innate immune responses and antigen presentation in tumor cells and the myeloid cell compartment as critical early events. This analysis also highlighted the potential importance of the autonomic nervous system in the governance of inflammatory processes. The data indicate that the targeting of multiple pathways and mechanisms of action can result in substantial synergistic antitumor effects and suggest follow-up in the neoadjuvant setting may be warranted.


Assuntos
Microambiente Tumoral , Animais , Camundongos , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral , Neuroblastoma/imunologia , Neuroblastoma/terapia , Neuroblastoma/patologia , Feminino , Humanos , Imunomodulação , Camundongos Endogâmicos C57BL
3.
Cancer Immunol Immunother ; 73(11): 221, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235531

RESUMO

BACKGROUND: Neuroblastoma is the most common extracranial solid tumor in children and accounts for 15% of pediatric cancer related deaths. Targeting neuroblastoma with immunotherapies has proven challenging due to a paucity of immune cells in the tumor microenvironment and the release of immunosuppressive cytokines by neuroblastoma tumor cells. We hypothesized that combining an oncolytic Herpes Simplex Virus (oHSV) with natural killer (NK) cells might overcome these barriers and incite tumor cell death. METHODS: We utilized MYCN amplified and non-amplified neuroblastoma cell lines, the IL-12 expressing oHSV, M002, and the human NK cell line, NK-92 MI. We assessed the cytotoxicity of NK cells against neuroblastoma with and without M002 infection, the effects of M002 on NK cell priming, and the impact of M002 and priming on the migratory capacity and CD107a expression of NK cells. To test clinical applicability, we then investigated the effects of M002 and NK cells on neuroblastoma in vivo. RESULTS: NK cells were more attracted to neuroblastoma cells that were infected with M002. There was an increase in neuroblastoma cell death with the combination treatment of M002 and NK cells both in vitro and in vivo. Priming the NK cells enhanced their cytotoxicity, migratory capacity and CD107a expression. CONCLUSIONS: To the best of our knowledge, these investigations are the first to demonstrate the effects of an oncolytic virus combined with self-maintaining NK cells in neuroblastoma and the priming effect of neuroblastoma on NK cells. The current studies provide a deeper understanding of the relation between NK cells and neuroblastoma and these data suggest that oHSV increases NK cell cytotoxicity towards neuroblastoma.


Assuntos
Células Matadoras Naturais , Neuroblastoma , Terapia Viral Oncolítica , Neuroblastoma/terapia , Neuroblastoma/imunologia , Células Matadoras Naturais/imunologia , Humanos , Terapia Viral Oncolítica/métodos , Animais , Camundongos , Linhagem Celular Tumoral , Vírus Oncolíticos/imunologia , Citotoxicidade Imunológica , Simplexvirus/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cytotherapy ; 26(10): 1122-1131, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38852096

RESUMO

Neuroblastoma (NB) is a solid, neuroendocrine pediatric solid tumor with divergent clinical behavior. Patients with high-risk diseases have poor prognoses despite complex multimodal therapy, which requires the search for new therapeutic approaches. Chimeric antigen receptor T cells (CAR-T) have led to dramatic improvements in the survival of cancer patients, most notably those with hematologic malignancies. Early-phase clinical trials of CAR-T cell therapy for NB have proven safe and feasible, but limited clinical efficacy. At the same time, multiple experimental and preclinical studies have shown that the most common in clinical trials single 2nd or 3rd generation CAR structure is not sufficient for a complete response in solid tumors. Here, we review the recent advances and future perspectives associated with engineered receptors, including several antigens binding, armored CAR-T of 4th and 5th generation and CAR-T cell combination strategies with other immunotherapy. We also summarize the results and shortcomings of ongoing clinical trials of CAR-T therapy for NB.


Assuntos
Imunoterapia Adotiva , Neuroblastoma , Receptores de Antígenos Quiméricos , Linfócitos T , Humanos , Neuroblastoma/terapia , Neuroblastoma/imunologia , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/uso terapêutico , Imunoterapia Adotiva/métodos , Linfócitos T/imunologia , Ensaios Clínicos como Assunto , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/uso terapêutico , Receptores de Antígenos de Linfócitos T/genética , Animais , Terapia Combinada/métodos
5.
Cytotherapy ; 26(11): 1308-1319, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38904586

RESUMO

BACKGROUND AIMS: Chimeric antigen receptor T (CAR-T) cells targeting single antigens show limited activity against solid tumors due to poor T cell persistence, low efficiency infiltration, and exhaustion together with heterogeneous tumor-associated antigen (TAA) expression. This is also true in high-risk neuroblastoma (HRNB), a lethal pediatric extracranial malignancy. To overcome these obstacles, a combinational strategy using GD2-specific and GPC2-specific CAR-T cells was developed to improve immunotherapeutic efficacy. METHODS: We individually developed GD2-specific and GPC2-specific CARs containing a selective domain (sCAR) which was a peptide of 10 amino acids derived from human nuclear autoantigen La/SS-B. These constructs allowed us to generate two different HRNB antigen-specific CAR-T cells with enhanced biological activity through stimulating sCAR-engrafted T cells via a selective domain-specific monoclonal antibody (SmAb). Binding affinity and stimulation of GD2- and GPC2-specific sCARs by SmAb were measured, and transient and persistent anti-tumor cytotoxicity of GD2sCAR-T and GPC2sCAR-T cells were quantified in neuroblastoma cell lines expressing different TAA levels. The anti-tumor pharmaceutical effects and cellular mechanisms mediated by single or combinational sCAR-T cells were evaluated in vitro and in vivo. RESULTS: GD2- and GPC2-specific sCARs had antigen-specific binding affinity similar to their parental counterparts and were recognized by SmAb. SmAb-mediated stimulation selectively activated sCAR-T proliferation and increased central memory T cells in the final products. SmAb-stimulated sCAR-T cells had enhanced transient cytolytic activity, and combination therapy extended long-term anti-tumor activity in vitro through TNF-α and IL-15 release. Stimulated sCAR-T cells overcame heterogeneous antigen expression in HRNB, and the multi-TAA-targeting strategy was especially efficacious in vivo, inducing apoptosis through the caspase-3/PARP pathway and inhibiting the release of several tumor-promoting cytokines. CONCLUSIONS: These data suggest that combined targeting of multiple TAAs is a promising strategy to overcome heterogenous antigen expression in solid tumors and extend CAR-T cell persistence for HRNB immunotherapy.


Assuntos
Gangliosídeos , Glipicanas , Imunoterapia Adotiva , Neuroblastoma , Receptores de Antígenos Quiméricos , Neuroblastoma/terapia , Neuroblastoma/imunologia , Humanos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/genética , Animais , Gangliosídeos/imunologia , Gangliosídeos/metabolismo , Imunoterapia Adotiva/métodos , Camundongos , Linhagem Celular Tumoral , Glipicanas/imunologia , Glipicanas/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Antígenos de Neoplasias/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
BMC Cancer ; 24(1): 1279, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39407175

RESUMO

BACKGROUND: Neuroblastoma exhibits substantial heterogeneity, which is intricately linked to various genetic alterations. We aimed to explore immune status in the peripheral blood and prognosis of patients with neuroblastoma with different genetic characteristics. METHODS: We enrolled 31 patients with neuroblastoma and collected samples to detect three genetic characteristics. Peripheral blood samples were tested for immune cells and cytokines by fluorescent microspheres conjugated with antibodies and flow cytometry. Event-free survival (EFS) was analyzed using the Kaplan‒Meier method. RESULTS: Twenty-two patients had genetic aberrations, including MYCN amplification in 6 patients, chromosome 1p deletion in 9 patients, and chromosome 11q deletion in 14 patients. Two genetic alterations were present in seven patients. The EFS was worse in patients with MYCN amplification or 1p deletion than in the corresponding group, whereas 11q deletion was a prognostic factor only in patients with unamplified MYCN. Changes in immune status revealed a decrease in the proportion of T cells in blood, and an increase in regulatory T cells and immunosuppression-related cytokines such as interleukin (IL)-10. The EFS of the IL-10 high-level group was lower than that of the low-level group. Patients with concomitant genetic alterations and a high level of IL-10 had worse EFS than other patients. CONCLUSIONS: Patients with neuroblastoma characterized by these genetic characteristics often have suppressed T cell response and an overabundance of immunosuppressive cells and cytokines in the peripheral blood. This imbalance is significantly associated with poor EFS. Moreover, if these patients show an elevated levels of immunosuppressive cytokines such as IL-10, the prognosis will be worse.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 11 , Cromossomos Humanos Par 1 , Amplificação de Genes , Proteína Proto-Oncogênica N-Myc , Neuroblastoma , Humanos , Neuroblastoma/genética , Neuroblastoma/mortalidade , Neuroblastoma/imunologia , Proteína Proto-Oncogênica N-Myc/genética , Masculino , Feminino , Pré-Escolar , Cromossomos Humanos Par 11/genética , Lactente , Prognóstico , Criança , Cromossomos Humanos Par 1/genética , Interleucina-10/genética , Interleucina-10/sangue , Intervalo Livre de Progressão
7.
Virol J ; 21(1): 158, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004752

RESUMO

BACKGROUND: West Nile virus (WNV) is a rapidly spreading mosquito-borne virus accounted for neuroinvasive diseases. An insight into WNV-host factors interaction is necessary for development of therapeutic approaches against WNV infection. CD11b has key biological functions and been identified as a therapeutic target for several human diseases. The purpose of this study was to determine whether CD11b was implicated in WNV infection. METHODS: SH-SY5Y cells with and without MEK1/2 inhibitor U0126 or AKT inhibitor MK-2206 treatment were infected with WNV. CD11b mRNA levels were assessed by real-time PCR. WNV replication and expression of stress (ATF6 and CHOP), pro-inflammatory (TNF-α), and antiviral (IFN-α, IFN-ß, and IFN-γ) factors were evaluated in WNV-infected SH-SY5Y cells with CD11b siRNA transfection. Cell viability was determined by MTS assay. RESULTS: CD11b mRNA expression was remarkably up-regulated by WNV in a time-dependent manner. U0126 but not MK-2206 treatment reduced the CD11b induction by WNV. CD11b knockdown significantly decreased WNV replication and protected the infected cells. CD11b knockdown markedly increased TNF-α, IFN-α, IFN-ß, and IFN-γ mRNA expression induced by WNV. ATF6 mRNA expression was reduced upon CD11b knockdown following WNV infection. CONCLUSION: These results demonstrate that CD11b is involved in maintaining WNV replication and modulating inflammatory as well as antiviral immune response, highlighting the potential of CD11b as a target for therapeutics for WNV infection.


Assuntos
Antígeno CD11b , Replicação Viral , Vírus do Nilo Ocidental , Humanos , Replicação Viral/efeitos dos fármacos , Vírus do Nilo Ocidental/fisiologia , Vírus do Nilo Ocidental/imunologia , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Linhagem Celular Tumoral , Febre do Nilo Ocidental/imunologia , Febre do Nilo Ocidental/virologia , Neuroblastoma/imunologia , Neuroblastoma/virologia , Interações Hospedeiro-Patógeno/imunologia , Sobrevivência Celular/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética
8.
Inflamm Res ; 73(9): 1529-1545, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39028490

RESUMO

BACKGROUND: Neuroblastoma (NB) is the most prevalent and deadliest pediatric solid tumor. With of over 50% of high-risk neuroblastoma cases relapse, the imperative for novel drug targets and therapeutic strategies is accentuated. In neuroblastoma, the existence of tumor-associated macrophages (TAMs) correlates with an unfavorable patient prognosis. However, the clinical relevance and prognostic implications of regulatory genes linked to TAMs infiltration in neuroblastoma remain unclear, and further study is required. METHODS: We conducted a comprehensive analysis utilizing transcriptome expression profiles from three primary datasets associated with neuroblastoma (GSE45547, GSE49710, TARGET) to identify hub genes implicated in immune evasion within neuroblastoma. Subsequently, we utilized single-cell RNA sequencing analysis on 17 clinical neuroblastoma samples to investigate the expression and distribution of these hub genes, leading to the identification of TNFAIP3. The above three public databases were merged to allowed for the validation of TNFAIP3's molecular functions through GO and KEGG analysis. Furthermore, we assessed TNFAIP3's correlation with immune infiltration and its potential immunotherapeutic impact by multiple algorithms. Our single-cell transcriptome data revealed the role of TNFAIP3 in macrophage polarization. Finally, preliminary experimental verifications to confirm the biological functions of TNFAIP3-mediated TAMs in NB. RESULTS: A total of 6 genes related to immune evasion were screened and we found that TNFAIP3 exhibited notably higher expression in macrophages than other immune cell types, based on the scRNA-sequencing data. GO and KEGG analysis showed that low expression of TNFAIP3 significantly correlated with the activation of multiple oncogenic pathways as well as immune-related pathways. Then validation affirmed that individuals within the TNFAIP3 high-expression cohort could potentially derive greater advantages from immunotherapeutic interventions, alongside exhibiting heightened immune responsiveness. Deciphering the pseudotime trajectory of macrophages, we revealed the potential of TNFAIP3 in inducing the polarization of macrophages towards the M1 phenotype. Finally, we confirmed that patients in the TNFAIP3 high expression group might benefit more from immunotherapy or chemotherapy as substantiated by RT-qPCR and immunofluorescence examinations. Moreover, the role of TNFAIP3 in macrophage polarization was validated. Preliminary experiment showed that TNFAIP3-mediated TAMs inhibit the proliferation, migration and invasion capabilities of NB cells. CONCLUSIONS: Our results suggest that TNFAIP3 was first identified as a promising biomarker for immunotherapy and potential molecular target in NB. Besides, the presence of TNFAIP3 within TAMs may offer a novel therapeutic strategy for NB.


Assuntos
Biomarcadores Tumorais , Neuroblastoma , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Humanos , Neuroblastoma/genética , Neuroblastoma/imunologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Biomarcadores Tumorais/genética , Prognóstico , Perfilação da Expressão Gênica , Transcriptoma , Macrófagos Associados a Tumor/imunologia , Evasão Tumoral/genética , Regulação Neoplásica da Expressão Gênica
9.
J Pediatr Hematol Oncol ; 46(7): e531-e533, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39177945

RESUMO

Outcomes for high-risk neuroblastoma have improved with the addition of antidisialoganglioside (GD2) antibody-mediated immunotherapy to multimodality therapy. Urticaria is an expected side effect of anti-GD2 immunotherapy. Rarely, despite maximal use of antihistamines and H2 receptor antagonists, refractory urticaria can result in impaired quality of life, and delays or discontinuation of immunotherapy. The anti-IgE monoclonal antibody, omalizumab, is approved for the treatment of asthma and chronic spontaneous urticaria. We successfully managed grade 3, naxitamab-related urticaria refractory to standard management in 2 patients using omalizumab, allowing for continued anti-GD2 immunotherapy. Omalizumab did not impact antitumor activity or immunogenicity of naxitamab.


Assuntos
Omalizumab , Urticária , Humanos , Omalizumab/uso terapêutico , Urticária/tratamento farmacológico , Urticária/imunologia , Masculino , Gangliosídeos/imunologia , Gangliosídeos/antagonistas & inibidores , Neuroblastoma/tratamento farmacológico , Neuroblastoma/imunologia , Feminino , Antialérgicos/uso terapêutico , Pré-Escolar
10.
Int J Mol Sci ; 25(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39062971

RESUMO

Neuroblastoma is the most common extracranial solid tumor found in childhood and is responsible for 15% of deaths among children with cancer. Although multimodal therapies focused on surgery, chemotherapy, radiotherapy, and stem cell transplants have favorable results in many cases, the use of conventional therapies has probably reached the limit their possibility. Almost half of the patients with neuroblastoma belong to the high-risk group. Patients in this group require a combination of several therapeutic approaches. It has been shown that various immunotherapies combined with conventional methods can work synergistically. Due to the development of such therapeutic methods, we present combinations and forms of combining immunotherapy, focusing on their mechanisms and benefits but also their limitations and potential side effects.


Assuntos
Imunoterapia , Neuroblastoma , Humanos , Neuroblastoma/terapia , Neuroblastoma/imunologia , Imunoterapia/métodos , Terapia Combinada , Animais
11.
Genes Immun ; 23(3-4): 129-140, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35525858

RESUMO

Neuroblastoma is the most common extracranial childhood solid tumor. The majority of high-risk neuroblastoma is resistant/refractory to the current high intensity therapy. Neuroblastoma lacks classical HLA Class I expression and exhibits low mutation burden, allowing neuroblastoma cells to evade CD8+ T cell-mediated immunity. Neuroblastoma cells do not express PD-L1, and tumor-associated macrophages are the predominant PD-L1+ cells in the tumor. In this study, we performed gene expression profiling and survival analyses on large neuroblastoma datasets to address the prognostic effect of PD-L1 gene expression and the possible involvement of the SLAMF7 pathway in the anti-neuroblastoma immunity. High-level expression of PD-L1 was found significantly associated with better outcome of high-risk neuroblastoma patients; two populations of PD-1+ PD-L1+ macrophages could be present in high-risk tumors with PD-1/PD-L1 ratios, ≈1 and >1. Patients with the PD-1/PD-L1 ratio >1 tumor showed inferior survival. High-level co-expression of SLAMF7 and SH2D1B was significantly associated with better survival of the high-risk neuroblastoma patients. Together, this study supports the hypothesis that macrophages are important effector cells in the anti-high-risk neuroblastoma immunity, that PD-1 blockade therapy can be beneficial to the high-risk neuroblastoma subset with the PD-1/PD-L1 expression ratio >1, and that SLAMF7 is a new therapeutic target of high-risk neuroblastoma.


Assuntos
Antígeno B7-H1 , Macrófagos , Neuroblastoma , Antígeno B7-H1/genética , Linfócitos T CD8-Positivos , Humanos , Macrófagos/imunologia , Neuroblastoma/genética , Neuroblastoma/imunologia , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Família de Moléculas de Sinalização da Ativação Linfocitária/genética , Evasão Tumoral
12.
Cancer Immunol Immunother ; 71(1): 153-164, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34043024

RESUMO

Neuroblastoma (NBL) accounts for a disproportionate number of deaths among childhood malignancies despite intensive multimodal therapy that includes antibody targeting disialoganglioside GD2, a NBL antigen. Unfortunately, resistance to anti-GD2 immunotherapy is frequent and we aimed to investigate mechanisms of resistance in NBL. GD2 expression was quantified by flow cytometry and anti-GD2 antibody internalization was measured using real-time microscopy in 20 human NBL cell lines. Neutrophil-mediated antibody-dependent cellular cytotoxicity (ADCC) assays were performed on a subset of the cell lines (n = 12), and results were correlated with GD2 expression and antibody internalization. GD2 was expressed on 19 of 20 NBL cell lines at variable levels, and neutrophil-mediated ADCC was observed only in GD2-expressing cell lines. We found no correlation between level of GD2 expression and sensitivity to neutrophil-mediated ADCC, suggesting that GD2 expression of many cell lines was above a threshold required for maximal ADCC, such that expression level could not be used to predict subsequent cytotoxicity. Instead, anti-GD2 antibody internalization, a process that occurred universally but differentially across GD2-expressing NBL cell lines, was inversely correlated with ADCC. Treatment with endocytosis inhibitors EIPA, chlorpromazine, MBCD, and cytochalasin-D showed potential to inhibit antibody internalization; however, only MBCD resulted in significantly increased sensitivity to neutrophil-mediated ADCC in 4 of 4 cell lines in vitro. Our data suggest that antibody internalization may represent a novel mechanism of immunotherapy escape by NBL and provide proof-of-principle that targeting pathways involved in antibody internalization may improve the efficacy of anti-GD2 immunotherapies.


Assuntos
Anticorpos/química , Resistência a Medicamentos , Gangliosídeos/química , Imunoterapia/métodos , Neuroblastoma/imunologia , Neuroblastoma/terapia , Anticorpos Monoclonais/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Linhagem Celular Tumoral , Endocitose , Citometria de Fluxo , Gangliosídeos/imunologia , Humanos , Fatores Imunológicos , Células Matadoras Naturais/imunologia , Neutrófilos/metabolismo
13.
Cancer Immunol Immunother ; 71(1): 71-83, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34023958

RESUMO

Immunotherapy with anti-GD2 monoclonal antibodies (mAbs) provides some benefits for patients with neuroblastoma (NB). However, the therapeutic efficacy remains limited, and treatment is associated with significant neuropathic pain. Targeting O-acetylated GD2 (OAcGD2) by 8B6 mAb has been proposed to avoid pain by more selective tumor cell targeting. Thorough understanding of its mode of action is necessary to optimize this treatment strategy. Here, we found that 8B6-mediated antibody-dependent cellular phagocytosis (ADCP) performed by macrophages is a key effector mechanism. But efficacy is limited by upregulation of CD47 expression on neuroblastoma cells in response to OAcGD2 mAb targeting, inhibiting 8B6-mediated ADCP. Antibody specific for the CD47 receptor SIRPα on macrophages restored 8B6-induced ADCP of CD47-expressing NB cells and improved the antitumor activity of 8B6 mAb therapy. These results identify ADCP as a critical mechanism for tumor cytolysis by anti-disialoganglioside mAb and support a combination with SIRPα blocking agents for effective neuroblastoma therapy.


Assuntos
Anticorpos Monoclonais/química , Antígenos de Diferenciação/química , Neuroblastoma/imunologia , Fagocitose , Receptores Imunológicos/química , Animais , Anticorpos/química , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Antineoplásicos Imunológicos/farmacologia , Antígeno CD47/biossíntese , Linhagem Celular Tumoral , Citometria de Fluxo , Gangliosídeos/química , Humanos , Imunoterapia/métodos , Macrófagos/metabolismo , Camundongos , Microscopia de Fluorescência , Neuroblastoma/metabolismo , Regulação para Cima
14.
Blood ; 136(10): 1155-1160, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32573723

RESUMO

Hematological and solid cancers catabolize the semiessential amino acid arginine to drive cell proliferation. However, the resulting low arginine microenvironment also impairs chimeric antigen receptor T cells (CAR-T) cell proliferation, limiting their efficacy in clinical trials against hematological and solid malignancies. T cells are susceptible to the low arginine microenvironment because of the low expression of the arginine resynthesis enzymes argininosuccinate synthase (ASS) and ornithine transcarbamylase (OTC). We demonstrate that T cells can be reengineered to express functional ASS or OTC enzymes, in concert with different chimeric antigen receptors. Enzyme modifications increase CAR-T cell proliferation, with no loss of CAR cytotoxicity or increased exhaustion. In vivo, enzyme-modified CAR-T cells lead to enhanced clearance of leukemia or solid tumor burden, providing the first metabolic modification to enhance CAR-T cell therapies.


Assuntos
Arginina/metabolismo , Argininossuccinato Sintase/metabolismo , Imunoterapia Adotiva/métodos , Leucemia Mieloide Aguda/terapia , Neuroblastoma/terapia , Ornitina Carbamoiltransferase/metabolismo , Linfócitos T/transplante , Animais , Apoptose , Argininossuccinato Sintase/genética , Proliferação de Células , Humanos , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Engenharia Metabólica/métodos , Camundongos , Camundongos Nus , Neuroblastoma/imunologia , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Ornitina Carbamoiltransferase/genética , Receptores de Antígenos Quiméricos/química , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Cell Physiol ; 236(1): 294-308, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32510620

RESUMO

Neuroblastoma (NBL) exists in a complex tumor-immune microenvironment. Immune cell infiltration and tumor-immune molecules play a critical role in tumor development and significantly impact the prognosis of patients. However, the molecular characteristics describing the NBL-immune interaction and their prognostic potential have yet to be investigated systematically. We first employed multiple machine learning algorithms, such as Gene Sets Enrichment Analysis and cell type identification by estimating relative subsets of RNA transcripts, to identify immunophenotypes and immunological characteristics in NBL patient data from public databases and then investigated the prognostic potential and regulatory networks of identified immune-related genes involved in the NBL-immune interaction. The immunity signature combining nine immunity genes was confirmed as more effective for individual risk stratification and survival outcome prediction in NBL patients than common clinical characteristics (area under the curve [AUC] = 0.819, C-index = 0.718, p < .001). A mechanistic exploration revealed the regulatory network of molecules involved in the NBL-immune interaction. These immune molecules were also discovered to possess a significant correlation with plasma cell infiltration, MYCN status, and the level of chemokines and macrophage-related molecules (p < .001). A nomogram was constructed based on the immune signature and clinical characteristics, which showed high potential for prognosis prediction (AUC = 0.856, C-index = 0.755, p < .001). We systematically elucidated the complex regulatory mechanisms and characteristics of the molecules involved in the NBL-immune interaction and their prognostic potential, which may have important implications for further understanding the molecular mechanism of the NBL-immune interaction and identifying high-risk NBL patients to guide clinical treatment.


Assuntos
Imunidade/genética , Neuroblastoma/genética , Neuroblastoma/imunologia , Quimiocinas/genética , Pré-Escolar , Feminino , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Neuroblastoma/patologia , Plasmócitos/imunologia , Plasmócitos/patologia , Prognóstico , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
17.
Eur J Immunol ; 50(12): 2092-2094, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32744364

RESUMO

Neuroblastoma survivors show signs of immunosenescence early after therapy in CD8+ T cell compartment and elevated plasma TNF-α but in later follow-up immune recovery comes into play. Whether the recovery phenotype is long lasting or transient remains to be elucidated, however, late adverse effects often occur in childhood cancer survivors.


Assuntos
Imunossenescência/imunologia , Neuroblastoma/imunologia , Linfócitos T CD8-Positivos/imunologia , Sobreviventes de Câncer , Humanos , Fatores de Risco , Sobreviventes , Fator de Necrose Tumoral alfa/imunologia
18.
Cancer Immunol Immunother ; 70(3): 721-732, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32915319

RESUMO

Faithful tumor mouse models are fundamental research tools to advance the field of immuno-oncology (IO). This is particularly relevant in diseases with low incidence, as in the case of pediatric malignancies, that rely on pre-clinical therapeutic development. However, conventional syngeneic and genetically engineered mouse models fail to recapitulate the tumor heterogeneity and microenvironmental complexity of human pathology that are essential determinants of cancer-directed immunity. Here, we characterize a novel mouse model that supports human natural killer (NK) cell development and engraftment of neuroblastoma orthotopic patient-derived xenograft (O-PDX) for pre-clinical antibody and cytokine testing. Using cytotoxicity assays, single-cell RNA-sequencing, and multi-color flow cytometry, we demonstrate that NK cells that develop in the humanized mice are fully licensed to execute NK cell cytotoxicity, permit human tumor engraftment, but can be therapeutically redirected to induce antibody-dependent cell-mediated cytotoxicity (ADCC). Although these cells share phenotypic and molecular features with healthy controls, we noted that they lacked an NK cell subset, termed activated NK cells, that is characterized by differentially expressed genes that are induced by cytokine activation. Because this subset of genes is also downregulated in patients with neuroblastoma compared to healthy controls, we hypothesize that this finding could be due to tumor-mediated suppressive effects. Thus, despite its technical complexity, this humanized patient-derived xenograft mouse model could serve as a faithful system for future testing of IO applications and studies of underlying immunologic processes.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos Imunológicos/farmacologia , Neuroblastoma/imunologia , Animais , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Transplante de Medula Óssea , Estudos de Casos e Controles , Linhagem Celular Tumoral , Terapia Combinada , Modelos Animais de Doenças , Feminino , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Masculino , Camundongos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Cancer Control ; 28: 10732748211033751, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34569303

RESUMO

BACKGROUND: Neuroblastoma (NBL) is the most common extracranial solid tumor in childhood, and patients with high-risk neuroblastoma had a relatively poor prognosis despite multimodal treatment. To improve immunotherapy efficacy in neuroblastoma, systematic profiling of the immune landscape in neuroblastoma is an urgent need. METHODS: RNA-seq and according clinical information of neuroblastoma were downloaded from the TARGET database and GEO database (GSE62564). With an immune-related-gene set obtained from the ImmPort database, Immune-related Prognostic Gene Pairs for Neuroblastoma (IPGPN) for overall survival (OS) were established with the TARGET-NBL cohort and then verified with the GEO-NBL cohort. Immune cell infiltration analysis was subsequently performed. The integrated model was established with IPGPN and clinicopathological parameters. Immune cell infiltration was analyzed with the XCELL algorithm. Functional enrichment analysis was performed with clusterProfiler package in R. RESULTS: Immune-related Prognostic Gene Pairs for Neuroblastoma was successfully established with seven immune-related gene pairs (IGPs) involving 13 unique genes in the training cohort. In the training cohort, IPGPN successfully stratified neuroblastoma patients into a high and low immune-risk groups with different OS (HR=3.92, P = 2 × 10-8) and event-free survival (HR=3.66, P=2 × 10-8). ROC curve analysis confirmed its predictive power. Consistently, high IPGPN also predicted worse OS (HR=1.84, P = .002) and EFS in validation cohort (HR=1.38, P = .06) Moreover, higher activated dendritic cells, M1 macrophage, Th1 CD4+, and Th2 CD4+ T cell enrichment were evident in low immune-risk group. Further integrating IPGPN with age and stage demonstrated improved predictive performance than IPGPN alone. CONCLUSION: Herein, we presented an immune landscape with IPGPN for prognosis prediction in neuroblastoma, which complements the present understanding of the immune signature in neuroblastoma.


Assuntos
Neuroblastoma/genética , Neuroblastoma/patologia , Algoritmos , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica , Humanos , Lactente , Estimativa de Kaplan-Meier , Masculino , Estadiamento de Neoplasias , Neuroblastoma/imunologia , Neuroblastoma/mortalidade , Prognóstico , Fatores de Risco , Microambiente Tumoral
20.
J Pediatr Hematol Oncol ; 43(2): e176-e179, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33060390

RESUMO

Pediatric opsoclonus-myoclonussyndrome (OMS) is a rare autoimmune disorder of which 50% are associated with neuroblastoma (NB). We investigated whether surface-binding autoantibodies in OMS can enhance natural killer (NK) cell-mediated cytotoxicity in these patients. OMS immunoglobulin G (IgG) bound to NB cell lines and NK cell-mediated cytotoxicity to NB cells was enhanced after preincubation with OMS-IgG, but not IgG from NB without OMS or healthy controls. Activation of NK cells by surface-binding autoantibodies may be an additional mechanism of antitumor immunity in children with NB and OMS.


Assuntos
Apoptose , Autoanticorpos/imunologia , Imunoglobulina G/efeitos adversos , Células Matadoras Naturais/patologia , Neuroblastoma/patologia , Síndrome de Opsoclonia-Mioclonia/patologia , Autoanticorpos/sangue , Autoanticorpos/efeitos dos fármacos , Pré-Escolar , Feminino , Seguimentos , Humanos , Imunoglobulina G/imunologia , Lactente , Células Matadoras Naturais/imunologia , Masculino , Neuroblastoma/sangue , Neuroblastoma/complicações , Neuroblastoma/imunologia , Síndrome de Opsoclonia-Mioclonia/sangue , Síndrome de Opsoclonia-Mioclonia/complicações , Síndrome de Opsoclonia-Mioclonia/imunologia , Prognóstico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa