Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(1): 62-78.e20, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38096822

RESUMO

The microbiota influences intestinal health and physiology, yet the contributions of commensal protists to the gut environment have been largely overlooked. Here, we discover human- and rodent-associated parabasalid protists, revealing substantial diversity and prevalence in nonindustrialized human populations. Genomic and metabolomic analyses of murine parabasalids from the genus Tritrichomonas revealed species-level differences in excretion of the metabolite succinate, which results in distinct small intestinal immune responses. Metabolic differences between Tritrichomonas species also determine their ecological niche within the microbiota. By manipulating dietary fibers and developing in vitro protist culture, we show that different Tritrichomonas species prefer dietary polysaccharides or mucus glycans. These polysaccharide preferences drive trans-kingdom competition with specific commensal bacteria, which affects intestinal immunity in a diet-dependent manner. Our findings reveal unappreciated diversity in commensal parabasalids, elucidate differences in commensal protist metabolism, and suggest how dietary interventions could regulate their impact on gut health.


Assuntos
Microbioma Gastrointestinal , Parabasalídeos , Polissacarídeos , Animais , Humanos , Camundongos , Fibras na Dieta , Intestino Delgado/metabolismo , Polissacarídeos/metabolismo , Parabasalídeos/metabolismo , Carboidratos da Dieta/metabolismo , Biodiversidade
2.
EMBO J ; 39(22): e106249, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32954505

RESUMO

Centrioles are polarized microtubule-based organelles that seed the formation of cilia, and which assemble from a cartwheel containing stacked ring oligomers of SAS-6 proteins. A cryo-tomography map of centrioles from the termite flagellate Trichonympha spp. was obtained previously, but higher resolution analysis is likely to reveal novel features. Using sub-tomogram averaging (STA) in T. spp. and Trichonympha agilis, we delineate the architecture of centriolar microtubules, pinhead, and A-C linker. Moreover, we report ~25 Å resolution maps of the central cartwheel, revealing notably polarized cartwheel inner densities (CID). Furthermore, STA of centrioles from the distant flagellate Teranympha mirabilis uncovers similar cartwheel architecture and a distinct filamentous CID. Fitting the CrSAS-6 crystal structure into the flagellate maps and analyzing cartwheels generated in vitro indicate that SAS-6 rings can directly stack onto one another in two alternating configurations: with a slight rotational offset and in register. Overall, improved STA maps in three flagellates enabled us to unravel novel architectural features, including of centriole polarity and cartwheel stacking, thus setting the stage for an accelerated elucidation of underlying assembly mechanisms.


Assuntos
Centríolos/ultraestrutura , Microscopia Crioeletrônica/métodos , Tomografia/métodos , Adesão Celular , Cílios/ultraestrutura , Microtúbulos/ultraestrutura , Parabasalídeos/citologia
3.
J Clin Microbiol ; 62(1): e0084523, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37902329

RESUMO

Human infections with the protozoan Lophomonas have been increasingly reported in the medical literature over the past three decades. Initial reports were based on microscopic identification of the purported pathogen in respiratory specimens. Later, a polymerase chain reaction (PCR) was developed to detect Lophomonas blattarum, following which there has been a significant increase in reports. In this minireview, we thoroughly examine the published reports of Lophomonas infection to evaluate its potential role as a human pathogen. We examined the published images and videos of purported Lophomonas, compared its morphology and motility characteristics with host bronchial ciliated epithelial cells and true L. blattarum derived from cockroaches, analyzed the published PCR that is being used for its diagnosis, and reviewed the clinical data of patients reported in the English and Chinese literature. From our analysis, we conclude that the images and videos from human specimens do not represent true Lophomonas and are predominantly misidentified ciliated epithelial cells. Additionally, we note that there is insufficient clinical evidence to attribute the cases to Lophomonas infection, as the clinical manifestations are non-specific, possibly caused by other infections and comorbidities, and there is no associated tissue pathology attributable to Lophomonas. Finally, our analysis reveals that the published PCR is not specific to Lophomonas and can amplify DNA from commensal trichomonads. Based on this thorough review, we emphasize the need for rigorous scientific scrutiny before a microorganism is acknowledged as a novel human pathogen and discuss the potential harms of misdiagnoses for patient care and scientific literature.


Assuntos
Parabasalídeos , Infecções por Protozoários , Humanos , Infecções por Protozoários/diagnóstico , Erros de Diagnóstico
4.
J Eukaryot Microbiol ; 71(4): e13035, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38825738

RESUMO

The phylum Parabasalia includes very diverse single-cell organisms that nevertheless share a distinctive set of morphological traits. Most are harmless or beneficial gut symbionts of animals, but some have turned into parasites in other body compartments, the most notorious example being Trichomonas vaginalis in humans. Parabasalians have garnered attention for their nutritional symbioses with termites, their modified anaerobic mitochondria (hydrogenosomes), their character evolution, and the wholly unique features of some species. The molecular revolution confirmed the monophyly of Parabasalia, but considerably changed our view of their internal relationships, prompting a comprehensive reclassification 14 years ago. This classification has remained authoritative for many subgroups despite a greatly expanded pool of available data, but the large number of species and sequences that have since come out allow for taxonomic refinements in certain lineages, which we undertake here. We aimed to introduce as little disruption as possible but at the same time ensure that most taxa are truly monophyletic, and that the larger clades are subdivided into meaningful units. In doing so, we also highlighted correlations between the phylogeny of parabasalians and that of their hosts.


Assuntos
Filogenia , Animais , Parabasalídeos/classificação , Parabasalídeos/genética , Simbiose
5.
J Eukaryot Microbiol ; 70(3): e12967, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36760170

RESUMO

Spirotrichonymphea, one of the six classes of phylum Parabasalia, are characterized by bearing many flagella in spiral rows, and they occur exclusively in the guts of termites. Phylogenetic relationships among the 13 described genera are not well understood due to complex morphological evolution and a paucity of molecular data. One such understudied genus is Spironympha. It has been variously considered a valid genus, a subgenus of Spirotrichonympha, or an "immature" life cycle stage of Spirotrichonympha. To clarify this, we sequenced the small subunit rRNA gene sequences of Spironympha and Spirotrichonympha cells isolated from the hindguts of Reticulitermes species and Hodotermopsis sjostedti and confirmed the molecular identity of H. sjostedti symbionts using fluorescence in situ hybridization. Spironympha as currently circumscribed is polyphyletic, with both H. sjostedti symbiont species branching separately from the "true" Spironympha from Reticulitermes. Similarly, the Spirotrichonympha symbiont of H. sjostedti branches separately from the "true" Spirotrichonympha found in Reticulitermes. Our data support Spironympha from Reticulitermes as a valid genus most closely related to Spirotrichonympha, though its monophyly and interspecific relationships are not resolved in our molecular phylogenetic analysis. We propose three new genera to accommodate the H. sjostedti symbionts and two new species of Spirotrichonympha from Reticulitermes.


Assuntos
Isópteros , Parabasalídeos , Animais , Parabasalídeos/genética , Filogenia , Hibridização in Situ Fluorescente , Simbiose , Sistema Digestório
6.
J Eukaryot Microbiol ; 70(5): e12988, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37291797

RESUMO

Lophomonas blattarum is a facultative commensal gut dweller of common pest cockroaches. Its cells are roughly spherical in shape with an apical tuft of ~50 flagella. Controversially, it has been implicated in human respiratory infections based on light microscopic observations of similarly shaped cells in sputum or bronchoalveolar lavage fluid. Here, we have sequenced the 18S rRNA gene of L. blattarum and its sole congener, Lophomonas striata, isolated from cockroaches. Both species branch in a fully supported clade with Trichonymphida, consistent with a previous study of L. striata, but not consistent with sequences from human samples attributed to L. blattarum.


Assuntos
Baratas , Parabasalídeos , Animais , Humanos , Parabasalídeos/genética , Filogenia , RNA Ribossômico 18S/genética , Flagelos
7.
J Eukaryot Microbiol ; 70(5): e12987, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37282792

RESUMO

Most Parabasalia are symbionts in the hindgut of "lower" (non-Termitidae) termites, where they widely vary in morphology and degree of morphological complexity. Large and complex cells in the class Cristamonadea evolved by replicating a fundamental unit, the karyomastigont, in various ways. We describe here four new species of Calonymphidae (Cristamonadea) from Rugitermes hosts, assigned to the genus Snyderella based on diagnostic features (including the karyomastigont pattern) and molecular phylogeny. We also report a new genus of Calonymphidae, Daimonympha, from Rugitermes laticollis. Daimonympha's morphology does not match that of any known Parabasalia, and its SSU rRNA gene sequence corroborates this distinction. Daimonympha does however share a puzzling feature with a few previously described, but distantly related, Cristamonadea: a rapid, smooth, and continuous rotation of the anterior end of the cell, including the many karyomastigont nuclei. The function of this rotatory movement, the cellular mechanisms enabling it, and the way the cell deals with the consequent cell membrane shear, are all unknown. "Rotating wheel" structures are famously rare in biology, with prokaryotic flagella being the main exception; these mysterious spinning cells found only among Parabasalia are another, far less understood, example.


Assuntos
Isópteros , Parabasalídeos , Animais , Filogenia , América do Sul
8.
J Eukaryot Microbiol ; 70(6): e12989, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37300520

RESUMO

Tritrichomonas muris is a common flagellated protist isolated from the cecum of wild rodents. This commensal protist has been shown previously to alter immune phenotypes in laboratory mice. Other trichomonads, referred to as Tritrichomonas musculis and Tritrichomonas rainier, also naturally colonize laboratory mice and cause immune alterations. This report formally describes two new trichomonads, Tritrichomonas musculus n. sp., and Tritrichomonas casperi n. sp., at the ultrastructural and molecular level. These two protists were isolated from laboratory mice and were differentiated by their size and the structure of their undulating membrane and posterior flagellum. Analysis at the 18S rRNA and trans-ITS genetic loci supported their designation as distinct species, related to T. muris. To assess the true extent of parabasalid diversity infecting laboratory mice, 135 mice bred at the National Institutes of Health (NIH) were screened using pan-parabasalid primers that amplify the trans-ITS region. Forty-four percent of mice were positive for parabasalids, encompassing a total of eight distinct sequence types. Tritrichomonas casperi and Trichomitus-like protists were dominant. T. musculus and T. rainier were also detected, but T. muris was not. Our work establishes a previously underappreciated diversity of commensal trichomonad flagellates that naturally colonize the enteric cavity of laboratory mice.


Assuntos
Parabasalídeos , Trichomonadida , Tritrichomonas , Animais , Camundongos , Tritrichomonas/ultraestrutura , Trichomonadida/genética , Eucariotos , Flagelos/ultraestrutura
9.
J Eukaryot Microbiol ; 67(2): 268-272, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31560813

RESUMO

Hoplonympha natator is an obligate symbiont of Paraneotermes simplicicornis (Kalotermitidae), from southwestern North America. Another Hoplonympha species inhabits Hodotermopsis sjostedti (Archotermopsidae), from montane Southeast Asia. The large phylogenetic and geographical distance between the hosts makes the distribution of Hoplonympha puzzling. Here, we report the phylogenetic position of H. natator from P. simplicicornis through maximum likelihood and Bayesian analysis of 18S rRNA genes. The two Hoplonympha species form a clade with a deep node, making a recent symbiont transfer unlikely. The distribution of Hoplonympha may be due to an ancient transfer or strict vertical inheritance with differential loss from other hosts.


Assuntos
Isópteros/parasitologia , Parabasalídeos/classificação , Animais , Arizona , Teorema de Bayes , Parabasalídeos/genética , Filogenia , RNA de Protozoário/análise , RNA Ribossômico 18S/análise , Especificidade da Espécie , Simbiose
10.
J Eukaryot Microbiol ; 67(6): 626-641, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32603489

RESUMO

Coptotermes formosanus Shiraki and Coptotermes gestroi (Wasmann) (Blattoidea: Rhinotermitidae) are invasive subterranean termite pest species with a major global economic impact. However, the descriptions of the mutualistic protist communities harbored in their respective hindguts remain fragmentary. The C. formosanus hindgut has long been considered to harbor three protist species, Pseudotrichonympha grassii (Trichonymphida), Holomastigotoides hartmanni, and Cononympha (Spirotrichonympha) leidyi (Spirotrichonymphida), but molecular data have suggested that the diversity may be higher. Meanwhile, the C. gestroi community remains undescribed except for Pseudotrichonympha leei. To complete the characterization of these communities, hindguts of workers from both termite species were investigated using single-cell PCR, microscopy, cell counts, and 18S rRNA amplicon sequencing. The two hosts were found to harbor intriguingly parallel protist communities, each consisting of one Pseudotrichonympha species, two Holomastigotoides species, and two Cononympha species. All protist species were unique to their respective hosts, which last shared a common ancestor ~18 MYA. The relative abundances of protist species in each hindgut differed remarkably between cell count data and 18S rRNA profiles, calling for caution in interpreting species abundances from amplicon data. This study will enable future research in C. formosanus and C. gestroi hybrids, which provide a unique opportunity to study protist community inheritance, compatibility, and potential contribution to hybrid vigor.


Assuntos
Sistema Digestório/parasitologia , Isópteros/parasitologia , Parabasalídeos/classificação , Parabasalídeos/genética , Animais , DNA de Protozoário/genética , Interações Hospedeiro-Parasita , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 18S/genética , Análise de Célula Única , Simbiose
11.
BMC Evol Biol ; 19(1): 162, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375061

RESUMO

BACKGROUND: Two spliceosomal intron types co-exist in eukaryotic precursor mRNAs and are excised by distinct U2-dependent and U12-dependent spliceosomes. In the diplomonad Giardia lamblia, small nuclear (sn) RNAs show hybrid characteristics of U2- and U12-dependent spliceosomal snRNAs and 5 of 11 identified remaining spliceosomal introns are trans-spliced. It is unknown whether unusual intron and spliceosome features are conserved in other diplomonads. RESULTS: We have identified spliceosomal introns, snRNAs and proteins from two additional diplomonads for which genome information is currently available, Spironucleus vortens and Spironucleus salmonicida, as well as relatives, including 6 verified cis-spliceosomal introns in S. vortens. Intron splicing signals are mostly conserved between the Spironucleus species and G. lamblia. Similar to 'long' G. lamblia introns, RNA secondary structural potential is evident for 'long' (> 50 nt) Spironucleus introns as well as introns identified in the parabasalid Trichomonas vaginalis. Base pairing within these introns is predicted to constrain spatial distances between splice junctions to similar distances seen in the shorter and uniformly-sized introns in these organisms. We find that several remaining Spironucleus spliceosomal introns are ancient. We identified a candidate U2 snRNA from S. vortens, and U2 and U5 snRNAs in S. salmonicida; cumulatively, illustrating significant snRNA differences within some diplomonads. Finally, we studied spliceosomal protein complements and find protein sets in Giardia, Spironucleus and Trepomonas sp. PC1 highly- reduced but well conserved across the clade, with between 44 and 62 out of 174 studied spliceosomal proteins detectable. Comparison with more distant relatives revealed a highly nested pattern, with the more intron-rich fornicate Kipferlia bialata retaining 87 total proteins including nearly all those observed in the diplomonad representatives, and the oxymonad Monocercomonoides retaining 115 total proteins including nearly all those observed in K. bialata. CONCLUSIONS: Comparisons in diplomonad representatives and species of other closely-related metamonad groups indicates similar patterns of intron structural conservation and spliceosomal protein composition but significant divergence of snRNA structure in genomically-reduced species. Relative to other eukaryotes, loss of evolutionarily-conserved snRNA domains and common sets of spliceosomal proteins point to a more streamlined splicing mechanism, where intron sequences and structures may be functionally compensating for the minimalization of spliceosome components.


Assuntos
Sequência Conservada , Diplomonadida/genética , Íntrons/genética , Parabasalídeos/genética , Filogenia , Spliceossomos/genética , Regiões 5' não Traduzidas/genética , Pareamento de Bases/genética , Sequência de Bases , Genoma , Conformação de Ácido Nucleico , Splicing de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/genética , Proteínas Ribossômicas/genética
12.
J Eukaryot Microbiol ; 66(6): 882-891, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31033101

RESUMO

Holomastigotes is a protist genus (Parabasalia: Spirotrichonymphea) that resides in the hindguts of "lower" termites. It can be distinguished from other parabasalids by spiral flagellar bands that run along the entire length of the cell, an anterior nucleus, a reduced or absent axostyle, the presence of spherical vesicles inside the cells, and the absence of ingested wood particles. Eight species have been described based on their morphology so far, although no molecular data were available prior to this study. We determined the 18S rRNA gene sequences of Holomastigotes from the hindguts of Hodotermopsis sjostedti, Reticulitermes flavipes, Reticulitermes lucifugus, and Reticulitermes tibialis. Phylogenetic analyses placed all sequences in an exclusive and well-supported clade with the type species, Holomastigotes elongatum from R. lucifugus. However, the phylogenetic position of Holomastigotes within the Spirotrichonymphea was not resolved. We describe two new species, Holomastigotes flavipes n. sp. and Holomastigotes tibialis n. sp., inhabiting the hindguts of R. flavipes and R. tibialis, respectively.


Assuntos
Isópteros/parasitologia , Parabasalídeos/classificação , Animais , Sistema Digestório/parasitologia , Parabasalídeos/citologia , Parabasalídeos/genética , Filogenia , RNA de Protozoário/análise , RNA Ribossômico 18S/análise , Simbiose
13.
Curr Microbiol ; 76(6): 755-761, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29754180

RESUMO

Termites are global pests and can cause serious damage to buildings, crops, and plantation forests. The symbiotic intestinal flora plays an important role in the digestion of cellulose and nitrogen in the life of termites. Termites and their symbiotic microbes in the gut form a synergistic system. These organism work together to digest lignocellulose to make the termites grow on nitrogen deficient food. In this paper, the diversity of symbiotic microorganisms in the gut of termites, including protozoan, spirochetes, actinomycetes, fungus and bacteria, and their role in the digestion of lignocellulose and also the biotechnological applications of these symbiotic microorganisms are discussed. The high efficiency lignocellulose degradation systems of symbiotic microbes in termite gut not only provided a new way of biological energy development, but also has immense prospect in the application of cellulase enzymes. In addition, the study on the symbiotic microorganisms in the gut of termites will also provide a new method for the biological control of termites by the endophytic bacteria in the gut of termites.


Assuntos
Bactérias/metabolismo , Biodiversidade , Biotecnologia/métodos , Fungos/metabolismo , Isópteros/microbiologia , Oximonadídeos/metabolismo , Parabasalídeos/metabolismo , Animais , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Fungos/classificação , Fungos/crescimento & desenvolvimento , Intestinos/microbiologia , Intestinos/parasitologia , Isópteros/parasitologia , Lignina/metabolismo , Oximonadídeos/classificação , Oximonadídeos/crescimento & desenvolvimento , Parabasalídeos/classificação , Parabasalídeos/crescimento & desenvolvimento , Simbiose
14.
J Eukaryot Microbiol ; 65(1): 77-92, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28682523

RESUMO

The guts of lower termites are inhabited by host-specific consortia of cellulose-digesting flagellate protists. In this first investigation of the symbionts of the family Serritermitidae, we found that Glossotermes oculatus and Serritermes serrifer each harbor similar parabasalid morphotypes: large Pseudotrichonympha-like cells, medium-sized Leptospironympha-like cells with spiraled bands of flagella, and small Hexamastix-like cells; oxymonadid flagellates were absent. Despite their morphological resemblance to Pseudotrichonympha and Leptospironympha, a SSU rRNA-based phylogenetic analysis identified the two larger, trichonymphid flagellates as deep-branching sister groups of Teranymphidae, with Leptospironympha sp. (the only spirotrichosomid with sequence data) in a moderately supported basal position. Only the Hexamastix-like flagellates are closely related to trichomonadid flagellates from Rhinotermitidae. The presence of two deep-branching lineages of trichonymphid flagellates in Serritermitidae and the absence of all taxa characteristic of the ancestral rhinotermitids underscores that the flagellate assemblages in the hindguts of lower termites were shaped not only by a progressive loss of flagellates during vertical inheritance but also by occasional transfaunation events, where flagellates were transferred horizontally between members of different termite families. In addition to the molecular phylogenetic analyses, we present a detailed morphological characterization of the new spirotrichosomid genus Heliconympha using light and electron microscopy.


Assuntos
Microbioma Gastrointestinal , Isópteros/parasitologia , Parabasalídeos/classificação , Animais , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Parabasalídeos/citologia , Parabasalídeos/genética , Parabasalídeos/ultraestrutura , RNA de Protozoário/análise , RNA Ribossômico/análise
15.
J Eukaryot Microbiol ; 65(2): 159-169, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28710832

RESUMO

Spirotrichonymphea is a class of hypermastigote parabasalids defined by their spiral rows of many flagella. They are obligate hindgut symbionts of lower termites. Despite more than 100 yr of morphological and ultrastructural study, the group remains poorly characterised by molecular data and the phylogenetic positions and taxonomic validity of most genera remain in question. The genus Spirotrichonympha has been reported to inhabit several termite genera, including Reticulitermes, Coptotermes, and Hodotermopsis. The type species for this genus, Spirotrichonympha flagellata, was described from Reticulitermes lucifugus but no molecular data are yet available for this species. In this study, three new Spirotrichonympha species are described from three species of Reticulitermes. Their molecular phylogenetic position indicates that the genus is not monophyletic, as Spirotrichonympha species from Coptotermes, Paraneotermes, and Hodotermopsis branch separately. In contrast, the genus Holomastigotoides is monophyletic, as demonstrated using new sequences from Holomastigotoides species. The presence of Holomastigotoides in Prorhinotermes and the distinct phylogenetic positions of Spirotrichonympha from Reticulitermes and Coptotermes are consistent with a previously proposed symbiont fauna replacement in the ancestor of Reticulitermes.


Assuntos
Isópteros/microbiologia , Parabasalídeos/classificação , Parabasalídeos/citologia , Parabasalídeos/ultraestrutura , Animais , Sistema Digestório/microbiologia , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie , Simbiose
17.
Insect Mol Biol ; 26(2): 233-242, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27991709

RESUMO

Based on prior work, a cellulase from glycosyl hydrolase family 7 (GHF7) was identified and found to be expressed at a high level in Coptotermes formosanus. To determine the function of GHF7 family members in vivo, we used RNA interference (RNAi) to functionally analyse the exoglucanase gene Pseudotrichonympha grassii cellobiohydrolase gene (PgCBH), which was highly expressed in Pseudotrichonympha grassii, a flagellate found in the hindgut of C. formosanus. In this study, the expression level of PgCBH was down-regulated by RNAi, causing the death of P. grassii, but no effect was observed for other flagellates found in C. formosanus. RNAi also resulted in significantly reduced exoglucanase activity, and no effect was observed for endoglucanase and ß-glucosidase activities. This result demonstrated that the PgCBH gene plays a role in the protist lignocellulolytic process and is also important for host survival. PgCBH can be used as a target gene and has potential as a bioinsecticide for use against termites.


Assuntos
Celulose 1,4-beta-Celobiosidase/metabolismo , Celulose/metabolismo , Isópteros/parasitologia , Parabasalídeos/enzimologia , Animais , Peso Corporal , Celulose 1,4-beta-Celobiosidase/genética , Interferência de RNA , Simbiose
18.
Parasitol Res ; 116(11): 3205-3210, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28986693

RESUMO

The German cockroach (Blattella germanica) is a common domestic pest, which produces allergens that have been associated with broncho-pulmonary disease. Various protozoan species have been identified in the intestine of this cockroach and it has been hypothesised that these protozoa, or their proteases, may contribute to the burden of cockroach-associated allergens and adjuvants present in domestic dust. The aim of this study was therefore to determine the prevalence of protozoan species in the intestine of Blattella germanica. German cockroaches were anesthetised and dissected and gut contents are used to produce wet slides for microscopy. Both, Giemsa and Papanicolaou stains were used to confirm correct identification of Lophomonas blattarum. Representatives of four genera of protozoa were identified in 110 cockroaches: Nyctoterus sp. was observed in 91.8% of cases, Gregarina sp. in 64.5%, Amoeba sp. in 25.4% and Lophomonas blattarum in 13.6%. Nyctoterus and Gregarina were statistically significantly more likely to be found in diseased cockroaches compared to Amoeba or Lophomonas. The prevalence of Lophomonas blattarum was similar to that in published studies of a different species of cockroach, Periplaneta americana. Further work is needed to assess the interplay between protozoa, cockroaches and broncho-pulmonary diseases.


Assuntos
Baratas/parasitologia , Intestinos/parasitologia , Parabasalídeos/isolamento & purificação , Alérgenos , Animais , Testes Imunológicos , Prevalência
19.
Appl Environ Microbiol ; 82(15): 4682-4695, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27235430

RESUMO

UNLABELLED: By combining genomics and isotope imaging analysis using high-resolution secondary ion mass spectrometry (NanoSIMS), we examined the function and evolution of Bacteroidales ectosymbionts of the protist Barbulanympha from the hindguts of the wood-eating cockroach Cryptocercus punctulatus In particular, we investigated the structure of ectosymbiont genomes, which, in contrast to those of endosymbionts, has been little studied to date, and tested the hypothesis that these ectosymbionts fix nitrogen. Unlike with most obligate endosymbionts, genome reduction has not played a major role in the evolution of the Barbulanympha ectosymbionts. Instead, interaction with the external environment has remained important for this symbiont as genes for synthesis of transporters, outer membrane proteins, lipopolysaccharides, and lipoproteins have been retained. The ectosymbiont genome carried two complete operons for nitrogen fixation, a urea transporter, and a urease, indicating the availability of nitrogen as a driving force behind the symbiosis. NanoSIMS analysis of C. punctulatus hindgut symbionts exposed in vivo to (15)N2 supports the hypothesis that Barbulanympha ectosymbionts are capable of nitrogen fixation. This genomic and in vivo functional investigation of protist ectosymbionts highlights the diversity of evolutionary forces and trajectories that shape symbiotic interactions. IMPORTANCE: The ecological and evolutionary importance of symbioses is increasingly clear, but the overall diversity of symbiotic interactions remains poorly explored. In this study, we investigated the evolution and nitrogen fixation capabilities of ectosymbionts attached to the protist Barbulanympha from the hindgut of the wood-eating cockroach Cryptocercus punctulatus In addressing genome evolution of protist ectosymbionts, our data suggest that the ecological pressures influencing the evolution of extracellular symbionts clearly differ from intracellular symbionts and organelles. Using NanoSIMS analysis, we also obtained direct imaging evidence of a specific hindgut microbe playing a role in nitrogen fixation. These results demonstrate the power of combining NanoSIMS and genomics tools for investigating the biology of uncultivable microbes. This investigation paves the way for a more precise understanding of microbial interactions in the hindguts of wood-eating insects and further exploration of the diversity and ecological significance of symbiosis between microbes.


Assuntos
Bacteroidetes/fisiologia , Baratas/parasitologia , Evolução Molecular , Genoma Bacteriano , Fixação de Nitrogênio , Parabasalídeos/microbiologia , Simbiose , Animais , Bacteroidetes/classificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Baratas/fisiologia , Comportamento Alimentar , Parabasalídeos/fisiologia , Filogenia , Madeira/metabolismo , Madeira/parasitologia
20.
Appl Environ Microbiol ; 81(3): 1059-70, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25452280

RESUMO

The hindguts of lower termites and Cryptocercus cockroaches are home to a distinct community of archaea, bacteria, and protists (primarily parabasalids and some oxymonads). Within a host species, the composition of these hindgut communities appears relatively stable, but the evolutionary and ecological factors structuring community composition and stability are poorly understood, as are differential impacts of these factors on protists, bacteria, and archaea. We analyzed the microbial composition of parabasalids and bacteria in the hindguts of Cryptocercus punctulatus and 23 species spanning 4 families of lower termites by pyrosequencing variable regions of the small-subunit rRNA gene. Especially for the parabasalids, these data revealed undiscovered taxa and provided a phylogenetic basis for a more accurate understanding of diversity, diversification, and community composition. The composition of the parabasalid communities was found to be strongly structured by the phylogeny of their hosts, indicating the importance of historical effects, although exceptions were also identified. Particularly, spirotrichonymphids and trichonymphids likely were transferred between host lineages. In contrast, host phylogeny was not sufficient to explain the majority of bacterial community composition, but the compositions of the Bacteroidetes, Elusimicrobia, Tenericutes, Spirochaetes, and Synergistes were structured by host phylogeny perhaps due to their symbiotic associations with protists. All together, historical effects probably resulting from vertical inheritance have had a prominent role in structuring the hindgut communities, especially of the parabasalids, but dispersal and environmental acquisition have played a larger role in community composition than previously expected.


Assuntos
Bactérias/classificação , Biota , Isópteros/microbiologia , Parabasalídeos/classificação , Animais , Bactérias/genética , Bacteroidetes , Análise por Conglomerados , Baratas , DNA Bacteriano/química , DNA Bacteriano/genética , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Trato Gastrointestinal/microbiologia , Dados de Sequência Molecular , Parabasalídeos/genética , Filogenia , Análise de Sequência de DNA , Tenericutes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa