Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Hered ; 115(4): 424-431, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38150503

RESUMO

The jaguar (Panthera onca) is the largest living cat species native to the Americas and one of few large American carnivorans to have survived into the Holocene. However, the extent to which jaguar diversity declined during the end-Pleistocene extinction event remains unclear. For example, Pleistocene jaguar fossils from North America are notably larger than the average extant jaguar, leading to hypotheses that jaguars from this continent represent a now-extinct subspecies (Panthera onca augusta) or species (Panthera augusta). Here, we used a hybridization capture approach to recover an ancient mitochondrial genome from a large, late Pleistocene jaguar from Kingston Saltpeter Cave, Georgia, United States, which we sequenced to 26-fold coverage. We then estimated the evolutionary relationship between the ancient jaguar mitogenome and those from other extinct and living large felids, including multiple jaguars sampled across the species' current range. The ancient mitogenome falls within the diversity of living jaguars. All sampled jaguar mitogenomes share a common mitochondrial ancestor ~400 thousand years ago, indicating that the lineage represented by the ancient specimen dispersed into North America from the south at least once during the late Pleistocene. While genomic data from additional and older specimens will continue to improve understanding of Pleistocene jaguar diversity in the Americas, our results suggest that this specimen falls within the variation of extant jaguars despite the relatively larger size and geographic location and does not represent a distinct taxon.


Assuntos
Fósseis , Genoma Mitocondrial , Panthera , Filogenia , Animais , Panthera/genética , Panthera/classificação , Análise de Sequência de DNA , DNA Mitocondrial/genética , América do Norte , Georgia , Evolução Molecular , Variação Genética
2.
J Zoo Wildl Med ; 55(1): 143-154, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38453497

RESUMO

Based upon previous clinical experience with domestic cats (Felis catus), the ability to assess ABC blood types and blood (in-)compatibilities of nondomestic felids, and adequately consider and plan for blood transfusions, may be important. Although nondomestic felids appear to have an ABC blood group system similar to domestic cats, typing with point-of-care kits and by CMAH genotyping for domestic cats have not been reported. In this study, 162 blood samples from 18 different nondomestic felid species (cheetah [Acinonyx jubatus, n = 42], lion [Panthera leo, n = 33], tiger [Panthera tigris, n = 23], Canada lynx [Lynx canadensis, n = 11], snow leopard [Uncia uncia, n = 10], puma [Puma concolor, n = 7], clouded leopard [Neofelis nebulosa, n = 6], serval [Leptailurus serval, n = 5], jaguar [Panthera onca, n = 5], fishing cat [Prionailurus viverrinus, n = 4], Pallas cat [Felis manul, n = 3], bobcat [Lynx rufus, n = 3], ocelot [Leopardus pardalis, n = 3], black footed cat [Felis nigripes, n = 2], leopard [Panthera pardus, n = 2], African wildcat [Felis lybica, n = 1], caracal [Caracal caracal, n = 1], and sand cat [Felis margarita, n = 1]) were ABC blood typed by laboratory and point-of-care tests, genotyped for four known CMAH variants for type B and type C (AB) phenotypes, and crossmatched with one another and domestic type A cats. Traditional tube typing identified blood type A (n = 106), type B (n = 8), type C (n = 43), and no discernible ABC type (n = 4). Several discrepancies were found between point-of-care and traditional typing test results. None of the tested felids possessed the four CMAH variants responsible for type B and C (AB) in domestic cats. Crossmatch incompatibilities (≥2+ agglutination) were identified within and between nondomestic felid species and beyond ABC incompatibilities. Of 26 crossmatches performed between domestic cats and various nondomestic felids, only 7 (27%) were compatible. In conclusion, point-of-care typing kits and CMAH genotyping, successfully used in domestic cats, may not identify the correct ABC blood type in nondomestic felids. Prior crossmatching is recommended to increase the likelihood of compatible transfusions between any nondomestic felids.


Assuntos
Acinonyx , Felidae , Felis , Leões , Lynx , Panthera , Tigres , Gatos , Animais , Genótipo , Panthera/genética
3.
J Hered ; 114(2): 120-130, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36525576

RESUMO

Nuclear mitochondrial pseudogenes (numts) may hinder the reconstruction of mtDNA genomes and affect the reliability of mtDNA datasets for phylogenetic and population genetic comparisons. Here, we present the program Numt Parser, which allows for the identification of DNA sequences that likely originate from numt pseudogene DNA. Sequencing reads are classified as originating from either numt or true cytoplasmic mitochondrial (cymt) DNA by direct comparison against cymt and numt reference sequences. Classified reads can then be parsed into cymt or numt datasets. We tested this program using whole genome shotgun-sequenced data from 2 ancient Cape lions (Panthera leo), because mtDNA is often the marker of choice for ancient DNA studies and the genus Panthera is known to have numt pseudogenes. Numt Parser decreased sequence disagreements that were likely due to numt pseudogene contamination and equalized read coverage across the mitogenome by removing reads that likely originated from numts. We compared the efficacy of Numt Parser to 2 other bioinformatic approaches that can be used to account for numt contamination. We found that Numt Parser outperformed approaches that rely only on read alignment or Basic Local Alignment Search Tool (BLAST) properties, and was effective at identifying sequences that likely originated from numts while having minimal impacts on the recovery of cymt reads. Numt Parser therefore improves the reconstruction of true mitogenomes, allowing for more accurate and robust biological inferences.


Assuntos
Genoma Mitocondrial , Panthera , Animais , Pseudogenes , Panthera/genética , Filogenia , Reprodutibilidade dos Testes , DNA Mitocondrial/genética , Núcleo Celular/genética , Análise de Sequência de DNA
4.
BMC Genomics ; 23(1): 321, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459090

RESUMO

BACKGROUND: Previous phylogeographic studies of the lion (Panthera leo) have improved our insight into the distribution of genetic variation, as well as a revised taxonomy which now recognizes a northern (Panthera leo leo) and a southern (Panthera leo melanochaita) subspecies. However, existing whole range phylogeographic studies on lions either consist of very limited numbers of samples, or are focused on mitochondrial DNA and/or a limited set of microsatellites. The geographic extent of genetic lineages and their phylogenetic relationships remain uncertain, clouded by massive sampling gaps, sex-biased dispersal and incomplete lineage sorting. RESULTS: In this study we present results of low depth whole genome sequencing and subsequent variant calling in ten lions sampled throughout the geographic range, resulting in the discovery of >150,000 Single Nucleotide Polymorphisms (SNPs). Phylogenetic analyses revealed the same basal split between northern and southern populations, as well as four population clusters on a more local scale. Further, we designed a SNP panel, including 125 autosomal and 14 mitochondrial SNPs, which was tested on >200 lions from across their range. Results allow us to assign individuals to one of these four major clades (West & Central Africa, India, East Africa, or Southern Africa) and delineate these clades in more detail. CONCLUSIONS: The results presented here, particularly the validated SNP panel, have important applications, not only for studying populations on a local geographic scale, but also for tracing samples of unknown origin for forensic purposes, and for guiding conservation management of ex situ populations. Thus, these genomic resources not only contribute to our understanding of the evolutionary history of the lion, but may also play a crucial role in conservation efforts aimed at protecting the species in its full diversity.


Assuntos
Leões , Panthera , Animais , Variação Genética , Humanos , Leões/genética , Panthera/genética , Filogenia , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma
5.
Mol Biol Rep ; 49(2): 1573-1579, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34729672

RESUMO

BACKGROUND: The common leopard (Panthera pardus fusca), which persists in most of its historic range, is experiencing steady population decline due to habitat loss, anthrophonic disturbances, illegal poaching for their body parts, and retaliatory killings in response to the leopard-human conflicts. METHODS AND RESULTS: We analysed 143 scats samples and identified 32 unique leopards following a selected panel of seven loci with cumulative PID sibs 5.30E-04. We observed moderate genetic diversity at nuclear (Ho = 0.600 ± 0.06) and mitochondrial markers (Hd = 0.569 ± 0.009; π = 0.001 ± 0.0002) and found sub-structuring in the leopard population at Uttarkashi, Western Himalayas. CONCLUSIONS: The present study exhibits the utility of non-invasive genetics in monitoring the leopard population and paves the path to investigate population genetic parameters in further studies.


Assuntos
Conservação dos Recursos Naturais/métodos , Genética Populacional/métodos , Panthera/genética , Animais , Ásia , Crime/tendências , Ecossistema , Fezes/química , Variação Genética/genética
6.
Heredity (Edinb) ; 127(6): 522-534, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34743188

RESUMO

Understanding the spatial structure of genetic diversity provides insights into a populations' genetic status and enables assessment of its capacity to counteract the effects of genetic drift. Such knowledge is particularly scarce for the snow leopard, a conservation flagship species of Central Asia mountains. Focusing on a snow leopard population in the Qilian mountains of Gansu Province, China, we characterised the spatial genetic patterns by incorporating spatially explicit indices of diversity and multivariate analyses, based on different inertia levels of Principal Component Analysis (PCA). We compared two datasets differing in the number of loci and individuals. We found that genetic patterns were significantly spatially structured and were characterised by a broad geographical division coupled with a fine-scale cline of differentiation. Genetic admixture was detected in two adjoining core areas characterised by higher effective population size and allelic diversity, compared to peripheral localities. The power to detect significant spatial relationships depended primarily on the number of loci, and secondarily on the number of PCA axes. Spatial patterns and indices of diversity highlighted the cryptic structure of snow leopard genetic diversity, likely driven by its ability to disperse over large distances. In combination, the species' low allelic richness and large dispersal ability result in weak genetic differentiation related to major geographical features and isolation by distance. This study illustrates how cryptic genetic patterns can be investigated and analysed at a fine spatial scale, providing insights into the spatially variable isolation effects of both geographic distance and landscape resistance.


Assuntos
Panthera , Animais , China , Variação Genética , Genética Populacional , Geografia , Humanos , Repetições de Microssatélites , Panthera/genética , Densidade Demográfica
7.
Mol Biol Rep ; 48(2): 1935-1942, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33566223

RESUMO

The zoos manage small populations of endangered big cat species like tiger, lion, and leopard for display, research, and conservation breeding. Genetic management of these populations is essential to ensure long term survival and conservation utility. Here we propose a simple and cost effective microsatellite based protocol for the genetic management of captive big cats. We sampled 36 big cat individuals from Seoul Grand Park Zoo (Republic of Korea) and amplified 33 published microsatellite loci. Overall, allelic richness and gene diversity was found highest for leopards, followed by lions and tigers. Twelve of the thirty-three markers showed a high degree of polymorphism across all target species. These microsatellites provide a high degree of discrimination for tiger (1.45 × 10-8), lion (1.54 × 10-10), and leopard (1.88 × 10-12) and thus can be adopted for the genetic characterization of big cats in accredited zoos globally. During captive breeding, zoo authorities rely on pedigree records maintained in studbooks to ensure mating of genetically fit unrelated individuals. Several studies have reported errors in studbook records of big cat species. Microsatellites are simple and cost effective tool for DNA fingerprinting, estimation of genetic diversity, and paternity assessment. Our unified microsatellite panel (12-plex) for big cats is efficient and can easily be adopted by zoo authorities for regular population management.


Assuntos
Animais de Zoológico/genética , Leões/genética , Repetições de Microssatélites , Panthera/genética , Tigres/genética , Alelos , Animais , Animais de Zoológico/sangue , Primers do DNA , Variação Genética , Genótipo , Leões/sangue , Leões/metabolismo , Panthera/sangue , Linhagem , Polimorfismo Genético , República da Coreia , Seleção Artificial/genética , Seul , Tigres/sangue , Tigres/metabolismo
8.
Mol Biol Rep ; 48(2): 1667-1676, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33479828

RESUMO

Accurate species and sex identification of non-invasive and forensic samples of the tiger and leopard is still confusing when using the allele-specific methods. We designed allele-specific methods with penultimate nucleotide mismatch in a nested manner for the exact identification and double-checking of forensic samples. The mismatch design is a novel concept in species and sex identification, making the allele-specific targeting precise. We developed three sets of markers, a 365 bp outer and a 98 bp inner marker for nested tiger species identification assay, 136 bp leopard specific marker, and carnivore sex identification markers. We validated the method with tissue/blood forensic samples of various felids and herbivorous available in our lab and on known fecal samples from Vandalur Zoo. We also collected 37 scat samples at diverse stages of deterioration from the Mudumalai Tiger Reserve, Tamil Nadu, India. The 365 bp targeted markers resulted in 70.2% (n = 22; 22/37) amplification success, while the 98 bp FAM-labelled marker amplified 89% (n = 33; 33/37) scat samples independently. The 136 bp leopard markers answered four scat samples (11%) unrequited by the tiger specific markers. We evaluated species and the sex identification with these markers in another 190 non-invasive samples provided by the Mudumalai Tiger Reserve authorities. Among which 56.3% (n = 107) of samples were recognized as tiger (64 male and 43 female) and 38.9% (n = 74) as leopard (41 male and 33 female). The method supersedes any other previous methods in this regard by its high accuracy and simplicity.


Assuntos
Genética Forense/métodos , Panthera/genética , Reação em Cadeia da Polimerase/métodos , Tigres/genética , Alelos , Animais , Biomarcadores , Primers do DNA , Espécies em Perigo de Extinção , Feminino , Identidade de Gênero , Índia , Masculino , Panthera/sangue , Panthera/metabolismo , Sensibilidade e Especificidade , Especificidade da Espécie , Tigres/sangue , Tigres/metabolismo , Cromossomo X/genética , Cromossomo Y/genética
9.
BMC Genet ; 20(1): 100, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31881935

RESUMO

BACKGROUND: Connectivity among jaguar (Panthera onca) populations will ensure natural gene flow and the long-term survival of the species throughout its range. Jaguar conservation efforts have focused primarily on connecting suitable habitat in a broad-scale. Accelerated habitat reduction, human-wildlife conflict, limited funding, and the complexity of jaguar behaviour have proven challenging to maintain connectivity between populations effectively. Here, we used non-invasive genetic sampling and individual-based conservation genetic analyses to assess genetic diversity and levels of genetic connectivity between individuals in the Cockscomb Basin Wildlife Sanctuary and the Maya Forest Corridor. We used expert knowledge and scientific literature to develop models of landscape permeability based on circuit theory with fine-scale landscape features as ecosystem types, distance to human settlements and roads to predict the most probable jaguar movement across central Belize. RESULTS: We used 12 highly polymorphic microsatellite loci to identify 50 individual jaguars. We detected high levels of genetic diversity across loci (HE = 0.61, HO = 0.55, and NA = 9.33). Using Bayesian clustering and multivariate models to assess gene flow and genetic structure, we identified one single group of jaguars (K = 1). We identified critical areas for jaguar movement that fall outside the boundaries of current protected areas in central Belize. We detected two main areas of high landscape permeability in a stretch of approximately 18 km between Sittee River Forest Reserve and Manatee Forest Reserve that may increase functional connectivity and facilitate jaguar dispersal from and to Cockscomb Basin Wildlife Sanctuary. Our analysis provides important insights on fine-scale genetic and landscape connectivity of jaguars in central Belize, an area of conservation concern. CONCLUSIONS: The results of our study demonstrate high levels of relatively recent gene flow for jaguars between two study sites in central Belize. Our landscape analysis detected corridors of expected jaguar movement between the Cockscomb Basin Wildlife Sanctuary and the Maya Forest Corridor. We highlight the importance of maintaining already established corridors and consolidating new areas that further promote jaguar movement across suitable habitat beyond the boundaries of currently protected areas. Continued conservation efforts within identified corridors will further maintain and increase genetic connectivity in central Belize.


Assuntos
Variação Genética , Genética Populacional/métodos , Panthera/genética , Animais , Belize , Conservação dos Recursos Naturais , Ecossistema , Evolução Molecular , Fluxo Gênico , Repetições de Microssatélites
10.
Mol Cell Probes ; 48: 101450, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31563668

RESUMO

The Illegal Wildlife Trade (IWT) represents a multi-billion dollar black-market industry whereby wild species are illegally taken from their natural environment and sold. A common question asked by wildlife forensic scientists pertains to species and/or genus identity, which currently requires multi-step processing. Our work details the development of three HyBeacon® probes, used for the presumptive detection of rhinoceros, pangolin and key target species in the Panthera genus. The approach can be performed in a single tube using melt curve analysis and provide rapid assessment of sample identity. Using synthetic DNA of representative species, early data suggest the approach is sensitive enough to achieve species identification with <10 cells. Future development and assay validation can allow the rapid screening of multiple seized items before confirmatory DNA sequencing.


Assuntos
Genética Forense/métodos , Panthera/genética , Animais , Conservação dos Recursos Naturais/métodos , Análise de Sequência de DNA/métodos , Especificidade da Espécie
11.
BMC Evol Biol ; 18(1): 156, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30348080

RESUMO

BACKGROUND: Resolving the historical biogeography of the leopard (Panthera pardus) is a complex issue, because patterns inferred from fossils and from molecular data lack congruence. Fossil evidence supports an African origin, and suggests that leopards were already present in Eurasia during the Early Pleistocene. Analysis of DNA sequences however, suggests a more recent, Middle Pleistocene shared ancestry of Asian and African leopards. These contrasting patterns led researchers to propose a two-stage hypothesis of leopard dispersal out of Africa: an initial Early Pleistocene colonisation of Asia and a subsequent replacement by a second colonisation wave during the Middle Pleistocene. The status of Late Pleistocene European leopards within this scenario is unclear: were these populations remnants of the first dispersal, or do the last surviving European leopards share more recent ancestry with their African counterparts? RESULTS: In this study, we generate and analyse mitogenome sequences from historical samples that span the entire modern leopard distribution, as well as from Late Pleistocene remains. We find a deep bifurcation between African and Eurasian mitochondrial lineages (~ 710 Ka), with the European ancient samples as sister to all Asian lineages (~ 483 Ka). The modern and historical mainland Asian lineages share a relatively recent common ancestor (~ 122 Ka), and we find one Javan sample nested within these. CONCLUSIONS: The phylogenetic placement of the ancient European leopard as sister group to Asian leopards suggests that these populations originate from the same out-of-Africa dispersal which founded the Asian lineages. The coalescence time found for the mitochondrial lineages aligns well with the earliest undisputed fossils in Eurasia, and thus encourages a re-evaluation of the identification of the much older putative leopard fossils from the region. The relatively recent ancestry of all mainland Asian leopard lineages suggests that these populations underwent a severe population bottleneck during the Pleistocene. Finally, although only based on a single sample, the unexpected phylogenetic placement of the Javan leopard could be interpreted as evidence for exchange of mitochondrial lineages between Java and mainland Asia, calling for further investigation into the evolutionary history of this subspecies.


Assuntos
Extinção Biológica , Panthera/classificação , Filogeografia , Animais , Ásia , Calibragem , DNA Mitocondrial/genética , Europa (Continente) , Genoma Mitocondrial , Panthera/genética , Filogenia
12.
Immunogenetics ; 70(2): 115-124, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28689276

RESUMO

Isolated populations of the leopard cat (Prionailurus bengalensis) on Tsushima and Iriomote islands in Japan are classified as subspecies P. b. euptilurus and P. b. iriomotensis, respectively. Because both populations have decreased to roughly 100, an understanding of their genetic diversity is essential for conservation. We genotyped MHC class II DRB exon 2 and MHC-linked microsatellite loci to evaluate the diversity of MHC genes in the Tsushima and Iriomote cat populations. We detected ten and four DRB alleles in these populations, respectively. A phylogenetic analysis showed DRB alleles from both populations to be closely related to those in other felid DRB lineages, indicating trans-species polymorphism. The MHC-linked microsatellites were more polymorphic in the Tsushima than in the Iriomote population. The MHC diversity of both leopard cat populations is much lower than in the domestic cat populations on these islands, probably due to inbreeding associated with founder effects, geographical isolation, or genetic drift. Our results predict low resistance of the two endangered populations to new pathogens introduced to the islands.


Assuntos
Genes MHC da Classe II , Cadeias beta de HLA-DR/genética , Panthera/genética , Alelos , Animais , Espécies em Perigo de Extinção , Éxons/genética , Deriva Genética , Variação Genética , Cadeias beta de HLA-DR/metabolismo , Ilhas , Japão , Repetições de Microssatélites , Filogenia , Polimorfismo Genético
13.
Int J Legal Med ; 132(4): 1075-1078, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28589259

RESUMO

In a case of negative human-leopard (Panthera pardus) interaction, an animal was burnt alive in South Rajasthan, India. We identified the species and sex of the victim animal from the ash using forensic DNA analysis. We recovered three objects (half burnt clot, stone, and shrub twig) from the ash having suspected blood stains. We extracted DNA from these items and amplified a partial fragment of mitochondrial DNA cytochrome b and 12S RNA genes. The sequence generated from these amplicons suggested that the victim animal was a leopard. Furthermore, amplification of a fragment of SRY (224 bp) and ZFX/Y (442 bp) genes indicated that the blood clot was of a male leopard. Although attempts have been made to remove every possible evidence from the crime scene, the species and sex of the victim animal were determined from the challenging and invisible blood stains wrapped in the ash.


Assuntos
Citocromos b/genética , DNA Mitocondrial/genética , Incêndios , Panthera/genética , RNA Ribossômico/genética , Animais , Queimaduras , Espécies em Perigo de Extinção , Humanos , Índia , Masculino , Reação em Cadeia da Polimerase , Análise de Sequência
14.
Genetica ; 145(6): 541-558, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28831633

RESUMO

The major histocompatibility complex (MHC), in vertebrate animals, is a multi-genic protein complex that encodes various receptors. During a disease, MHC interacts with the antigen and triggers a cascade of adaptive immune responses to overcome a disease outbreak. The MHC is very important region from immunological point of view, but it is poorly characterized among Indian leopards. During this investigation, we examined genetic diversity for MHC class I (MHC-I) and MHC class II-DRB (MHC-II) among wild and captive Indian leopards. This study estimated a pool of 9 and 17 alleles for MHC-I and MHC-II, respectively. The wild group of individuals showed higher nucleotide diversity and amino acid polymorphism compared to the captive group. A phylogenetic comparison with other felids revealed a clustering in MHC-I and interspersed presence in MHC-II sequences. A test for selection also revealed a deviation from neutrality at MHC-II DRB loci and higher non-synonymous substitution rate (dN) among the individuals from wild group. Further, the wild individuals showed higher dN for both MHC I and II genes compared to the group that was bred under captive conditions. These findings suggest the role of micro-evolutionary forces, such as pathogen-mediated selection, to cause MHC variations among the two groups of Indian leopards, because the two groups have been bred in two different environments for a substantial period of time. Since, MHC diversity is often linked with the quality of immunological health; the results obtained from this study fill the gap of knowledge on disease predisposition among wild and captive Indian leopards.


Assuntos
Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe I/genética , Panthera/genética , Animais , Animais Selvagens , Animais de Zoológico , Índia , Panthera/classificação , Filogenia , Polimorfismo Genético , Seleção Genética
15.
J Hered ; 108(6): 597-607, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28498961

RESUMO

The snow leopard, Panthera uncia, is an elusive high-altitude specialist that inhabits vast, inaccessible habitat across Asia. We conducted the first range-wide genetic assessment of snow leopards based on noninvasive scat surveys. Thirty-three microsatellites were genotyped and a total of 683 bp of mitochondrial DNA sequenced in 70 individuals. Snow leopards exhibited low genetic diversity at microsatellites (AN = 5.8, HO = 0.433, HE = 0.568), virtually no mtDNA variation, and underwent a bottleneck in the Holocene (∼8000 years ago) coinciding with increased temperatures, precipitation, and upward treeline shift in the Tibetan Plateau. Multiple analyses supported 3 primary genetic clusters: (1) Northern (the Altai region), (2) Central (core Himalaya and Tibetan Plateau), and (3) Western (Tian Shan, Pamir, trans-Himalaya regions). Accordingly, we recognize 3 subspecies, Panthera uncia irbis (Northern group), Panthera uncia uncia (Western group), and Panthera uncia uncioides (Central group) based upon genetic distinctness, low levels of admixture, unambiguous population assignment, and geographic separation. The patterns of variation were consistent with desert-basin "barrier effects" of the Gobi isolating the northern subspecies (Mongolia), and the trans-Himalaya dividing the central (Qinghai, Tibet, Bhutan, and Nepal) and western subspecies (India, Pakistan, Tajikistan, and Kyrgyzstan). Hierarchical Bayesian clustering analysis revealed additional subdivision into a minimum of 6 proposed management units: western Mongolia, southern Mongolia, Tian Shan, Pamir-Himalaya, Tibet-Himalaya, and Qinghai, with spatial autocorrelation suggesting potential connectivity by dispersing individuals up to ∼400 km. We provide a foundation for global conservation of snow leopard subspecies, and set the stage for in-depth landscape genetics and genomic studies.


Assuntos
Especiação Genética , Variação Genética , Genética Populacional , Panthera/genética , Animais , Ásia , Teorema de Bayes , Análise por Conglomerados , DNA Mitocondrial/genética , Repetições de Microssatélites , Panthera/classificação , Filogeografia , Análise de Sequência de DNA
16.
Genetica ; 144(1): 59-69, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26790662

RESUMO

Genealogical records of animals (studbook) are created to avoid reproduction between closely related individuals, which could cause inbreeding, particularly for such endangered species as the Panthera onca (Linnaeus, 1758). Jaguar is the largest felid in the Americas and is considered an important ecological key species. In Mexico, wild jaguar populations have been significantly reduced in recent decades, and population decline typically accompany decreases in genetic variation. There is no current census of captive jaguars in Mexico, and zoos do not follow a standardized protocol in breeding programs based on genetic studies. Here, we emphasise the importance of maintaining an adequate level of genetic variation and propose the implementation of standardised studbooks for jaguars in Mexico, mainly to avoid inbreeding. In addition, achieving the aims of studbook registration would provide a population genetic characterisation that could serve as a basis for ex situ conservation programmes.


Assuntos
Conservação dos Recursos Naturais , Variação Genética , Genética Populacional , Panthera/genética , Animais , Animais de Zoológico/genética , Cruzamento , Genótipo , México , Linhagem , Densidade Demográfica , Análise de Sequência de DNA
17.
BMC Genet ; 17: 37, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26860950

RESUMO

BACKGROUND: Non-invasive sampling has opened avenues for the genetic study of elusive species, which has contributed significantly to their conservation. Where field based identity of non-invasive sample is ambiguous (e.g. carnivore scats), it is essential to establish identity of the species through molecular approaches. A cost effective procedure to ascertain species identity is to use species specific primers (SSP) for PCR amplification and subsequent resolution through agarose gel electrophoresis. However, SSPs if ill designed can often cross amplify non-target sympatric species. Herein we report the problem of cross amplification with currently published SSPs, which have been used in several recent scientific articles on tigers (Panthera tigris) and leopards (Panthera pardus) in India. Since these papers form pioneering research on which future work will be based, an early rectification is required so as to not propagate this error further. RESULTS: We conclusively show cross amplification of three of the four SSPs, in sympatric non-target species like tiger SSP amplifying leopard and striped hyena (Hyaena hyaena), and leopard SSP amplifying tiger, lion (Panthera leo persica) and clouded leopard (Neofelis nebulosa), with the same product size. We develop and test a non-cross-amplifying leopard specific primer pair within the mitochondrial cytochrome b region. We also standardize a duplex PCR method to screen tiger and leopard samples simultaneously in one PCR reaction to reduce cost and time. CONCLUSIONS: These findings suggest the importance of an often overlooked preliminary protocol of conclusive identification of species from non-invasive samples. The cross amplification of published primers in conspecifics suggests the need to revisit inferences drawn by earlier work.


Assuntos
Primers do DNA/genética , Panthera/genética , Tigres/genética , Animais , Citocromos b/genética , Citocromos b/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Índia , Panthera/classificação , Reação em Cadeia da Polimerase , Especificidade da Espécie , Tigres/classificação
18.
J Exp Biol ; 218(Pt 15): 2402-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26246610

RESUMO

Genetically based modifications of hemoglobin (Hb) function that increase blood-O2 affinity are hallmarks of hypoxia adaptation in vertebrates. Among mammals, felid Hbs are unusual in that they have low intrinsic O2 affinities and reduced sensitivities to the allosteric cofactor 2,3-diphosphoglycerate (DPG). This combination of features compromises the acclimatization capacity of blood-O2 affinity and has led to the hypothesis that felids have a restricted physiological niche breadth relative to other mammals. In seeming defiance of this conjecture, the snow leopard (Panthera uncia) has an extraordinarily broad elevational distribution and occurs at elevations above 6000 m in the Himalayas. Here, we characterized structural and functional variation of big cat Hbs and investigated molecular mechanisms of Hb adaptation and allosteric regulation that may contribute to the extreme hypoxia tolerance of the snow leopard. Experiments revealed that purified Hbs from snow leopard and African lion exhibited equally low O2 affinities and DPG sensitivities. Both properties are primarily attributable to a single amino acid substitution, ß2His→Phe, which occurred in the common ancestor of Felidae. Given the low O2 affinity and reduced regulatory capacity of feline Hbs, the extreme hypoxia tolerance of snow leopards must be attributable to compensatory modifications of other steps in the O2-transport pathway.


Assuntos
Adaptação Biológica/fisiologia , Altitude , Hemoglobinas/metabolismo , Oxigênio/metabolismo , Panthera/fisiologia , 2,3-Difosfoglicerato/metabolismo , Regulação Alostérica/fisiologia , Sequência de Aminoácidos , Animais , Hemoglobinas/genética , Dados de Sequência Molecular , Panthera/genética , Análise de Sequência de DNA
19.
Conserv Biol ; 29(2): 556-64, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25376464

RESUMO

Illicit trade in wildlife products is rapidly decimating many species across the globe. Such trade is often underestimated for wide-ranging species until it is too late for the survival of their remaining populations. Policing this trade could be vastly improved if one could reliably determine geographic origins of illegal wildlife products and identify areas where greater enforcement is needed. Using DNA-based assignment tests (i.e., samples are assigned to geographic locations), we addressed these factors for leopards (Panthera pardus) on the Indian subcontinent. We created geography-specific allele frequencies from a genetic reference database of 173 leopards across India to infer geographic origins of DNA samples from 40 seized leopard skins. Sensitivity analyses of samples of known geographic origins and assignments of seized skins demonstrated robust assignments for Indian leopards. We found that confiscated pelts seized in small numbers were not necessarily from local leopards. The geographic footprint of large seizures appeared to be bigger than the cumulative footprint of several smaller seizures, indicating widespread leopard poaching across the subcontinent. Our seized samples had male-biased sex ratios, especially the large seizures. From multiple seized sample assignments, we identified central India as a poaching hotspot for leopards. The techniques we applied can be used to identify origins of seized illegal wildlife products and trade routes at the subcontinent scale and beyond.


Assuntos
Comércio , Conservação dos Recursos Naturais/métodos , Panthera , Animais , Crime , DNA/análise , Feminino , Frequência do Gene , Geografia , Índia , Masculino , Panthera/genética
20.
J Hered ; 106 Suppl 1: 503-11, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26245785

RESUMO

Habitat loss and fragmentation are important threats to carnivores worldwide, and can be especially intense for large predators. Jaguars have already been extirpated from over half of their original area of distribution, and few regions still maintain large populations. For these, detailed understanding is crucial for setting appropriate recovery targets in impacted areas. The Pantanal is among the best examples of a region with a large jaguar population in a healthy environment. Here, we analyzed 12 microsatellite loci to characterize genetic diversity and population structure of 52 jaguars sampled in 4 localities of the southern Pantanal, and compared them with prior studies of heavily fragmented populations of the Atlantic Forest. Although we observed some internal structure among the Pantanal localities, our results indicated that this area comprises a single population with high genetic variability. Moreover, our comparative analyses supported the hypothesis that the strong population structure observed in the Atlantic Forest derives from recent, anthropogenic fragmentation. We also observed significant but low levels of genetic differentiation between the Pantanal and Atlantic Forest populations, indicating recent connectivity between jaguars occurring in these biomes. Evidence for admixture between the Pantanal and a population on the western boundary of the Atlantic Forest corroborates the transitional nature of the latter area, where the jaguar population has already been extirpated. Our results can be used to understand jaguar population dynamics in a region that is less disturbed than the Atlantic forest, and to support the design of conservation strategies that maintain and restore natural connectivity among currently isolated areas.


Assuntos
Variação Genética , Genética Populacional , Panthera/genética , Animais , Teorema de Bayes , Brasil , Conservação dos Recursos Naturais , Ecossistema , Genótipo , Repetições de Microssatélites , Dinâmica Populacional , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa